Skip to main content
Log in

Windowed multiscan optimization using weighted least squares for improving localization accuracy of mobile robots

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

The localization and trajectory estimation of mobile robots is one of the fundamental problems in contemporary robotics. To solve it, robots often rely on the laser scanner data, which is being processed by scan-matcher algorithms followed by a simple integration of acquired transformations. Here we propose algorithm to improve the accuracy of trajectory estimation using additional correspondences between scans and the idea that all transformations between pairs of “not too far away" scans should be consistent between themselves. Additionally, weighting based on the scan-matcher error estimation allows us to reduce the importance of scan-matcher results, which can not be reliably matched. Our approach can be used to improve the performance of existing simultaneous localization and mapping setups in the form of an easily pluggable middleware, which depends only on the laser scanner and odometry data. Experimental evaluation on MIT Stata Center dataset shows that our method outperforms standard keyframe approach by more than 20% by root mean square error metric. In an experiment performed at the Skoltech using different setup our method showed almost 35% improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. http://www.numpy.org/.

  2. https://www.scipy.org/.

  3. https://github.com/SkoltechRobotics/wmo-wls.

  4. https://projects.csail.mit.edu/stata/index.php.

  5. http://www.willowgarage.com/pages/pr2/overview.

  6. https://www.hokuyo-aut.jp/search/single.php?serial=169.

  7. http://wiki.ros.org/laser_scan_matcher.

  8. https://wicron.com/en.

  9. https://www.hokuyo-aut.jp/search/single.php?serial=166.

References

  • Anderson, E., Bai, Z., Bischof, C., Blackford, L. S., Demmel, J., Dongarra, J., et al. (1999). LAPACK users’ guide. Philadelphia: SIAM.

    Book  MATH  Google Scholar 

  • Bailey, T., & Durrant-Whyte, H. (2006). Simultaneous localization and mapping (slam): Part ii. IEEE Robotics & Automation Magazine, 13(3), 108–117.

    Article  Google Scholar 

  • Bengtsson, O. (2006). Robust self-localization of mobile robots in dynamic environments using scan-matching algorithms. Gothenburg: Chalmers University of Technology.

    Google Scholar 

  • Biber, P., & Straßer, W. (2003). The normal distributions transform: A new approach to laser scan matching. In Proceedings of the 2003 IEEE/RSJ international conference on intelligent robots and systems, (IROS 2003) (Vol. 3, pp. 2743–2748). New York: IEEE.

  • Biber, P., & Strasser, W. (2006). nscan-matching: Simultaneous matching of multiple scans and application to slam. In Proceedings 2006 IEEE international conference on robotics and automation, ICRA 2006 (pp. 2270–2276). New York: IEEE.

  • Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I. D., & Leonard, J. J. (2016). Simultaneous localization and mapping: Present, future, and the robust-perception age. arXiv preprint arXiv:1606.05830.

  • Censi, A. (2007). An accurate closed-form estimate of ICP’s covariance. In Proceedings of the IEEE international conference on robotics and automation (ICRA) (pp. 3167–3172). Rome, Italy, April

  • Censi, A. (2008). An ICP variant using a point-to-line metric. In Proceedings of the IEEE international conference on robotics and automation (ICRA), Pasadena, CA, May.

  • Censi, A. (2009). On achievable accuracy for pose tracking. In IEEE international conference on robotics and automation, 2009. ICRA’09 (pp. 1–7). New York: IEEE.

  • Chen, S. Y. (2012). Kalman filter for robot vision: A survey. IEEE Transactions on Industrial Electronics, 59(11), 4409–4420.

    Article  Google Scholar 

  • Christopher, C. P., & Saunders, M. A. (1982). Lsqr: An algorithm for sparse linear equations and sparse least squares. ACM Transactions on Mathematical Software, 8(1), 43–71.

    Article  MathSciNet  MATH  Google Scholar 

  • Durrant-Whyte, H., & Bailey, T. (2006). Simultaneous localization and mapping: part i. IEEE Robotics and Automation Magazine, 13(2), 99–110.

    Article  Google Scholar 

  • Frese, U. (2006). A discussion of simultaneous localization and mapping. Autonomous Robots, 20(1), 25–42.

    Article  Google Scholar 

  • Gamage, D., & Drummond, T. (2015). Reduced dimensionality extended Kalman filter for slam in a relative formulation. In 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 1365–1372). New York: IEEE.

  • Golub, G. H., & Van Loan, C. F. (2012). Matrix computations (Vol. 3). Baltimore: JHU Press.

    MATH  Google Scholar 

  • Huang, G. P., Mourikis, A. I., & Roumeliotis, S. I. (2013). A quadratic-complexity observability-constrained unscented Kalman filter for slam. IEEE Transactions on Robotics, 29(5), 1226–1243.

    Article  Google Scholar 

  • Menegatti, E., Maeda, T., & Ishiguro, H. (2004). Image-based memory for robot navigation using properties of omnidirectional images. Robotics and Autonomous Systems, 47(4), 251–267.

    Article  Google Scholar 

  • Nocedal, J., & Wright, S. J. (2006). Numerical Optimization. Berlin: Springer.

    MATH  Google Scholar 

  • Paige, C. C., & Saunders, M. A. (1982). Algorithm 583: LSQR: Sparse linear equations and least squares problems. ACM Transactions on Mathematical Software (TOMS), 8(2), 195–209.

    Article  Google Scholar 

  • Pfister, S. T., Kriechbaum, K. L., Roumeliotis, S. I., & Burdick, J. W. (2002). Weighted range sensor matching algorithms for mobile robot displacement estimation. In Proceedings of the IEEE international conference on robotics and automation, 2002 ICRA’02 (Vol 2, pp. 1667–1674). New YorK: IEEE.

  • Piniés, P., Paz, L. M., & Tardós, J. D. (2009). Ci-graph: An efficient approach for large scale slam. In ICRA’09. IEEE international conference on robotics and automation, 2009 (pp 3913–3920). New York: IEEE.

  • Röwekämper, J., Sprunk, C., Tipaldi, G. D., Stachniss, C., Pfaff, P., & Burgard, W. (2012). On the position accuracy of mobile robot localization based on particle filters combined with scan matching. In 2012 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 3158–3164). New York: IEEE.

  • Sugiyama, J., Tsetserukou, D., & Miura, J. (2011). Navigoid: Robot navigation with haptic vision. In SIGGRAPH Asia 2011 emerging technologies (pp. 9). New York: ACM.

  • Thrun, S., & Montemerlo, M. (2006). The graph slam algorithm with applications to large-scale mapping of urban structures. The International Journal of Robotics Research, 25(5–6), 403–429.

    Article  Google Scholar 

  • Tsetserukou, D., Sugiyama, J., & Miura, J. (2011). Belt tactile interface for communication with mobile robot allowing intelligent obstacle detection. In World Haptics conference (WHC), 2011 IEEE (pp. 113–118). New York: IEEE.

  • Zhang, J., Kaess, M., & Singh, S. (2017). A real-time method for depth enhanced visual odometry. Autonomous Robots, 41(1), 31–43.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Evgeny G. Mironov, Dmitry Mironov and Yuri Sarkisov for discussion and valuable suggestions on the paper content.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Ovchinnikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovchinnikov, G.V., Pavlov, A.L. & Tsetserukou, D. Windowed multiscan optimization using weighted least squares for improving localization accuracy of mobile robots. Auton Robot 43, 727–739 (2019). https://doi.org/10.1007/s10514-018-9763-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-018-9763-0

Keywords

Navigation