Skip to main content

Advertisement

Log in

Decentralized planning and control for UAV–UGV cooperative teams

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

In this paper we study a symbiotic aerial vehicle-ground vehicle robotic team where unmanned aerial vehicles (UAVs) are used for aerial manipulation tasks, while unmanned ground vehicles (UGVs) aid and assist them. UGV can provide a UAV with a safe landing area and transport it across large distances, while UAV can provide an additional degree of freedom for the UGV, enabling it to negotiate obstacles. We propose an overall system control framework that includes high-accuracy motion planning for each individual robot and ad-hoc decentralized mission planning for complex missions. Experimental results obtained in a mockup arena for parcel transportation scenario show that the system is able to plan and execute missions in various environments and that the obtained plans result in lower energy consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Amato, C., Konidaris, G., Cruz, G., Maynor, C. A., How, J. P., & Kaelbling, L. P. (2015). Planning for decentralized control of multiple robots under uncertainty. In: IEEE International Conference on Robotics and Automation (ICRA) (pp. 1241–1248).

  • Arbanas, B., Ivanovic, A., Car, M., Haus, T., Orsag, M., Petrovic, T., & Bogdan, S. (2016) Aerial-ground robotic system for autonomous delivery tasks. In: IEEE International Conference on Robotics and Automation (ICRA) (pp. 5463–5468).

  • Bradski, D. G. R., & Kaehler, A. (2008). Learning Opencv (1st ed.). Sebastopol: O’Reilly Media Inc.

    Google Scholar 

  • Butzke, J., Gochev, K., Holden, B., Jung, E. J., & Likhachev, M. (2016). Planning for a ground-air robotic system with collaborative localization. In: IEEE International conference on robotics and automation (ICRA) (pp 284–291).

  • Cirillo, M., Pecora, F., Andreasson, H., Uras, T., & Koenig, S. (2014). Integrated motion planning and coordination for industrial vehicles. In: Proceedings of the 24th international conference on international conference on automated planning and scheduling (pp. 463–471).

  • Cvisic, I., & Petrovic, I. (2015). Stereo odometry based on careful feature selection and tracking. In: European conference on mobile robots (ECMR) (pp. 1–6).

  • Cvisic, I., Cesic, J., Markovic, I., & Petrovic, I. (2017). Soft-SLAM: Computationally efficient stereo visual SLAM for autonomous UAVS. Journal of Field Robotics.

  • Decker, K. S., & Lesser, V. R. (1995). Designing a family of coordination algorithms. In Proceedings of the 1st international conference on multi-agent systems (ICMAS-95) (pp. 73–80).

  • Di Paola, D., Gasparri, A., Naso, D., & Lewis, F. L. (2015). Decentralized dynamic task planning for heterogeneous robotic networks. Autonomous Robots, 38(1), 31–48.

    Article  Google Scholar 

  • Dias, A., Capitan, J., Merino, L., Almeida, J., Lima, P., & Silva, E. (2015). Decentralized target tracking based on multi-robot cooperative triangulation. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 3449–3455). IEEE.

  • Ding, X. C., Kloetzer, M., Chen, Y., & Belta, C. (2011). Automatic deployment of robotic teams. IEEE Robotics Automation Magazine, 18(3), 75–86.

    Article  Google Scholar 

  • Drenner, A., Janssen, M., Carlson, C., & Papanikolopoulos, N. (2007). Design, control, and simulation of marsupial systems for extending operational lifetime. In European Control Conference (ECC) (pp. 3146–3152).

  • Fumagalli, M., Naldi, R., Macchelli, A., Carloni, R., Stramigioli, S., & Marconi, L. (2012). Modeling and control of a flying robot for contact inspection. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 3532–3537).

  • Fumagalli, M., Naldi, R., Macchelli, A., Forte, F., Keemink, A., Stramigioli, S., et al. (2014). Developing an aerial manipulator prototype: Physical interaction with the environment. IEEE Robotics Automation Magazine, 21(3), 41–50.

    Article  Google Scholar 

  • Gerkey, B. P., & Mataric, M. J. (2002). Sold!: Auction methods for multirobot coordination. IEEE Transactions on Robotics and Automation, 18(5), 758–768.

    Article  Google Scholar 

  • Gonzalez, R. C., & Woods, R. E. (2006). Digital image processing (3rd ed.). Upper Saddle River, NJ: Prentice-Hall Inc.

    Google Scholar 

  • Guo, M., Tumova, J., & Dimarogonas, D.V. (2014). Cooperative decentralized multi-agent control under local LTL tasks and connectivity constraints. In: 53rd IEEE conference on decision and control (pp. 75–80).

  • Horling, B., Lesser, V., Vincent, R., Wagner, T., Raja, A., Zhang, S., Decker, K., & Garvey, A. (1999). The TAEMS white paper.

  • Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C., & Burgard, W. (2013). OctoMap: An efficient probabilistic 3D mapping framework based on octrees. Autonomous Robots, 34, 189–206.

    Article  Google Scholar 

  • Hsieh, M. A., Cowley, A., Keller, J. F., Chaimowicz, L., Grocholsky, B., Kumar, V., et al. (2007). Adaptive teams of autonomous aerial and ground robots for situational awareness. Journal of Field Robotics, 24(11–12), 991–1014.

    Article  Google Scholar 

  • Jimenez-Cano, A., Martin, J., Heredia, G., Ollero, A., & Cano, R. (2013). Control of an aerial robot with multi-link arm for assembly tasks. In: IEEE international conference on robotics and automation (ICRA) (pp. 4916–4921).

  • Kim, S., Choi, S., & Kim, H.J. (2013). Aerial manipulation using a quadrotor with a two dof robotic arm. In IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 4990–4995).

  • Kondak, K., Huber, F., Schwarzbach, M., Laiacker, M., Sommer, D., Bejar, M., & Ollero, A. (2014). Aerial manipulation robot composed of an autonomous helicopter and a 7 degrees of freedom industrial manipulator. In IEEE international conference on robotics and automation (ICRA) (pp. 2107–2112). IEEE.

  • Korchenko, A., & Illyash, O. (2013). The generalized classification of unmanned air vehicles. In: Actual problems of unmanned air vehicles developments proceedings (APUAVD) (pp. 28–34). IEEE.

  • Korpela, C., Orsag, M., Pekala, M., & Oh, P. (2013). Dynamic stability of a mobile manipulating unmanned aerial vehicle. In IEEE ICRA (pp. 4922–4927).

  • Korpela, C., Orsag, M., & Oh, P. (2014). Towards valve turning using a dual-arm aerial manipulator. In IEEE/RSJ international conference on intelligent robots and systems (IROS 2014) (pp. 3411–3416). IEEE.

  • Krnjak, A., Draganjac, I., Bogdan, S., Petrovic, T., Miklic, D., & Kovacic, Z. (2015). Decentralized control of free ranging AGVS in warehouse environments. In IEEE international conference on robotics and automation (ICRA) (pp. 2034–2041).

  • LARICSlab. (2017a). https://goo.gl/0J1hmK.

  • LARICSlab. (2017b). https://goo.gl/cZMrHQ.

  • Lemaire, T., Alami, R., & Lacroix, S. (2004). A distributed tasks allocation scheme in multi-uav context. In: Proceedings of the ICRA’04 IEEE international conference on robotics and automation, 2004 (Vol. 4, pp 3622–3627).

  • Lesser, V., Decker, K., Wagner, T., Carver, N., Garvey, A., Horling, B., et al. (2004). Evolution of the GPGP/TÆMS domain-independent coordination framework. Autonomous Agents and Multi-Agent Systems, 9(1–2), 87–143.

    Article  Google Scholar 

  • Lindsey, Q., Mellinger, D., & Kumar, V. (2012). Construction with quadrotor teams. Autonomous Robots, 33(3), 323–336.

    Article  Google Scholar 

  • Maini, P., & Sujit, P. (2015). On cooperation between a fuel constrained UAV and a refueling UGV for large scale mapping applications. In International conference on unmanned aircraft systems (ICUAS) (pp. 1370–1377). IEEE.

  • Mathew, N., Smith, S. L., & Waslander, S. L. (2015). Planning paths for package delivery in heterogeneous multirobot teams. IEEE Transactions on Automation Science and Engineering, 12(4), 1298–1308.

    Article  Google Scholar 

  • Michael, N., Shen, S., Mohta, K., Mulgaonkar, Y., Kumar, V., Nagatani, K., et al. (2012). Collaborative mapping of an earthquake-damaged building via ground and aerial robots. Journal of Field Robotics, 29(5), 832–841.

    Article  Google Scholar 

  • Miskovic, N., Bogdan, S., Nad, E., Mandic, F., Orsag, M., & Haus, T. (2014). Unmanned marsupial sea-air system for object recovery. In 22nd Mediterranean Conference of Control and Automation (MED) (pp. 740–745).

  • Moré, J. J. (1978). The Levenberg-Marquardt algorithm: Implementation and theory. In G. A. Watson (Ed.), Numerical analysis. Lecture notes in mathematics (Vol. 630, pp. 105–116). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Omidshafiei, S., Agha-Mohammadi, A. A., Amato, C., & How, J. P. (2015). Decentralized control of partially observable markov decision processes using belief space macro-actions. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 5962–5969).

  • Orsag, M., Korpela, C., Bogdan, S., & Oh, P. (2014). Hybrid adaptive control for aerial manipulation. Journal of Intelligent and Robotic Systems, 73(1–4), 693–707.

    Article  Google Scholar 

  • Papachristos, C., Tzes, A. (2014). The power-tethered UAV-UGV team: A collaborative strategy for navigation in partially-mapped environments. In Mediterranean conference on control and automation (pp. 1153–1158).

  • Petrovic, T., Haus, T., Arbanas, B., Orsag, M., & Bogdan, S. (2015). Can UAV and UGV be best buddies? Towards heterogeneous aerial-ground cooperative robot system for complex aerial manipulation tasks. In: 12th International conference on informatics in control, automation and robotics (ICINCO) (Vol. 01, pp. 238–245).

  • Pimentel, B.S., Campos, M.F.M. (2003). Cooperative communication in ad hoc networked mobile robots. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS 2003) (Cat. No. 03CH37453) (Vol. 3, pp. 2876–2881).

  • Raman, V. (2014). Reactive switching protocols for multi-robot high-level tasks. In IEEE/RSJ international conference on intelligent robots and systems (IROS 2014) (pp. 336–341).

  • Saribatur, Z., Erdem, E., & Patoglu, V. (2014). Cognitive factories with multiple teams of heterogeneous robots: Hybrid reasoning for optimal feasible global plans. In IEEE/RSJ International conference on intelligent robots and systems (IROS 2014) (pp. 2923–2930).

  • Scholten, J., Fumagalli, M., Stramigioli, S., & Carloni, R. (2013). Interaction control of an uav endowed with a manipulator. In IEEE International conference on robotics and automation (ICRA) (pp. 4910–4915)

  • Siltanen, S. (2012). Theory and applications of marker-based augmented reality. VTT Science.

  • Sreenath, K., Michael, N., Kumar, V. (2013). Trajectory generation and control of a quadrotor with a cable-suspended load-a differentially-flat hybrid system. In IEEE ICRA (pp. 4888–4895). IEEE.

  • Stentz, A., & Dias, M. B. (1999). A free market architecture for coordinating multiple robots. DTIC Document: Tech. rep.

  • Şucan, I.A., Moll, M., Kavraki, L. E. (2012). The open motion planning library. IEEE Robotics & Automation Magazine, 19(4), 72–82. http://ompl.kavrakilab.org.

    Article  Google Scholar 

  • Tang, F., Parker, L.E. (2005). Asymtre: Automated synthesis of multi-robot task solutions through software reconfiguration. In Proceedings of the IEEE International Conference on Robotics and Automation (pp. 1501–1508).

  • Thomas, J., Loianno, G., Sreenath, K., Kumar, V. (2014). Toward image based visual servoing for aerial grasping and perching. In IEEE ICRA (pp. 2113–2118).

  • Wurm, K., Dornhege, C., Nebel, B., Burgard, W., & Stachniss, C. (2013). Coordinating heterogeneous teams of robots using temporal symbolic planning. Autonomous Robots, 34(4), 277–294.

    Article  Google Scholar 

  • Yan, Z., Jouandeau, N., & Cherif, A. A. (2013). A survey and analysis of multi-robot coordination. International Journal of Advanced Robotic Systems, 10(12), 399.

    Article  Google Scholar 

  • Zikou, L., Papachristos, C., Alexis, K., & Tzes, A. (2015). Inspection operations using an aerial robot powered-over-tether by a ground vehicle. In International symposium on visual computing (pp. 455–465).

    Chapter  Google Scholar 

  • Zlot, R., & Stentz, A. (2006). Market-based multirobot coordination for complex tasks. The International Journal of Robotics Research, 25(1), 73–101.

    Article  Google Scholar 

Download references

Acknowledgements

This paper was supported by the EU-FP7-ICT project European Robotics Challenges (EuRoC), Grant Agreement No. 608849.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Arbanas.

Additional information

This is one of several papers published in Autonomous Robots comprising the “Special Issue on Distributed Robotics: From Fundamentals to Applications”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 286176 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arbanas, B., Ivanovic, A., Car, M. et al. Decentralized planning and control for UAV–UGV cooperative teams. Auton Robot 42, 1601–1618 (2018). https://doi.org/10.1007/s10514-018-9712-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-018-9712-y

Keywords

Navigation