
A Graph Isomorphism-based Decentralized Algorithm for Modular Robot
Configuration Formation

Ayan Dutta1, Prithviraj Dasgupta1 and Carl Nelson2
1 Computer Science Department, University of Nebraska at Omaha

2 Mechanical and Materials Engineering Department, University of Nebraska-Lincoln.
Email: {adutta, pdasgupta}@unomaha.edu, cnelson5@unl.edu

Abstract— We consider the problem of configuration forma-
tion in modular robot systems where a set of modules that
are initially in different configurations and located at different
locations are required to assume appropriate positions so that
they can get into a new, user-specified, target configuration.
We propose a novel algorithm based on graph isomorphism,
where the modules select locations or spots in the target
configuration using a utility-based framework, while retaining
their original configuration to the greatest extent possible,
to reduce the time and energy required by the modules to
assume the target configuration. We have shown analytically
that our proposed algorithm is complete and guarantees a
Pareto-optimal allocation. Experimental simulations of our
algorithm with different number of modules in different initial
configurations and located initially at different locations, show
that the planning time of our algorithm is nominal (order of
msec for 100 modules). We have also compared our algorithm
against a market-based allocation algorithm and shown that
our proposed algorithm performs better in terms of time and
number of messages exchanged.

I. INTRODUCTION

Modular self-reconfigurable robots (MSRs) [23] are com-
posed of individual robotic modules which can change their
connections with each other to form different shapes or
configurations. This configuration adaptability affords a high
degree of dexterity and maneuverability to MSRs and makes
them suitable for robotic applications such as inspection
of engineering structures like pipelines [11], extra-terrestrial
surface exploration [8], etc. A central problem in MSRs is to
autonomously reconfigure the modules from one configura-
tion to another [20]. In this paper, we consider an aspect of
this MSR reconfiguration problem called the configuration
formation problem, which is described as follows: we are
given a set of modules forming different configurations that
are distributed at different locations within the environment
along with a target configuration that needs to be formed at a
specified location; the target configuration involves some or
all of the modules from the initial configurations. The prob-
lem is to select an appropriate subset of modules to occupy
appropriate spots or positions in the target configuration, so
that, after reaching the selected positions, they can readily
connect with adjacent modules and form the shape of the
desired target configuration. An instance of this problem is
shown in Figure 1.

Previous research in MSR configuration formation has
mainly focused on the problem of self-reconfiguration, where

12
3

45
6

7
8

9

10
11

12

13

14

15

16
17

2
3 4

5

6
7

8

16
17

10

11
12 13

9
1
15

14

(a) (b)

Fig. 1. (a) Four initial configurations consisting of 1, 2, 6 and
8 modules respectively, and desired target configuration (marked
with yellow dotted lines) (b) target configuration involving all
17 modules connected in ladder configuration; module numbers
marked in white, yellow and red are retained between between
initial and target configurations.

the objective is to transform one configuration to another
without removing or adding modules to the configuration;
only the positions of the modules in the initial configuration
are changed to obtain the target configuration. Our work in
this paper generalizes the configuration formation problem
to a scenario where the number of modules in the target
configuration is independent of the number of modules in
the initial configuration, and, individual modules or a con-
nected set of modules can be extracted from multiple initial
configurations to form the target configuration. The gener-
alized configuration formation problem is non-trivial as the
modules might already be connected in initial configurations
that do not correspond to parts of the target configuration.
Also, existing connections between modules in the initial
configuration should be preserved in the target configuration,
whenever possible, to reduce the energy and time expenditure
in disconnecting and re-connecting modules. Moreover, mul-
tiple modules from different initial configurations might end
up selecting the same most-preferred position (e.g., position
involving least time and battery expenditure to navigate to)
in the target configuration, leading to failed attempts to
achieve the target configuration. To address these challenges,
we propose an algorithm that allows modules from initial
configurations to select suitable positions in a target config-
uration using a technique based on graph isomorphism that
attempts to improve the utility of the modules by reducing the
number of disconnects between modules to achieve the target
configuration. We have shown analytically that our proposed
algorithm is complete and achieves Pareto-optimal allocation.
We have also verified the performance of our algorithm in

ar
X

iv
:1

60
2.

03
10

4v
1

 [
cs

.R
O

]
 9

 F
eb

 2
01

6

terms of planning time and number of messages exchanged
for different number of modules and different initial and
target configurations, for simulated modules of the MSR. Our
experimental results show that our algorithm performs better,
in terms of planning time and number of messages passed
by the modules as compared to a market-based allocation
algorithm.

II. RELATED WORK

An excellent overview of the state of the art MSRs and
their self-reconfiguration techniques is given in [20]. One of
the popular techniques for MSR self-reconfiguration is AI-
based search techniques such as Rapidly-exploring Random
Trees (RRT) and A* [7]. However, as noted in a recent
survey on MSRs [1], configuration formation in modular
robot systems has been studied less extensively. Alonso-
Mora et al. [2] addressed a position selection problem for
artistic pattern formation by a swarm of robots where goal
positions for robots are specified as Voronoi regions and
the Hungarian algorithm [14] is used to allocate robots
to goal positions. In [22], the authors have provided de-
centralized movement strategies for robots using random
walk, systematic search, or, gradient-following to enable
them to carry blocks to build user-specified configurations.
A potential limitation of these approaches when applied
to MSR configuration formation is that it would require
modules already connected in a certain initial configuration
to be first disconnected into singletons and then allocated
to individual spots in the target configuration, resulting in
unnecessary expenditure of energy to undock modules in the
initial configuration and possibly re-dock the same modules
in the target configuration; inter-module collision avoidance
during locomotion of multiple individual modules would
also consume more time and energy than when the same
modules move together as a connected configuration. In
contrast, our proposed approach attempts to preserve initial
configurations in parts of the target configuration wherever
possible using graph isomorphism [9] to avoid these issues.
Graph isomorphism for MSRs has been investigated by sev-
eral researchers [15], [16], [12], albeit for self-reconfiguring
modules (changing positions of modules) that remain part of
the same configuration after reconfiguration. Our proposed
approach generalizes this direction of research by finding
the best positions for multiple configurations and singleton
modules within a different, possibly larger or smaller, target
configuration.

III. CONFIGURATION FORMATION AS UTILITY
MAXIMIZATION PROBLEM

Let A = {a1, a2, ...} denote a set of robot modules. Each
ai ∈ A has an initial pose denoted by aposi = (xi, yi, θi),
where (xi, yi) denotes the location of ai and θi denotes
its orientation within a 2-D plane corresponding to the
environment. Each module has a unique identifier. A con-
figuration is a set of modules that are physically connected.
A configuration is denoted as Ai = {a1, a2, .., aj} ⊆ A. The
topology of configuration Ai is denoted as a graph, GAi

=

(VA, EA), where VA = Ai and EA = {ekj = (ak, aj) :
if aj and ak are connected inAi}. Each configuration has a
module that is identified as a leader [4] and the leader’s
pose is used to represent the configuration’s pose.

In the configuration generation problem studied in this
paper, robot modules, starting from a set of different initial
configurations, are required to get into a specified target
configuration. The target configuration is also represented
as a graph, denoted by GT = (VT , ET), where VT =
{s1, s2, ...} is the set of vertices and ET = {eij = (si, sj)} is
the set of edges. Each vertex in VT is referred to as a spot that
a module needs to occupy and two neighboring spots share an
edge between them depending on the topology of GT . Each
spot si ∈ VT is specified by its pose and its neighboring
spots in the target configuration, si = (sposi , neigh(si)),
where neigh(si) ⊂ VT . In the rest of the paper, for the sake
of legibility, we have slightly abused the notation by using
T instead of GT to denote the target configuration and S
instead of VT to denote the spots in the target configuration.

To formulate the configuration generation problem as a
utility maximization problem, we first represent the utility
of a single module to occupy a single spot in the target
configuration, and, then extend that representation to a set
of modules connected as a configuration to occupy a set of
adjacent spots in the target configuration. A single module’s
utility for a spot is given by the value of the spot to the
module minus the costs or energy expended by the module
to occupy the spot. As reported in [13], the locomotion of
an MSR is significantly affected by the locomotion of the
module(s) in the MSR that has more neighbors in the MSR’s
configuration. For example, for the target configuration
shown in Figure 1(a), the module 12 at the center of the 6-
module configuration is more critical than the other modules
for locomotion as it has more neighbors. To capture this
position dependency, we have used a concept from graph
theory called the betweenness centrality [6] to denote the
value of spot si, given by: V al(si) =

σsj sk
(si)∑

si 6=sj 6=sk

σsj sk
, where

σsj sk is the total number of shortest paths between any
pair of nodes sj and sk in GT and σsj sk(si) is the number
of shortest paths between sj and sk which go through si.
The cost to a module ai located at aposi to occupy spot sj
at sposj , is calculated as a sum of ai’s locomotion costs
to reach and occupy spot sj , and any costs to undock
and re-dock with neighboring modules before and after it
occupies the spot [10]. This is denoted as costai(sj) =
costloc(aposi , sposj) +

∑
ak∈neigh(sj)

costdock(ai, ak) +∑
ai′∈neigh(ai)

costundock(ai, ai′), where costloc() denotes the

locomotion cost from aposi to sposj , costdock denotes the
cost of docking ai with modules in neighboring spots of
sj and costundock denotes the undocking costs of ai from
neighboring modules in Ai. Note that energy requirements
for locomotion of a module are generally higher than
those for docking the module with another module as
locomotion requires continuous power to all motors and

much higher torques than docking; also, docking two
modules requires aligning their docking ports first, which
takes more energy than un-docking two modules. Therefore,
costloc()� costdock() > costundock().

When a set of modules is connected in configuration
Ai, the cost of occupying a set of spots Sj ⊆ VT
in the target configuration is given by: costAi

(Sj) =∑
sl∈Sj ,ak∈Ai

costak(sl) − frwd(|Ai|), where frwd(|Ai|) =

|Ai|−2
|A| is a reward function for retaining connections be-

tween modules in the existing configuration Ai into smaller
configurations. Because frwd(|Ai|) increases (and costAi

()
decreases) with the size of Ai, it is cost-wise better to break
smaller configurations than to break larger configurations
to fit into the target configuration. So, the reward function
ensures that keeping the initial configuration intact in the
target configuration, whenever possible, results in lower cost.
Using the above formulation, it can easily be seen that when
Ai can fit entirely into VT (i.e., Sj = VT), costAi(Sj) <∑
sj∈Sj ,ai∈Ai

costai(sj).

The utility of a spot to a module determines how profitable
or beneficial that spot is for the module if it finally ends up
occupying that spot. The utility of module ai for spot sj is
given by Uai(sj) = V al(sj)−costai(sj). Similar to the cost
function described above, the utility for initial configuration
Ai to occupy a set of spots Sj ⊆ VT , is given by the sum
of the utilities of the individual modules comprising Ai to
occupy spots in Sj , UAi(Sj) =

∑
sl∈Sj

V al(sl)− costAi(Sj).

Using the above formulation, the spot allocation problem
has to assign modules to spots so that each module is
allocated to the most eligible (highest utility earning) spot
and no two modules are assigned to the same spot. Given
a set of modules A in a set of initial configurations, and,
a set of spots S representing the target configuration, find
a suitable allocation P ∗ : A → S such that P ∗ =
arg max

∀P
(

∑
ai∈A,sj∈S

Uai(sj)+
∑

Ai⊆A,Sj⊆S

UAi
(Sj) and ∀ak 6=

ai, P ∗(ai) 6= P ∗(ak). Note that, if two modules ai and ak
both have the same highest utility for spot sj , then only
one of them can be allocated to and occupy sj . In the
next section, we describe our spot selection algorithm that
provides a suitable allocation of modules to spots for the
above utility maximization problem.

IV. SPOT SELECTION ALGORITHM

We divide the problem into two phases - a planning phase,
where modules select spots in the target configuration, and
an acting phase, where modules move to their selected spots
and connect with other modules.

A. Planning Phase

In the beginning of the planning phase, all the modules
broadcast their positions and orientations. After having this
information, each module calculates the location correspond-
ing to the center target configuration T in the environment,

as the mean of all spots’ positions.1 Individual modules then
rank themselves according to their distances from the center
of T ; the rank of a configuration is calculated using the
distance of the configuration’s leader from the center of T .
Modules and configurations select spots in T based on their
rank. Because costloc has the most significant contribution
to the cost function, the distance-based rank ensures that
modules and configurations with lower costs (higher utilities)
get to select spots in T first. We describe the spot selection
techniques in the planning phase in two parts - spot selection
by singleton modules and spot selection by configurations.

Algorithm 1: Spot Allocation Algorithm for Singleton
Modules and Eviction algorithm used by modules to
select alternate spots

1 procedure: spotAllocation()
Input: S: set of spots, S̄: set of (spot, selector) pairs;

acurr: robot currently selecting spot.
2 Ssort ← Sort S in descending order of utility of spots
3 for each sj ∈ Ssort do
4 D ← 0;
5 if (sj is not selected by another module) ∨ ((sj is

selected by module ablock /∈ Ai ⊆ A)∧
(evict(acurr, ablock, D) = TRUE)) then

6 Select spot sj for acurr;
7 Broadcast updated set of spot-selector pairs S̄;
8 return;

9 Broadcast NO SPOT FOUND message;

procedure: evict(acurr, ablock,D)
Input: acurr: robot currently selecting spot scurr;

ablock: the robot which has already selected
acurr’s best spot scurr; D: current recursion
depth.

10 if D < Dmax then
11 sblock ← arg max

si∈S\scurr

Uablock(si);

12 scurr′ ← arg max
si∈S\scurr

Uacurr (si);

13 if (Uacurr
(scurr) + Uablock(sblock) >

Uacurr
(scurr′) + Uablock(scurr)) then

14 if sblock is not selected by any module then
15 return TRUE;
16 else
17 //a′block /∈ Ai ⊆ A is the module occupying

sblock
18 return evict(ablock, a′block,D + 1);

19 return FALSE;

1) Spot Selection by Singleton Modules: A singleton
module acurr selects a spot to occupy using Algorithm 1.
acurr first sorts the spots in order of its expected utility
Uacurr

(sj),∀sj ∈ S. If a spot sj has not already been

1A common coordinate system can be maintained by modules for
localizing themselves following the model described in [21].

selected by another module, or, if it has been selected by
another singleton module (module that is not part of a
configuration) that can be evicted using the evict method,
then acurr selects sj and broadcasts the updated spot-
selector pairs to all other modules. If acurr cannot evict
the module currently occupying its highest utility spot, then
it successively reattempts spot selection using the spots for
which it has the next highest utilities. If none of the spots in S
can be selected by acurr, it broadcasts a NO SPOT FOUND
message to all other modules.

The evict method is used by module acurr to cancel
the selection of spot scurr done previously by another
singleton module ablock. Note that eviction can be done
only for a singleton module, and not for modules that are
part of configurations, as breaking existing configurations
will incur additional time as well as costs for docking and
undocking modules. The method first checks the expected
combined utility between acurr and ablock for selecting their
most (conflicting) and second-most preferred spots. If this
combined utility is greater when acurr selects scurr and
ablock selects its next highest utility spot that it can occupy,
then acurr evicts the selection of scurr by ablock, as shown
in the evict() method in Algorithm 1. To limit excessively
long cycles of eviction, we have allowed at most Dmax
successive evictions. An illustration of the eviction process
with Dmax = 3 is shown in Figure 2.

s1 s2 s3

a1

a
2

a
3

s4

Modules Spots

Selected Second
Preference

First Preference

Fig. 2. Illustration of eviction algorithm for 3 modules with Dmax = 3.

2) Block Allocation by Modules Connected in a Configu-
ration: The technique used by configuration Acurr to select
a set of connected spots in the target configuration T is given
by the blockAllocation algorithm shown in Algorithm 2. The
algorithm is executed on lcurr, the leader of configuration
Acurr, selected using techniques in [4].

To place Acurr into T without breaking the connections
between its modules, we have to find if T , or a subgraph of
T , is isomorphic to Acurr. 2 An example of this problem is
shown in Figure 3(a) that shows all possible subgraphs of
T which are isomorphic to the configuration Ai using dif-
ferent colors. This problem requires finding the isomorphic
subgraphs (IS) [9] of T ; it is an NP-hard problem but can be
solved in polynomial-time for certain graph structures like
trees [19]. However, if Acurr is not isomorphic to T or a
subgraph of T , then Acurr can not be placed into T without

2Note that if |VT | = |VAcurr | then the problem becomes a graph
isomorphism problem.

breaking its connections and, thus, changing its shape. In
such a scenario, our objective is to reduce the number of
connections that are removed between Acurr’s modules. For
this, we have to find the maximum number of modules in
Acurr, which can be placed directly into T , without first
disconnecting them. An example is shown in Figure 3(b),
where the red dotted boxes indicate the maximum common
subgraphs of T and Ai, which are isomorphic. This problem
is an instance of the maximum common subgraph (MCS)
isomorphism problem [17], where, given two graphs T and
Acurr, the goal is to find the largest subgraph which is
isomorphic both to a subgraph of T and Acurr. 3

Our algorithm first finds subgraphs of GT that are iso-
morphic to GA. If there are no isomorphic subgraphs, it
checks for maximal common isomorphic subgraphs. These
subgraphs are stored in set Tsub (lines 2 − 4). As modules
want to maximize the utility earned from the allocation, the
subgraphs tk within Tsub are ordered by utility to Acurr.
The algorithm then inspects each subgraph tk. If all the
spots in tk are free, then tk is selected by Acurr and lcurr
broadcasts a message to notify every module in A about
this selection (lines 6 − 9). On the other hand, if any spot
si ∈ tk is already selected by a singleton ablock, Acurr
checks to see if it can evict ablock using the evict() method. If
evict is successful, tk is selected for Acurr and the updated
set of spot-selector pairs are broadcast to all modules in
A (lines 11 − 15). If eviction is not successful, it means
that some modules in Acurr could not occupy some spots
in the target configuration (or its subgraph) as some other
modules that did not belong to configuration Acurr had
already selected those spots. In this case, the modules of
Acurr that could not find a spot in tk will be disconnected
from Acurr. Single spot selection algorithm is then used to
select other spots in tk for these modules (lines 17 − 21).
Finally, because selection of tk by a configuration Acurr is
done by means of matching modules of Acurr to unique spots
in tk, if tk is an MCS of Acurr (i.e., |Vtk | < |VAcurr |), then
some of the modules in Acurr will not be matched to any
spot in tk. Those unmatched modules will disconnect from
Acurr, become singletons and will execute singleton module
spotAllocation() algorithm, in the order of their distances
from the center of T , to get allocated to a spot (lines 22−24).
Note that all other modules in Acurr whose matched spots in
tk were free to occupy, will occupy the matched spots while
retaining their configuration. The updated set of spot-selector
pairs are broadcast to all modules.

B. Acting Phase

After the planning phase is finished and all the spots in
the target configuration have been selected by modules, the
modules have to move to their respective selected spots.
Note that no robot moves until all the spots are selected.
If there is no proper order of robots for assuming spots,
then a deadlock situation might arise. For example, in Figure

3If |VAcurr | > |VT |, then we find the maximum size subgraph of T
which is isomorphic to A′

curr ⊆ Acurr and allocate the spots to matched
modules, using a similar technique as in blockAllocation algorithm.

s1 s2 s3

s4

s5

T Aia3

a1 a2
s1 s2 s3

s4

s5

a1 a2 a3

a4

a5
s1 s2

s3

a1

a2

a3

a4

a5

s4

s5

T Ai Ai T

(a) (b)

Fig. 3. (a) A scenario where the colored subgraphs of T are isomorphic
to Ai, (b) A scenario where a subgraph of t is isomorphic to a subgraph
of Ai. The red dotted box shows the maximal common subgraph between
T and Ai; the unmatched module a3 is detatched from Ai and allocated
to spot s1 by our block selection algorithm.

1(b), if all the modules occupy their spots before module
5 does, assuming module 5 is a singleton, then it will be
difficult for module 5 to occupy its spot properly, unless
other modules give it space for moving. But then they will
have to align themselves again, which is a difficult task.
To avoid this, the module which has selected the spot with
highest betweenness centrality value (or, central spot), will
move first and assume its position. Once it is in its proper
position, it will broadcast a message to notify this to all other
modules. Next the spots neighboring the center spot will be
filled and so on. Techniques described in [3] can be used for
locomotion of the modules.

C. Analysis

Theorem 1: spotAllocation and blockAllocation algo-
rithms are complete when sufficient number of modules are
available to form desired target configuration.
Proof: We prove the completeness of the algorithms by
showing that there is no empty spot or hole in the target
configuration when the number of modules is at least equal to
the number of spots in the target configuration T , i.e., when
|A| ≥ |S|. A hole exists in T if there is a spot sh that is not
occupied by any module. This can happen because of two
conditions: 1) No module has selected sh, or, 2) module ah,
which selected sh, could not reach its spot because another
module blocked the path to its selected spot by occupying a
spot that was further from the center of T than the selected
spot. We show that these two conditions cannot arise. If
|A| ≥ |S|, then because of the recursive approach in the evict
method of Algorithm 1, each module will try to select a spot
in T , as long as there are available spots. This guarantees
that condition 1 never arises as at least one module ah will
select sh. Condition 2 will never arise because, as described
in Section IV-B, modules’ priority to move is based on the
betweenness centrality of their selected spots, and, spots
nearer to the center of T are occupied first, followed by
outer ones. In other words, no module will occupy an outer
spot before its neighboring spot, that is nearer to the center
of the target configuration gets occupied. Consequently, T
cannot have a hole. Hence proved.

Theorem 2: spotAllocation algorithm returns a Pareto-
optimal allocation between modules and spots, i.e., any
module’s earned utility cannot be improved without making
another module’s utility worse.

Proof: Let si,k denote the k-th highest utility spot for
module ai. Because each module orders the spots based on

Algorithm 2: Block Allocation Algorithm that a set
of modules connected in configuration Acurr uses to
select a set of maximally adjacent spots in the target
configuration.

1 blockAllocation(Acurr, S̄)
Input: S̄: Set of (spot, selector) pairs; Acurr: Set of

modules connected together as a configuration
and currently selecting spots.

2 Tsub ← Set of all subgraphs of T , which are
isomorphic to Acurr.

3 if Tsub == {∅} then
4 Tsub ← Set of all maximum common isomorphic

subgraphs of T and Acurr.
5 for each tk ∈ Tsub in descending order of utility
UAi(tk) do

6 if No spot in tk has been selected yet then
7 Select tk;
8 Broadcast updated set of spot-selector pairs S̄;
9 else

10 Sblock ← set of spots ∈ tk already selected by
{ablock} ⊆ A \Acurr

11 si ← spot matched to ai ∈ Acurr but already
selected by ablock ∈ A \Acurr

12 if evict(ai, ablock) = TRUE for every si ∈ Sblock
then

13 Select tk;
14 Broadcast updated set of spot-selector pairs

S̄;
15 else
16 if all tk ∈ Tsub has been checked then
17 for each ai ∈ Acurr where

evict(ai, ablock) = FALSE and si ∈ tk
do

18 Disconnect ai from Acurr
19 Acurr ← Acurr \ ai;
20 spotAllocation(ai, S̄);
21 Broadcast updated set of

spot-selector pairs S̄;

22 if selected tk is MCS of Acurr then
23 for every ai ∈ Acurr, where si 6∈ tk do
24 Disconnect ai from Acurr
25 Acurr ← Acurr \ ai;
26 spotAllocation(ai, S̄)

27 Broadcast updated set of spot-selector pairs
S̄;

28

utilities, it follows that Uai(si,k) > Uai(si,k+1). Consider
two modules ai and aj that have the highest utility for the
same spot s (i.e., si,1 = sj,1 = s′, but Uai(s

′) > Uaj (s′).
Also, assume that aj has selected spot s′ first. Now, if spotAl-
location allocates ai to its next best spot, si,2 and aj remains
at s′, then the total utility is U1 = Uai(si,2)+Uaj (s′). On the

other hand, if spotAllocation method evicts aj from s′ and
allocates it to its next best spot sj,2 (assuming it is free),
then the total utility becomes U2 = Uai(s

′) + Uaj (sj,2).
From Algorithm 1, if eviction is possible, then U2 > U1. On
the other hand, if eviction does not happen, then it implies,
U1 > U2. For any other allocation strategy that does not
do eviction even if U2 > U1, then the total utility earned
by the alternate allocation strategy is always less than the
utility earned by spotAllocation algorithm. From the above
equations, we can conclude that, if any two modules ai and
aj have same ranking for a particular spot, s′, then one of the
modules will be allocated to that spot and the other will be
pushed to its next highest utility spot, i.e., its earned utility
reduces, and no other allocation would increase their utilities
as well as the overall utility. Hence the allocation strategy is
Pareto-optimal.

Theorem 3: As Dmax approaches —S—, the total utility
earned by the modules (U) approaches the optimal utility
U∗.
Proof: If there is no conflict among the modules about their
best spots, i.e., each module’s highest utility spot is unique,
then spotAllocation algorithm allocates highest utility spots
to all the modules and thus achieves the optimal utility. But
if there is a conflict among modules for the same spots,
then eviction method is invoked. From Algorithm 1, we can
conclude that the total utility earned by the modules increases
by successively calling the evict method. For lim

Dmax→|S|
, any

subsequent evictions will consequently increase the total
utility. If eviction fails, then that means the total utility can
not be improved any further. Thus, every time the eviction
method is invoked it will increase the total utility, going
towards the optimal utility.

Note on complexity. The spotAllocation algorithm (Algo.
1) has a time complexity given by O(|S|Dmax) where |S| is
the number of spots in the target configuration and Dmax is
the depth up to which the eviction of modules is allowed. In
the blockAllocation algorithm (Algo. 2), target configurations
are considered to be trees and finding all possible isomorphic
subtrees in the target configuration has a polynomial worst
case time complexity of O((|S||Ai|)D+1) [9], where |Ai|
and |S| are the number of modules and spots in intial and
target configurations respectively, and, D is the maximum
branch factor of either configuration (D = 3 for our MSR).

V. EXPERIMENTAL EVALUATION

Settings. We have implemented the spot allocation algo-
rithm on a desktop PC (Intel Core i5 -960 3.20GHz, 6GB
DDR3 SDRAM). We tested instances where random number
of singletons and the initial configurations with sizes between
2 and 10 modules need to be allocated to target configura-
tions with between 10 and 100 spots. In all cases, unless
otherwise mentioned, the total number of modules in the
environment is equal to the total number of spots in the target
configuration. Each module is modeled as a cube of size 1
unit ×1 unit ×1 unit. The modules are placed at random
locations within a 16 unit ×16 unit environment, their initial
orientations are drawn from a uniform distribution in U[0, π],

and the initial positions of singletons and leaders of the initial
configurations are drawn uniformly from U[(0, 15), (0, 15)].
For all the tests, Dmax has been set to 3. Changing the value
of Dmax from 3 to 10 affected the algorithm’s performance
(both time and quality wise) negligibly; therefore this is not
included in the results.

Initial and target configurations were restricted to be trees
based on the connections the modules in our MSR platform
are capable of, although our algorithms can be applied for
any other kinds of graphs as well. As there can be numerous
subtrees present in the target configuration, which are iso-
morphic to the initial configuration and finding all possible
isomorphic subtrees can take considerable time, we set an
upper bound, MAX , on the number of isomorphic subtrees
that the blockAllocation algorithm (Algo 2) will check.
MAX is set to to 20; different values of MAX = 10, 30, or
40 did not change the performance of the algorithm. To get
higher utility isomorphic subtrees, first the nodes in the target
configuration are sorted in descending order of betweenness
centrality values, because if the costs to occupy two different
spots are the same, then higher betweenness centrality (spot
value) indicates higher utility of the spot. For every node in
the sorted list of spots, every node in current configuration
Ai is made the root of Ai once and checked for subtree
isomorphism with target configuration T while making each
node in T the root once, for every possible tree in Ai.
The checking of isomorphic subtrees between Ai and T is
stopped as soon as the first MAX isomorphic subtrees are
found. All results are averaged over 50 runs.

0 10 20 30 40 50 60 70 80 90 100 110
0

100

200

300

400

500

600

Configuration size

T
im

e
 t

o
 c

a
lc

u
la

te
 M

C
S

 (
o

r,
 I

S
)

(i
n

 m
s
.)

0 20 40 60 80 100 120
0

50

100

150

200

250

300

Number of robots

P
la

n
n

in
g

 t
im

e
(m

s.
)

(a) (b)

Fig. 4. (a) Time to calculate MCS or IS vs. different initial configuration
sizes, (b) Total planning time for different number of modules in environ-
ment.

Results. Performance Analysis of Our Approach: First
we have shown how much time it takes to find MAX number
of MCS (or, IS). The result is shown in Figure 4(a). The x-
axis denotes the size of a single configuration and the y-axis
denotes the time in milliseconds to find MAX number of
MCS (or, IS) of that configuration in the target configuration.
For this test, total spots in the target configuration have
been set to 100. Though the run time increases with the
size of the initial configuration, which can be expected
because of the complexity results shown in [19] for finding
isomorphic subtrees, but still it was always well within a
reasonable bound. In the next set of experiments, we have
focused on the main contribution of this paper - how to
construct a modular robotic system from an initial set of

0 20 40 60 80 100 120
0

20

40

60

80

100

120

Number of robots

D
is

ta
n

ce
 t

ra
ve

le
d

0 20 40 60 80 100 120
0

2

4

6

8

10

12
x 10

5

Number of robots

M
es

sa
g

es

(a) (b)

Fig. 5. (a) Distance traveled by modules to reach target con-
figuration for different number of modules in the environment,
(b) Number of messages exchanged between modules to select
positions in the target configuration for different number of modules
in the environment.

singletons and configurations. Figure 4(b) shows how the
planning time changes with different number of modules;
the y-axis denotes the total planning time in milliseconds
and the x-axis denotes the number of robots. It can be noted
from this plot that though for a small set of robots, time
change is almost constant, as the configuration size as well
as the number of robots increases, elapsed time increases
in a polynomial fashion. This elapsed time indicates only
the planning phase execution time of the robots. Figure
5(a) shows how with increasing number of robots the total
distance traveled by them changes. This metric is calculated
by adding the distances traveled by each module from
their initial positions to their respective spots in T . The
figure shows that the total distance traveled by the robots
increases linearly. We have also calculated the total number
of messages passed among robots while the configuration
formation process is occurring. Figure 5(b) shows how the
number of total messages changes with the number of robots.
As can be expected, with a higher number of modules in the
environment, the number of messages increases in a polyno-
mial fashion. Figure 6(a) shows the planning completion rate

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

% of total time

%
 o

f
p

la
n

n
in

g
 c

o
m

p
le

ti
o

n

|A|=10

|A|=20

|A|=30

|A|=40

|A|=50

|A|=60

|A|=70

|A|=80

|A|=90

|A|=100

0 20 40 60 80 100
0

2

4

6

8

10

12

x 10
5

% of planning completion

M
e

s
s

a
g

e
s

(a) (b)

Fig. 6. (a) Change in % of planning completion with % of
time completion, for different no. of robots; (b) Change in no. of
messages at different time steps, for 100 modules.

for different number of robots between 10 and 100. We can
see that with increasing number of robots, the completion
rate increases and is more evenly distributed over time.
For instance, with |A| = 10, after 70% time completion,
only 30% of planning has been completed, whereas with
|A| = 100, 30% of planning gets completed only after 25%
of time completion. The relationship between planning phase

completion and number of passed messages for 100 modules
has been shown in Figure 6(b). All the graphs from 50 runs
have been plotted. We observe that the message count is
increasing almost-linearly with completion rate. For the next
set of experiments, we have kept the number of spots, |S|,
fixed at 50 and we have varied the number of robots between
[50, 100]. Figure 7(a) shows planning completion rate for
different numbers of robots. We can see that with increasing
number of robots, completion rate increases and is more
evenly distributed over time. This behavior is similar to what
we have seen in Figure 6(a). Although in Figure 6(a), for
most of the robot sets, the planning phase completes almost
at the end of their respective time-lines, but in the case of
Figure 7(a), we can notice that the planning phase finishes
at different stages of their time-lines, for different numbers
of robots. As an example, for |A| = 100, the planning
phase almost converges at 50% the of total elapsed time,
whereas for |A| = 50, it takes almost 100% time to converge.
Figure 7(b) shows the comparison of the number of passed

0 20 40 60 80 100
0

20

40

60

80

100

% of total time

%
 o

f
p

la
n

n
in

g
 c

o
m

p
le

ti
o

n

|A|=50
|A|=60
|A|=70
|A|=80
|A|=90
|A|=100

50 60 70 80 90 100
0

2

4

6

8

10

12
x 10

5

M
e
s
s
a
g

e
s

Number of robots

|S| = 50

|S| = |A|

(a) (b)

Fig. 7. (a) Change in % of planning completion with % of time completion,
for different no. of robots and |S| = 50; (b) Change in no. of messages for
different no. of robots and different no. of spots.

messages by the different numbers of robots, between the
cases where |S| = 50 and |S| = |A|. It can be observed
from this figure that with same number of robots, fewer
messages are passed if there are fewer spots than robots, i.e.,
if |S| < |A|. For example, with, |A| = 100 and |S| = 50,
8 × 105 messages are passed, whereas with |S| = 100 and
keeping |A| fixed to 100, the number of messages increases
to 10 × 105. This result shows that the total number of
messages depends on both the number of robots and spots.
Next we have run experiments to check how the subgraph
isomorphism technique used in this work helps to reduce
the number of disconnections from initial configurations.
For this test, we have kept |S| = |A| = 100. Initially all
modules were part of some smaller configurations and each
initial configuration has the same size. We have varied the
sizes of each initial configuration between [10, 20, 25, 50] and
thus in these cases the number of initial configurations have
been varied between [10, 5, 4, 2]. The planning times and
number of modules required to be disconnected for these
cases are shown in Table I. As can be seen, with increas-
ing size of initial configurations, number of disconnected
modules increases. This is because the probability of finding
isomorphic subgraphs in T decreases with increasing size of
initial configurations. But the low number of disconnected

Size of All Planning Time No. of Modules
Initial Configurations (ms.) Disconnected

10 171.48 (avg.) 0.12 (avg.)
15.13 (std.) 0.32 (std.)

20 166.66 (avg.) 4.32 (avg.)
12.88 (std.) 3.56 (std.)

25 172.10 (avg.) 8.76 (avg.)
11.30 (std.) 4.85 (std.)

50 218.28 (avg.) 29.68 (avg.)
19.57 (std.) 5.33 (std.)

TABLE I
PLANNING TIMES AND THE NUMBERS OF DISCONNECTED MODULES

(AVERAGE AND STANDARD DEVIATION) IN THE CONFIGURATION

FORMATION PROCESS, WHERE ALL INITIAL CONFIGURATIONS HAVE

SAME SIZES (|S| = |A| = 100).

modules show that it is always beneficial, in terms of number
of connections detachments and re-attachments, to use our
proposed approach than to break all initial configurations into
singletons and then form the target configurations with them.

0 20 40 60 80 100 120

10
1

10
2

10
3

Number of robots

P
la

n
n

in
g

 T
im

e

(l
o

g
 s

c
a

le
)

Auction

Spot Allocation

0 20 40 60 80 100 120
0

100

200

300

400

500

600

Number of robots

D
is

ta
n

ce
 T

ra
ve

le
d

Auction
Spot Allocation

(a) (b)

Fig. 8. (a) Log scale comparison of planning phase execution time with
auction algorithm; (b) Comparison of total traveled distances with auction
algorithm.

Comparison with Auction-based Allocation. We have
also compared our approach for MSR configuration forma-
tion with an auction algorithm [5] that finds an optimal
assignment between spots and modules. Using the auction
mechanism a group of modules bid for a set of spots. First the
modules bid for their most preferred spots; conflict among
modules for the same spot is resolved by revising bids
in successive iterations. The assignment is done in a way
such that the utility is maximized. The auction algorithm
does not take connected configurations of modules during
allocation. Therefore only for the tests which compare the
performances of our algorithm against the auction algorithm,
initially all the modules are considered to be singletons.
A log scale comparison of planning times between spot
allocation and the auction algorithms is shown in Figure
8(a). As can be seen from this graph, with increasing the
number of robots, the difference between planning times of
these two algorithms increases, i.e., our proposed algorithm’s
performance gets better with increased number of robots
compared to the auction algorithm. Comparison of distances
traveled by the modules using our algorithm and the auction
algorithm is shown in Figure 8(b). As we can see in this

plot, in most of the cases total traveled distance by the robots
is the same. But with higher numbers of robots, using the
proposed spot allocation algorithm robots travel less distance
than by using the auction algorithm. Thus the spot allocation
algorithm assigns the spots to the modules in very nominal
time, keeping the cost for movement almost the same (or less
in some cases), compared to the auction algorithm. A log
scale comparison of number of the messages generated, by
the spot allocation and auction algorithms, is shown in Figure
9(a). This figure indicates that the spot allocation algorithm
generates fewer messages than the auction algorithm, which
helps to reduce the communication overhead. Figure 9(b)
compares the completion rates of planning phases of the
auction and spot allocation algorithms - the x-axis denotes
the percentage of total time elapsed. This result indicates
that completion rate of the auction algorithm is higher, even
though the auction algorithm takes longer than the spot
allocation algorithm.

0 20 40 60 80 100 120
10

3

10
4

10
5

10
6

10
7

10
8

Number of robots

M
e

s
s

a
g

e
s

 (
lo

g
 s

c
a

le
)

Auction

Spot Allocation

0 20 40 60 80 100
0

20

40

60

80

100

% of time elapsed

%
 o

f
p

la
n

n
in

g
 c

o
m

p
le

ti
o

n

Auction
Spot Allocation

(a) (b)

Fig. 9. (a) Log scale comparison of no. of messages with auction
algorithm; (b) Change in % of planning completion with % of
time completion and comparison with auction algorithm. 50 lines
indicate 50 runs.

A. Case Studies

In this section, we have shown 8 specific cases of the
configuration formation process that are shown in Figure
10. Each of the initial and target configurations used for
this set of experiments have been shown to be feasible
and stable in [18]. Squares represent the modules and the
links between two squares denote the connection between
those two modules. For each case illustrated, the left-most
diagram shows the initial configurations and/or singletons,
the middle diagram shows the detected MCS (or, IS) and the
diagram on the right shows the final formed configuration.
The modules are color-coded to show the final allocations.
MCS (or, IS) are shown with dotted boxes. Grey-colored
modules represent the modules that remain connected to the
same neighboring module between initial and target configu-
rations, but only change the connector through which they are
connected. Although this operation requires one undocking
and one redocking operation, it consumes less energy than if
the module were to be connected to a non-neighbor module.
The planning time and number of disconnections for each
case are provided alongside each configuration formation
case in Figure 10. We can see that each of the test cases
requires less than 200 milliseconds of planning time. Target

Case 1: Planning Time: 110 ms., No. of disconnections: 1 Case 2: Planning Time: 113 ms., No. of disconnections: 2

Case 3: Planning Time: 111 ms., No. of disconnections: 1 Case 4: Planning Time: 170 ms., No. of disconnections: 4

Case 5: Planning Time: 182 ms., No. of disconnections: 3 Case 6: Planning Time: 173 ms., No. of disconnections: 3

Case 7: Planning Time: 190 ms., No. of disconnections: 2 Case 8: Planning Time: 184 ms., No. of disconnections: 4

Fig. 10. Cases showing configuration formation procedure along with corresponding planning times and number of disconnections required.
Leftmost figure in each case shows the initial configurations and singletons, middle figure shows the MCS (or, IS) found (marked by
dotted boxes) by executing our algorithms, rightmost figure shows the final formed target configuration with modules selecting spots
(shown in a color-coded fashion).

configurations are also formed with relatively low number
link disconnections (maximum being 4).

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a novel spot allocation
algorithms for configuration formation in MSRs. In the
future, we are planning to add uncertainty in module’s
movements and an MDP-based technique for the planning
phase of our algorithm. We also plan to consider the problem
where there could be multiple target configurations and
each module needs to decide which spot in which target
configuration they should select. We are also planning to
investigate algorithms that optimize the battery spent in
getting to the target configuration and investigate the trade-
off between aborting target configurations and saving battery.
Finally we are working on implementing this algorithm on
physical MSR hardware.

REFERENCES

[1] H. Ahmadzadeh and E. Masehian. Modular robotic systems: Methods
and algorithms for abstraction, planning, control, and synchronization.
Artificial Intelligence, 223:27–64, 2015.

[2] J. Alonso-Mora, A. Breitenmoser, M. Rufli, R. Siegwart, and P. Beard-
sley. Multi-robot system for artistic pattern formation. In Robotics and
Automation (ICRA), 2011 IEEE International Conference on, pages
4512–4517. IEEE, 2011.

[3] J. Baca, S. Hossain, P. Dasgupta, C. A. Nelson, and A. Dutta. Modred:
Hardware design and reconfiguration planning for a high dexter-
ity modular self-reconfigurable robot for extra-terrestrial exploration.
Robotics and Autonomous Systems, 62(7):1002–1015, 2014.

[4] J. Baca, B. Woosley, P. Dasgupta, A. Dutta, and C. Nelson. Co-
ordination of modular robots by means of topology discovery and
leader election: Improvement of the locomotion case. In Distributed
Autonomous Robotics Systems (DARS). DARS, 2014.

[5] D. P. Bertsekas. The auction algorithm for assignment and other
network flow problems: A tutorial. Interfaces, 20(4):133–149, 1990.

[6] U. Brandes. A faster algorithm for betweenness centrality. Journal of
Mathematical Sociology, 25(2):163–177, 2001.

[7] D. Brandt. Comparison of a and rrt-connect motion planning tech-
niques for self-reconfiguration planning. In Intelligent Robots and
Systems, 2006 IEEE/RSJ International Conference on, pages 892–897,
Oct 2006.

[8] S. Chien. The eo-1 autonomous sciencecraft and prospects for future
autonomous space exploration. 2005.

[9] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub) graph
isomorphism algorithm for matching large graphs. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 26(10):1367–1372,
2004.

[10] P. Dasgupta, V. Ufimtsev, C. Nelson, and S. M. G. Mamur. Dynamic
reconfiguration in modular robots using graph partitioning-based coali-
tions. In AAMAS, pages 121–128. Valencia, Spain, 2012.

[11] F. Enner, D. Rollinson, and H. Choset. Motion estimation of snake
robots in straight pipes. In International Conference on Robotics and
Automation, pages 5148–5153, 2013.

[12] F. Hou and W.-M. Shen. Graph-based optimal reconfiguration planning
for self-reconfigurable robots. Robotics and Autonomous Systems,
62(7):1047–1059, 2014.

[13] A. Kamimura, H. Kurokawa, E. Yoshida, K. Tomita, S. Kokaji, and
S. Murata. Distributed adaptive locomotion by a modular robotic
system, m-tran ii. In Intelligent Robots and Systems, 2004.(IROS
2004). Proceedings. 2004 IEEE/RSJ International Conference on,
volume 3, pages 2370–2377. IEEE, 2004.

[14] H. Kuhn. The hungarian method for the assignment problem. Naval
research logistics quarterly, 2(1-2):83–97, 1955.

[15] C. A. Nelson and R. J. Cipra. An algorithm for efficient self-
reconfiguration of chain-type unit-modular robots. In ASME 2004
International Design Engineering Technical Conferences and Com-
puters and Information in Engineering Conference, pages 1283–1291.
American Society of Mechanical Engineers, 2004.

[16] M. Park, S. Chitta, A. Teichman, and M. Yim. Automatic configuration
recognition methods in modular robots. The International Journal of
Robotics Research, 27(3-4):403–421, 2008.

[17] J. W. Raymond and P. Willett. Maximum common subgraph isomor-
phism algorithms for the matching of chemical structures. Journal of
computer-aided molecular design, 16(7):521–533, 2002.

[18] Redacted.
[19] R. Shamir and D. Tsur. Faster subtree isomorphism. In Theory

of Computing and Systems, 1997., Proceedings of the Fifth Israeli
Symposium on, pages 126–131. IEEE, 1997.

[20] K. Stoy, D. Brandt, and D. Christensen. Self-Reconfigurable Robots:
An Introduction. Cambridge, Massachusetts: The MIT Press, 2010.

[21] I. Suzuki and M. Yamashita. Agreement on a common x-y coordinate
system by a group of mobile robots. In Intelligent Robots, pages
305–321, 1996.

[22] J. Werfel and R. Nagpal. Three-dimensional construction with mobile
robots and modular blocks. The International Journal of Robotics
Research, 27(3-4):463–479, 2008.

[23] M. Yim and et al. Modular self-reconfigurable robot systems: Chal-
lenges and opportunities for the future. IEEE Robotics and Automation
Magazine, 14(1):43–53, 2007.

	I Introduction
	II Related Work
	III Configuration Formation as Utility Maximization Problem
	IV Spot Selection Algorithm
	IV-A Planning Phase
	IV-A.1 Spot Selection by Singleton Modules
	IV-A.2 Block Allocation by Modules Connected in a Configuration

	IV-B Acting Phase
	IV-C Analysis

	V Experimental Evaluation
	V-A Case Studies

	VI Conclusion and Future Work
	References

