Skip to main content
Log in

Distributed inference-based multi-robot exploration

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

This work proposes a technique for distributed multi-robot exploration that leverages novel methods of map inference. The inference technique uses observed map structure to infer unobserved map features. The team then coordinates to explore both the inferred and observed portions of the map. Individual robots select exploration poses by accounting for expected information gain and travel costs. Disputes are settled using local auctions of expected travel costs. The benefits of inference-informed exploration are demonstrated in both simulated explorations and hardware trials. The proposed technique is compared against frontier and information-based exploration approaches with varying numbers of agents and communication strengths. Map inference is evaluated using publicly available sensor datasets. The proposed inference technique improves the correctly estimated subset of the environment by an average of 34.47% (maximum 108.28%) with a mean accuracy of 95.1%. This leads to a 13.15% reduction in the cumulative exploration path length in the trials conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Aydemir, A., Jensfelt, P., & Folkesson, J.(2012). What can we learn from 38,000 rooms? Reasoning about unexplored space in indoor environments. In Proceedings of IEEE/RSJ international conference on intelligent robots and systems (pp. 4675–4682).

  • Bay, H., Tuytelaars, T., & Van Gool, L. (2006). Surf: Speeded up robust features. In Proceedings of European conference on computer vision (pp. 404–417). Springer.

  • Besl, P. J., & McKay, N. D. (1992). Method for registration of 3-D shapes. In Robotics-DL (pp. 586–606). International Society for Optics and Photonics.

  • Burgard, W., Moors, M., Fox, D., Simmons, R., & Thrun, S. (2000). Collaborative multi-robot exploration. In Proceedings of IEEE international conference on robotics and automation (pp. 476–481).

  • Cesare, K., Skeele, R., Yoo, S.-h., Zhang, Y., & Hollinger, G. (2014). Multi-uav exploration with limited communication and battery. In Proceedings of IEEE international conference on robotics and automation (No. 1).

  • Chang, H. J., Lee, C. G., Lu, Y.-H., & Hu, Y. C. (2007). P-SLAM: Simultaneous localization and mapping with environmental-structure prediction. IEEE Transactions on Robotics, 23(2), 281–293.

    Article  Google Scholar 

  • Charrow, B. (2015). Information-theoretic active perception for multi-robot teams. Ph.D. dissertation, University of Pennsylvania.

  • Charrow, B., Kahn, G., Patil, S., & Liu, S. (2015). Information-theoretic planning with trajectory optimization for dense 3D mapping. In Proceedings of robotics science and systems conference.

  • Chung, J. J. (2016) Pioneer demo code. https://github.com/JenJenChung. Edited: December 6, 2016.

  • Coulouris, G. F., Dollimore, J., & Kindberg, T. (2005). Distributed systems: Concepts and design. London: Pearson Education.

    MATH  Google Scholar 

  • Cummins, M., & Newman, P. (2009). Highly scalable appearance-only SLAM FAB-MAP 2.0. In Proceedings of robotics: Science and systems conference (pp. 1–8).

  • Daniel Stonier, H. K., & Lee, J. (2007) Rocon-package summary. http://wiki.ros.org/rocon. Edited April 7, 2015.

  • Dias, M. B., Zlot, R., Kalra, N., & Stentz, A. (2006). Market-based multirobot coordination: A survey and analysis. Proceedings of the IEEE, 94(7), 1257–1270.

    Article  Google Scholar 

  • Faigl, J., & Kulich, M. (2013). On determination of goal candidates in frontier-based multi-robot exploration. In Proceedings of European conference on mobile robots (pp. 210–215).

  • Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6), 381–395.

    Article  MathSciNet  Google Scholar 

  • Gerkey, B. (2015). Gmapping-package summary. http://wiki.ros.org/gmapping. Edited December 9, 2015.

  • Gerkey, B. P., & Mataric, M. J. (2002). Sold!: Auction methods for multirobot coordination. IEEE Transactions on Robotics and Automation, 18(5), 758–768.

    Article  Google Scholar 

  • Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2), 100–107.

    Article  Google Scholar 

  • Hollinger, G. A., & Sukhatme, G. S. (2014). Sampling-based robotic information gathering algorithms. The International Journal of Robotics Research, 33(9), 1271–1287.

    Article  Google Scholar 

  • Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C., & Burgard, W. (2013). OctoMap: An efficient probabilistic 3D mapping framework based on octrees. Autonomous Robots, 34(3), 189–206.

    Article  Google Scholar 

  • Juri-Kavelj, S. (2016) Rosaria -package summary. http://wiki.ros.org/ROSARIA. Edited May 2016, 25.

  • Kalra, N. (2007). A market-based framework for tightly-coupled planned coordination in multirobot teams. Ph.D. dissertation, Carnegie Mellon University.

  • Kiryati, N., Eldar, Y., & Bruckstein, A. M. (1991). A probabilistic hough transform. Pattern Recognition, 24(4), 303–316.

    Article  MathSciNet  Google Scholar 

  • Open Source Robotics Foundation. (2017). Robot operating system. http://www.ros.org/. Accessed July 2, 2017.

  • Parsons, S., & Wooldridge, M. (2002). Game theory and decision theory in multi-agent systems. Proceedings of Autonomous Agents and Multi-Agent Systems, 5(3), 243–254.

    Article  Google Scholar 

  • Stachniss, C. (2016). Robotics datasets. http://www2.informatik.unifreiburg.de/~stachnis/datasets.html. Accessed December 13, 2016.

  • Stachniss, C., Grisetti, G., & Burgard, W. (2005). Information gain-based exploration using rao-blackwellized particle filters. In Proceedings of robotics: Science and systems conference (Vol. 2, pp. 65–72).

  • Strom, D. P., Nenci, F., & Stachniss, C. (2015). Predictive exploration consfidering previously mapped environments. In Proceedings of IEEE international conference on robotics and automation (pp. 2761–2766).

  • Tovey, C., Lagoudakis, M. G., Jain, S., & Koenig, S. (2005). The generation of bidding rules for auction-based robot coordination. In Multi-robot systems. From swarms to intelligent automata (Vol. III, pp. 3–14). Springer.

  • Waissi, G. R., & Rossin, D. F. (1996). A sigmoid approximation of the standard normal integral. Applied Mathematics and Computation, 77(1), 91–95.

    Article  Google Scholar 

  • Waltz, F. M., & Miller, J. W. (1998). Efficient algorithm for Gaussian blur using finite-state machines. In Photonics east (pp. 334–341). International Society for Optics and Photonics.

  • Yamauchi, B. (1997). A frontier-based approach for autonomous exploration. In Computational intelligence in robotics and automation (pp. 146–151). IEEE.

  • Zhang, T., & Suen, C. (1984). A fast parallel algorithm for thinning digital patterns. Communications, 27, 235–239.

    Google Scholar 

  • Zhao, K. (2016). Rplidar—package summary. http://wiki.ros.org/rplidar. Edited December 15, 2016.

  • Zhou, H., Yuan, Y., & Shi, C. (2009). Object tracking using sift features and mean shift. Computer Vision and Image Understanding, 113(3), 345–352.

    Article  Google Scholar 

  • Zlot, R., Stentz, A., Dias, M. B., & Thayer, S. (2002). Multi-robot exploration controlled by a market economy. In Proceedings of IEEE international conference on robotics and automation, 2002 (Vol. 3, pp. 3016–3023).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey A. Hollinger.

Additional information

This is one of several papers published in Autonomous Robots comprising the “Special Issue on Distributed Robotics: From Fundamentals to Applications”.

This research was funded in part by NASA grant NNX14AI10G and Department of the Air Force contract number FA8651-14-c-0135 (Near Earth Autonomy, Inc. prime contractor).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, A.J., Hollinger, G.A. Distributed inference-based multi-robot exploration. Auton Robot 42, 1651–1668 (2018). https://doi.org/10.1007/s10514-018-9708-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-018-9708-7

Keywords

Navigation