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Abstract We present a distributed algorithm for a swarm of active particles to cam-
ouflage in an environment. Each particle is equipped with sensing, computation and
communication, allowing the system to take color and gradient information from the
environment and self-organize into an appropriate pattern. Current artificial camou-
flage systems are either limited to static patterns, which are adapted for specific
environments, or rely on back-projection, which depend on the viewer’s point of
view. Inspired by the camouflage abilities of the cuttlefish, we propose a distributed
estimation and pattern formation algorithm that allows to quickly adapt to different
environments. We present convergence results both in simulation as well as on a
swarm of miniature robots “Droplets” for a variety of patterns.

1 Introduction

We wish to design artificial camouflage systems that can quickly adapt to a large
variety of environments. Inspired by the capabilities of cephalopods, which tightly
integrate sensing, actuation (color change), neural computation and communication,
we are interested in a distributed artificial approach that mimics this tight integration
[21, 9]. While animals employ camouflage mostly for escaping predators, camou-
flage in an engineering context is typically motivated by clandestine military op-
erations. More broadly, everything from small robots to buildings could use these
techniques to more seamlessly be a part of their environment. Nature employs a
large variety of techniques to achieve these goals. For example, moths mimic pat-
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terns that they would expect in their environments, sea animals use mottle patterns to
soften their contours, and other animals decorate their body with artifacts from the
environment [17]. Two animals with notable camouflage abilities are the cuttlefish
and octopus, who can dramatically alter the coloration and patterning of their skin
and switch between different environments in a matter of seconds [5]. These crea-
ture’s camouflage behavior is not only driven by the animals’ visual system (which
is color-blind [11]) or brain [12], but has also been shown to rely on local sensing
and control [15].

There have been multiple attempts to achieve active camouflage using a combi-
nation of cameras and projection [6, 8]. Although such systems provide “perfect”
camouflage, they are highly dependent on the observer’s viewpoint. Mimicking the
background exactly is rarely employed in the animal kingdom, where a few simple
families of patterns — mottled, striped, or simply uniform [4] — dominate. Creat-
ing such patterns requires only local coordination [10], suggesting a combination of
high-level selection of appropriate motor programs [12] and self-organization [10].
Here, we are not concerned with perfectly matching the background, but rather aim
to replicate the pattern matching ability of natural systems, which are able to fool
sophisticated predators.

Distributing the sensing and actuation for camouflage generation makes an im-
plementation scalable for a variety of factors, such as resolution of the camouflage
pattern, the size of the area being camouflaged, and robustness against the failure
of individual units. Further, a distributed camouflage system could respond to local
changes in the environment, in particular when deployed on non-trivial 3D surfaces.

In this paper, we present a fully distributed approach, which we implement on a
swarm of Droplets [2], each equipped with the ability to sense and emit color as well
as communicate with its local neighbors. Although there exist multiple attempts to
design artificial chromatophores, most work focuses on component technology, i.e.
the ability to color change in a soft substrate [16, 14], but very few works articu-
late the systems challenges that require not only local color changes, but also local
sensing and computation [21], or investigate the ability to co-locate simple signal
processing with the sensors themselves [3].

Our algorithm can be broken into three phases, each described in detail below.
First, we estimate a color and gradient histogram with a consensus algorithm among
the particles. This information is then used to determine the parameters of a pattern
formation algorithm. Finally, the pattern is formed using a reaction-diffusion pro-
cess. The “background” in to which the swarm is trying to camouflage is projected
on to the particles from above, requiring them to have color sensors. To simplify
the color-identification process, the paper focuses on two-tone patterns. Finally, we
arrange the particles in a grid pattern, which allows us to implement a discrete con-
volution operation and simplifies debugging the pattern at the low resolution that
swarms in the order of tens of particles can afford.
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2 Distributed Camouflage Algorithm

In this section, we describe the distributed camouflage algorithm. Fig. 1 illustrates
the steps of the algorithm in broad strokes. First, each robot measures the color pro-
jected on it. Then, it exchanges the measured color with neighboring robots. Once
received, neighbors’ color information is used to compute an estimated probabil-
ity for the various pattern types based on local information (Section 2.1). Next,
the swarm communicates their local pattern probabilities, using a weighted-average
consensus algorithm to compute the most likely global pattern (Section 2.2). Once
consensus has been achieved, the swarm reproduces the pattern collaboratively with
a reaction-diffusion process (Section 2.3).

Fig. 1 Pipeline of the Distributed Camouflage Algorithm

2.1 Pattern Descriptor

Once each robot has measured the local environment’s color, and communicated
that information, they apply a filter mask (see Fig. 2) to compute a discrete ap-
proximation of the second-order color derivative in both the horizontal and vertical
directions. This is quite similar in concept to kernels used in edge detection and
other computer-vision tasks [1]. Indeed, if the grid of robots is viewed as an image
with each robot a pixel, these two pattern descriptors are simply the value the pixel
would have after each of the two convolutions. These second-order derivatives are
the Pattern Descriptors – denoted Px and Py for the horizontal and vertical directions
respectively – and are used to calculate the most probable local pattern.

To be specific, with M denoting my local color and T , R, B, and L denoting the
color of my top, right, bottom, and left neighbors, Px and Py are given by:

Px = L+R−2M

Py = T +B−2M
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Fig. 2 Illustration of applying
the two second order deriva-
tive masks.

A pattern-probability array p = [ph, pv, pm] is used to record each robot’s pattern,
where ph represents the probability of a pattern-type is selected and given a proba-
bility of 1 based on our local Pattern Descriptors, and the other probabilities are all
0. This is shown in the equation below, where T is some threshold value and |val| is
used to indicate abs(val).

p = [ph, pv, pm] =


[1,0,0] if

∣∣Py
∣∣−|Px|> T

[0,1,0] if |Px|−
∣∣Py
∣∣> T

[0,0,1] otherwise
(1)

Note that a grid representation has only been chosen for the simplicity of performing
(and explaining) the mathematical operations, but one could equally well perform
the described convolutions using continuous representations and local range and
bearing information.

2.2 Distributed Average Consensus Scheme

Once each robot has computed the most likely local pattern (ie, computed p =
[ph, pv, pm]), they need to achieve consensus on the global pattern. We use the dis-
tributed average consensus scheme [19] for this purpose. In each step of this scheme,
the robot updates its local p to be a weighted average of its own and its neigh-
bors’. This step is repeated many times, allowing information to diffuse through the
swarm. Since the weighted average just uses local information, each step takes the
same amount of time regardless of the number of robots in the swarm. The number
of steps needed was determined experimentally.

The weighted-average calculation uses Metropolis weights, defined as:

Wi, j =


1

1+max{di,d j} if (i, j) ∈ E,
1−∑(i,k)∈E Wi,k if i = j,
0 otherwise.

(2)
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The Metropolis weights are well-suited for distributed algorithms, since weight-
calculation requires only local knowledge. Further, it is proven in [19] that Metropo-
lis weights guarantee convergence of the average consensus provided that the in-
finitely occurring communication graphs are jointly connected. Once the robots have
converged, the largest value in p represents the most likely global pattern. For exam-
ple, ph > pv and ph > pm indicates that the most likely global pattern is horizontal
stripes.

2.3 Pattern Generator

In this section, we describe the distributed pattern formation algorithm to generate
a proper pattern to match the environment.

Fig. 3 Illustration of local activator-inhibitor model: on the left, the activation region (orange) is
defined by Ax and Ay while the inhibition region (gray) is defined by Ix and Iy; on the right, W1 and
W2 are the two field values. R1 is related to Ax and Ay and R2 is related to Ix and Iy,

Now that a global pattern has been selected, the robots next need to generate an
appropriate camouflage pattern. We use the pattern-formation algorithm presented
by Young [20]: a local activator-inhibitor model. In this model, each cell (robot) is
either ‘on’ or ‘off’, and can generate two kinds of morphogens: activator morphogen
and inhibitor morphogen. Together, these form a “morphogenetic field”. Note that
the activator should be inside of the inhibitor (see left of Figure 3). The cells (robots)
in the activator morphogen contribute to stimulate change for nearby ‘on’ cells, and
cells in the inhibitor morphogen contribute to stimulate change for nearby ‘off’ cells.

During each step of this algorithm, each cell changes its ‘off’/‘on’ status based
on the combined effect of all nearby morphogenetic fields. More specifically, a
‘strength’ is calculated with each ‘on’ robot contributing a positive value (W1) if
in the activator region or contributing a negative value (W2) if outside the activator
region and inside the inhibitor region. The robot then changes its state to ‘on’ if the
strength is greater than 0, and to ‘off’ otherwise. This step is repeated until the states
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Fig. 4 Activator (orange) and Inhibitor (gray) Regions for each of the three patterns.

converge to a stable pattern. In [20] the author observes that convergence typically
takes around five steps. This was consistent with our observations.

In this framework, the different types of patterns are represented with differently
shaped activator and inhibitor regions. The regions for each pattern are shown in
Figure 4. Note that the region sizes mean that each robot only requires information
from robots within two hops of it.

3 Simulated Results

We implemented the algorithm introduced above on a centralized system for testing.
By presenting some simulated results here, we hope to demonstrate the algorithm’s
functionality and add clarity to the explanation above. We run these tests with three
images, one for each of the pattern types. Each image is 128×128 pixels, and gray
scale. We simulate 64 (8×8) robots.

Note that this grid of 8× 8 robots is in many ways analogous to the sensor of a
digital camera, albeit a camera with only 8×8 sensors and thus with very low res-
olution. If you were to recapture our test images with such a low resolution camera,
many different pixels in the test image would contribute to the camera’s output, re-
sulting in a very blurry image. We therefore downsample the input image by taking
the average of 16×16 pixel blocks. This blurred image is used as the color sensed
by each robot for selecting the most likely pattern. For pattern generation, the initial
on/off state is determined by making the blurred image binary (ie. white and black).
Figure 5 shows the entire process for each of the three input images.

Once the Droplets calculate the local pattern based on their sensed color and that
of their neighbors, they need to achieve consensus on the global pattern. As has been
discussed in Section 2.2, convergence of this value is guaranteed.

Next, the pattern generator described above is used (Section 2.3) with the activa-
tor and inhibitor regions seen in Figure 4. The activator field value of W1 = 1 was
used, as suggested in paper [20]. The inhibitor field value, W2, is a parameter which
gives rough control over what proportion of the robots are ‘on’ in the final pattern.
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e

Fig. 5 The algorithm takes in the gray images (row a) and blurs them to images with 8× 8 res-
olution (row b). These are the values sensed by each robot, and are used to calculate the pattern
probabilities and choose the most probable local pattern. Row cshows consensus convergence for
the most likely global pattern. For each of the charts in row c: the y axis shows pattern probability
p from 0 to 1, and the x axis shows the number of steps taken from 0 to 35. The red horizontal line
marks p = 0.5. The blurred image from row b is converted to binary (row d) to get initial states
for the pattern generator, which generates the resultant pattern (row e).
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We found that W2 =−0.75 gave qualitatively good results for all three of the pattern
generators.

Finally, we start pattern generation with each robot’s initial state to be ‘on’ or
‘off’ status based by the sensed value. If the value is less than 127 we set it black,
otherwise we set it white. The pattern generator runs for ten iterations. Robots on
the image boundary use a reflection of their neighbors. A robot on the top row, for
example, would count its bottom neighbor twice, as the top row is empty.

To further test the simulated algorithm, we added a simple noise model. For mea-
surement error, instead of always assigning the appropriate color to a robot based on
its position, we assign a uniformly random color with probability ρmeas. For com-
munication error, at each step in the algorithm where information from a neighbor
is shared with a robot for a calculation (including the step where a robot’s neigh-
bors are calculated in the first place), are robot does not share this information with
probability ρcomm.

Fig. 6 The y-axis is the pixel
difference from the ‘correct’
pattern and the x-axis is the
error probability. The red line
shows the effect of measure-
ment errors (ρmeas). The blue
line shows the effect of com-
munication errors (ρcomm).
The green line shows the
effect of both measurement
and communication errors
(ρcomm = ρmeas). Each data
point reflects the mean result
over 10 trials of the forest
image.

For a quantitative measure of the effects of error, we calculated the total absolute
difference between the final generated pattern in the presence of error, and the final
generated pattern without any error (as visible in the bottom row of Figure 5). These
results are charted in Figure 6. Note that, with the 8x8 images used, a purely random
image should give us a difference of 32, on average. The algorithm seems quite
robust to errors of up to 0.15−−0.2. After these thresholds, the error increases
sharply. (Results shown here are for the forest image, with other images yielding
similar results.) Qualitatively, we observe that even as errors started to appear, many
of the resulting patterns still looked ‘good’, i.e., still had prominent vertical stripes.
The main determining factor as the probability of error increased seemed to be in
the global pattern detection. If the correct pattern (vertical stripes in this case) is
selected, the resulting pattern will fit well even with large errors. Correct pattern
selection grows increasingly infrequent, however.
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4 Hardware Implementation

To validate the proposed algorithm and to understand the sorts of errors that real
hardware introduces, we implemented the algorithm described above on a swarm
of “Droplets” [2, 7]. The Droplets are an open-source platform, with source code
and manufacturing information available online1. Each Droplet is roughly cylin-
drical with a radius of 2.2cm and a height of 2.4cm. The Droplets use an Atmel
xMega128A3U micro-controller, and receive power via their legs through a floor
with alternating strips of +5V and GND. Each Droplet has six infrared emitters,
receivers, and sensors, which are used for communication and for the range and
bearing system [2]. The top of each board has sensors to detect the color and bright-
ness of ambient light, and an RGB LED. Each droplet has a 16-bit unique ID.

In our implementation, each Droplet maintains an array of neighbor’s IDs. Mes-
sages are labeled with phase flags and attached with Droplets’ IDs. The Droplets are
synchronized using a firefly synchronization algorithm [13, 18]. A simple TDMA
protocol is used with 37 slots, each 350ms long. Each frame is thus 12.95s long.
Each robot is assigned a slot based on its unique id modulo 37. The number of
slots (37) was chosen to be large enough that the probability of two adjacent robots
sharing a slot is low, but small enough that the algorithm runs quickly.

Fig. 7 Neighbor array. The
orange neighbors(0-3) are
used for pattern recognition;
the green neighbors(4-7) are
used in addition to the orange
for pattern consensus.All
pictured neighbors (orange,
green and gray) are used for
pattern formation.

In Phase 0 (neighbor identification), we initialize and configure the neighbor ID
arrays which store neighboring Droplets’ IDs. Range and bearing information is
used to calculate positions for each Droplet’s immediate neighbors, and neighbors-
of-neighbors are learned by listening to the messages sent by Droplets each slot,
which contain that Droplet’s neighbors. The positions of Droplets and their indices
in the array are illustrated in Fig. 7. We allot 20 frames for Phase 0, since the neigh-
bor information is critical to the three phases.

In Phase 1 (color sensing and recognition), each Droplet communicates the color
it senses, and stores the colors its neighbors sense, as learned through communi-
cations. Once this is complete, each (non-boundary) Droplet should know the ID

1 http://github.com/correlllab/cu-droplet

http://github.com/correlllab/cu-droplet
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and position of 12 neighbors, as well as those neighbor’s sensed colors. With this
information, the Droplets calculate an pattern probability array p as described in
Section 2.1. This phase is allotted 10 frames.

In Phase 2 (pattern consensus), each Droplet communicates its pattern probabil-
ity array p and receives pattern probability arrays from its neighbors. At the end
of each frame, each Droplet updates its pattern probability array according to the
weighted-average consensus algorithm, as described in Section 2.2. Each ‘step’ of
the consensus algorithm spans one frame. This phase is allotted 35 frames.

In Phase 3 (pattern formation), each Droplet communicates its intended color
for the generated pattern, and receives that information from neighboring Droplets.
At the end of each frame, each Droplet updates its color in the generated pattern
from corresponding Droplets. Each Droplet exchanges pattern color message with
neighbors. At the end of each frame, each Droplet updates its pattern color according
to the pattern generation algorithm described in Section 2.3. This phase is allotted
20 frames.

5 Hardware Results

Fig. 8 Initial condition (left), final pattern with projected pattern (middle) and final pattern (right)
for camouflaging the tiger stripe pattern

A hardware implementation of the swarm camouflage algorithm is shown in Fig-
ure 8. For this test, the projected image for the Droplets to sense is a tiger stripe pat-
tern. The results of this test are interesting because a striped pattern is maintained,
despite the failure of two units. This, in addition to the more-difficult-to-count fail-
ures in communication and color sensing.

Figure 9 shows the pattern probability convergence for a random sampling of
Droplets, when run with a simple horizontal stripe pattern projected on them. The
swarm reaches consensus on a horizontal pattern, converging to ph = 0.61.
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Fig. 9 Convergence of pattern
probabilities of randomly
chosen Droplets camouflaging
tiger stripe pattern

6 Conclusion

We present a distributed camouflage system in which a robot swarm can sense the
environment color, recognize the local pattern, achieve consensus on the global pat-
tern, and generate a camouflage pattern consistent with the environment the robots
are in. In our design, pattern descriptors are proposed for recognizing local patterns.
A weighted-average consensus scheme is then utilized, allowing the swarm to con-
verge to a common global pattern. Finally, a pattern formation model is applied to
each robot which generates a pattern appropriate for the background. This is accom-
plished using local communication and simple mathematical operations.

We simulated the proposed algorithm on a couple of patterns from nature: a
desert, a forest, and leopard skin. After going through all the phases in the algo-
rithm, and successfully agreeing on a global pattern, the simulation results show
that robots with wrong color reading can correct themselves to match the global
pattern. This is especially obvious for the horizontal and vertical patterns. We also
tried to test the distributed algorithm by applying it on the Droplet swarm robotics
platform. The results from the Droplets is promising since the robots can agree on
the global pattern and show a proper matching pattern even if individual Droplets
stop working.

As communication on the Droplets is not perfectly reliable, the resultant patterns
exhibit some random variations; they do not perfectly match simulation. Even these
variations, however, will roughly follow the desired background pattern, seeming to
bend or twist around the erroneous robot. In the future, we wish to test the algorithm
on a more purpose-built hardware platform which would allow for higher-resolution
patterns, and extend the algorithm to include consensus on the dominant colors and
patterns consisting of more than two colors.

Acknowledgements This research has been supported by NSF grant #1150223.
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