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Abstract We present a unified probabilistic framework for
simultaneous trajectory estimation and planning (STEAP).
Estimation and planning problems are usually considered
separately, however, within our framework we show that solv-
ing them simultaneously can be more accurate and efficient.
The key idea is to compute the full continuous-time trajec-
tory from start to goal at each time-step. While the robot
traverses the trajectory, the history portion of the trajectory
signifies the solution to the estimation problem, and the fu-
ture portion of the trajectory signifies a solution to the plan-
ning problem. Building on recent probabilistic inference ap-
proaches to continuous-time localization and mapping and
continuous-time motion planning, we solve the joint prob-
lem by iteratively recomputing the maximum a posteriori
trajectory conditioned on all available sensor data and cost
information. Our approach can contend with high-degree-
of-freedom (DOF) trajectory spaces, uncertainty due to lim-
ited sensing capabilities, model inaccuracy, the stochastic
effect of executing actions, and can find a solution in real-
time. We evaluate our framework empirically in both simu-
lation and on a mobile manipulator.
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1 Introduction

Trajectory estimation and planning are both important ca-
pabilities for autonomous robot navigation. Trajectory esti-
mation is fundamentally backward-looking: the robot esti-
mates a trajectory of previous states that are consistent with
a history of noisy and incomplete sensor data. Conversely,
planning is fundamentally forward looking: starting from an
estimate of its current state, the robot optimizes a trajectory
of future states to minimize a cost function and achieve a
feasible solution.

In this work, we provide a unified approach to trajectory
estimation and planning. Our key insight is that both these
problems are inherently variants of trajectory optimization
and can therefore be combined to remove the redundancy
present in a traditional two step process. The idea is to com-
pute the complete continuous-time trajectory from start to
goal at each time-step, such that given the current time-step,
the solutions to the estimation problem (history of the trajec-
tory) and the planning problem (future of the trajectory) au-
tomatically fall out. Additionally, performing this joint opti-
mization allows information to flow between estimation and
planning resulting in mutual benefits. This problem can be
quite difficult to solve; the robot must contend with a poten-
tially high-degree-of-freedom (DOF) trajectory space, un-
certainty due to limited sensing capabilities, model inaccu-
racy, and the stochastic effect of executing actions. For the
solution to be practical, it must be generated in (faster than)
real-time.

We propose a solution to the problem of simultaneous
trajectory estimation and planning (STEAP) by viewing tra-
jectory optimization as probabilistic inference and building
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Fig. 1: The Vector mobile manipulator, with an omni-drive
base and a 6-DOF Kinova JACO2 arm, is solving the
STEAP problem. The task involves picking up an object
from the white table on the right and dropping it off on the
white table on the left. The semi-transparent robots show the
trajectory taken, while the solid robot is the goal configura-
tion.

on recent approaches to continuous-time localization and
mapping (Anderson et al 2015; Yan et al 2017) and continuous-
time motion planning (Dong et al 2016; Mukadam et al 2017c).
We represent the continuous-time trajectory as a function
mapping time to robot states and model the trajectory dis-
tribution as a Gaussian process (GP) (Barfoot et al 2014;
Mukadam et al 2016). At each time-step, we incrementally
(re)estimate the entire continuous-time trajectory, as new
sensor data or cost information is encountered, by iteratively
recomputing the maximum a posteriori (MAP) trajectory
conditioned on all the available sensor data and cost infor-
mation. In general, sensor data can include various mea-
surements from proprioception (encoders, inertial measure-
ment unit (IMU), etc) or perception for external informa-
tion (cameras, LIDARs, etc). On the other hand, cost infor-
mation can include full or partial information know before
(start, goal, map of the environment, etc) or constraints and
information encountered during execution (changing goal,
orientation constraints on the end effector for a portion of
the trajectory when for example a cup with liqiud is held,
etc).

We formulate the STEAP problem on a single proba-
bilistic graphical model and seek the MAP function with in-
cremental inference (Kaess et al 2012). This allows us to
exploit the underlying sparsity of the problem and avoid re-
solving it from scratch as new information is encountered. In
our approach the trajectory is only updated where required,
dramatically reducing the overall computational burden and
enabling a faster-than-real-time solution. We also provide
theoretical insight on the connections between our approach
and various methods in mapping, estimation, and planning
in the context of solving them as inference on graphical

models. To better accommodate mobile manipulation prob-
lems, we build on recent work by Anderson and Barfoot
(2015) on continuous-time trajectory estimation on SE(3)
and extend Dong et al (2016) to plan trajectories on Lie
groups. We implement our framework for solving STEAP
and perform several experiments to evaluate our approach
in simulation and on the Vector mobile manipulator (Fig. 1),
and show that our framework is able to incrementally in-
tegrate real-world sensor data and directly update its tra-
jectory estimate and motion plan in real-time. This paper
is an extended and revised version of our conference paper
(Mukadam et al 2017b). In particular,

– We summarize the incremental inference via Bayes trees
approach (Kaess et al 2012) in Section 6, specifically in
the context of solving the STEAP problem.

– We provide a detailed explanation on formulating sparse
GPs on Lie groups (Dong et al 2017a) in Section 7.

– We present updated experiments on a harder dataset for
the planar robot and new experiments with a 18-DOF
PR2 robot in simulation.

– We provide further insight in to our approach by adding
a discussion on limitations and future work in Section 10.

2 Related Work

By viewing trajectory estimation and motion planning as in-
ference, we are able to borrow and combine tools from dif-
ferent areas of robotics. The Simultaneous Localization and
Mapping (SLAM) community has focused on efficient op-
timization algorithms for many years. One of the more suc-
cessful approaches is the Smoothing and Mapping (SAM)
family of algorithms (Dellaert and Kaess 2006) that formu-
lates SLAM as inference on a factor graph (Kschischang
et al 2001) and exploits the sparsity of the underlying large-
scale linear systems to perform inference efficiently. Given
new sensor data, incremental Smoothing and Mapping (iSAM)
(Kaess et al 2008, 2012) exploits the structure of the prob-
lem to efficiently update the solution rather than resolving
the entire problem from scratch. Recently, Tong et al (2013)
introduced a continuous-time formulation of the SAM prob-
lem, in which the robot trajectory is a function that maps any
time to a robot state. The problem of estimating this function
along with landmark locations has been dubbed simultane-
ous trajectory estimation and mapping (STEAM). This ap-
proach was further extended in Barfoot et al (2014) to take
advantage of the sparse structure inherent in the STEAM
problem, in Yan et al (2017) to efficiently and incrementally
update the solution, and in Dong et al (2017b) to 4D map-
ping problems. The resulting algorithms speed up solution
time and can be viewed as continuous-time analogs of the
original square-root SAM algorithm in Dellaert and Kaess
(2006) and the iSAM2 algorithm in Kaess et al (2012).
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While probabilistic inference is frequently used as a foun-
dation for state estimation and localization, it is only re-
cently that these techniques have been used for planning.
The duality between linear estimation and control has long
been established (Kalman et al 1960), but solutions to esti-
mation and control problems have, for the most part, evolved
independently within their own subfields. In the last decade
this has begun to change. The optimization-inference dual-
ity has been shown to extend to planning and optimal con-
trol (Todorov 2008) with some early work in this direction
looking at solving Markov decision processes (MDP) (At-
tias 2003). Several researchers have recently proposed a prob-
abilistic inference perspective on planning and control prob-
lems, leveraging expectation maximization (Toussaint and
Storkey 2006; Levine and Koltun 2013), expectation prop-
agation (Toussaint 2009), KL-minimization (Rawlik et al
2012), and efficient inference on factor graphs (Dong et al
2016; Mukadam et al 2017c,a; Huang et al 2017; Rana et al
2017). Interestingly, the incremental inference technique (Kaess
et al 2011) used in Dong et al (2016) to solve replanning
problems is the same as originally used in Kaess et al (2012)
to solve SLAM problems. We exploit this idea to solve our
more general class of simultaneous trajectory estimation and
planning problems.

Efficient replanning algorithms for navigation are an ac-
tive area of research (Koenig and Likhachev 2005; Fergu-
son et al 2006), but most previous work is difficult to ex-
tend to real, high-dimensional systems, is computationally
expensive, or does not incorporate uncertainty in the robot’s
state estimate. Recent work in simultaneous localization and
planning (SLAP) attempts to unify robot localization and
planning, with early work using HMMs (Penny 2014), more
recent approaches designed for dynamic environments (Agha-
mohammadi et al 2015; Rafieisakhaei et al 2016), and new
approaches (Ta et al 2014) that combine state estimation and
model predictive control (MPC) (Camacho and Alba 2013).
Unfortunately, these approaches are too computationally ex-
pensive due to the MPC style re-evaluation of the new plan,
which is compounded with high DOF systems in cluttered
environments. In this work, we tackle the simultaneous tra-
jectory estimation and planning (STEAP) problem within a
unified probabilistic inference framework. The STEAP prob-
lem can be considered as a generalization of the SLAP prob-
lem in that the goal of STEAP is to compute the full continuous-
time trajectory conditioned on observations and costs in both
the past and the future. By contrast, SLAP only computes
the current state estimate and the new plan.

3 Background: Trajectory Optimization as
Probabilistic Inference

Following previous work on both STEAM problems (Bar-
foot et al 2014; Yan et al 2017) and Gaussian process mo-

tion planning (Dong et al 2016; Mukadam et al 2017c), we
view the problem of estimating or optimizing continuous-
time trajectories as probabilistic inference. We represent the
trajectory as a continuous-valued function mapping time t to
robot states θθθ(t). The goal is to find the maximum a poste-
riori (MAP) continuous-time trajectory given a prior distri-
bution on the space of trajectories and a likelihood function.

3.1 Trajectory prior

A prior distribution over trajectories can be defined as a
vector-valued Gaussian process θθθ(t) ∼ GP(µµµ(t),K(t, t ′)),
where µµµ(t) is a vector-valued mean function and K(t, t ′) is
a matrix-valued covariance function. For any collection of
times ttt = {t0, . . . , tN}, θθθ has a joint Gaussian distribution

θθθ
.
=
[
θθθ 0 . . . θθθ N

]> ∼ N(µµµ,K) (1)

with mean vector µµµ and covariance kernel K defined as

µµµ
.
=
[
µµµ(t0) . . . µµµ(tN)

]>
, K .

= [K(ti, t j)]
∣∣∣
i j,0≤i, j≤N

. (2)

The prior distribution is then defined by the GP mean µµµ and
covariance K

p(θθθ) ∝ exp
{
− 1

2
‖ θθθ −µµµ ‖2

K

}
. (3)

The prior encodes information about the system that is known
a priori. For example, in robotic state estimation problems,
a structured GP prior may encourage trajectories to follow
known system dynamics, e.g. the robot velocity changes smoothly
(Barfoot et al 2014; Tong et al 2013). In motion planning,
the prior is selected to encourage higher-order derivatives of
the system configuration to be minimized (Dong et al 2016;
Mukadam et al 2017c). The prior we use in our implemen-
tation is detailed in Section 5.1.1.

3.2 Likelihood function

The likelihood function encodes information about a partic-
ular problem instance. For example, in STEAM problems,
the likelihood function encourages posterior trajectories to
be consistent with proprioceptive or landmark observations
(Barfoot et al 2014), while in motion planning problems the
likelihood function encourages posterior trajectories to be
collision-free (Dong et al 2016).

Let e be a collection of random binary events. Examples
of events include collision, receiving a sensor measurement,
or reaching a goal. The likelihood function is the conditional
distribution l(θθθ ;e) = p(e|θθθ), which specifies the probability
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of events e given a trajectory θθθ . We define the likelihood as
a distribution in the exponential family

l(θθθ ;e) ∝ exp
{
− 1

2
‖ hhh(θθθ ,e) ‖2

ΣΣΣ

}
(4)

where hhh(θθθ ,e) can be any vector-valued cost function with
covariance matrix ΣΣΣ . The specific likelihood used in our im-
plementation is detailed in Section 5.1.

3.3 Computing the MAP trajectory

The posterior distribution of the trajectory given the events
can be written in terms of the prior and the likelihood using
the Bayes rule

p(θθθ |e) ∝ p(θθθ)p(e|θθθ). (5)

Then, we can compute the maximum a posteriori (MAP) tra-
jectory

θθθ
∗ = argmax

θθθ

{
p(θθθ |e)

}
= argmax

θθθ

{
p(θθθ)p(e|θθθ)

}
(6)

= argmin
θθθ

{
− log

(
p(θθθ)p(e|θθθ)

)}
(7)

= argmin
θθθ

{
1
2
‖ θθθ −µµµ ‖2

K +
1
2
‖ hhh(θθθ ,e) ‖2

ΣΣΣ

}
(8)

where Eq. (8) follows from Eq. (3) and Eq. (4). The MAP
estimation problem can therefore be reduced to a nonlin-
ear least squares problem and can be solved with tools like
Gauss-Newton or Levenberg-Marquardt.

When solving estimation and planning simultaneously,
we encounter new measurements and/or cost information
during online execution, thus changing the likelihood. A naı̈ve
approach to contending with this new information would be
to resolve the problem in Eq. (8) repeatedly. However, this is
very inefficient and computationally expensive for an online
setting. In the following sections, we formulate the inference
problem on graphical models that allow us to exploit the un-
derlying sparsity of the problem (Section 4-5), and then we
use incremental inference techniques that allow us to itera-
tively update the solution only where needed resulting in a
computationally efficient approach (Section 6).

4 Mapping, Estimation, and Planning with Factor
Graphs

The MAP trajectory computation in Section 3.3 can be exe-
cuted efficiently by exploiting known structure in the prob-
lem. This is accomplished by representing the posterior dis-
tribution as a factor graph. With a factor graph (Kschis-
chang et al 2001) any distribution can be factored into a
product of functions that is organized as a bipartite graph

G = {Θ ,F,E}. This graph consists of variable nodes Θ
.
=

{θθθ 0, . . . ,θθθ N}, factor nodes F .
= { f0, . . . , fM}, and edges E

that connect the two types of nodes.
In our case, the variables are a set of instantaneous robot

states along the trajectory, and the factors are conditional
probability distributions on variable subsets Θi of Θ . There-
fore, we can write the posterior distribution as a product of
the factors

p(θθθ |e) ∝

M

∏
i=0

fi(Θi). (9)

The precision matrix of this distribution also encodes the
connectivity in the graph. Consequently, a sparse factor graph
structure yields a sparse precision matrix, which can be ex-
ploited to make the computation in Eq. (8) efficient (Dellaert
and Kaess 2006).

We can further write the posterior distribution as a prod-
uct of prior factors and likelihood factors,

p(θθθ |e) ∝ p(θθθ)p(e|θθθ) ∝ f prior(Θ) f like(Θ). (10)

In the remainder of this section, we will use this general
formulation to illustrate relationships between prior work
in mapping, estimation, and planning. Then, we will extend
this idea and connect it with our proposed work in the next
section.

SAM: We begin with the smoothing and mapping (SAM)
(Dellaert and Kaess 2006) problem, an early work that uses
factor graphs to address the state estimation and mapping
problem in robotics. The goal is to estimate the full poste-
rior trajectory in the past given all measurements. The factor
graph used in SAM is

p(θθθ est |e) ∝ f prior f meas, (11)

where θθθ est signifies the history portion of the trajectory to
be estimated, f prior = f prior(θθθ 0) is the prior on the first
state, and f meas is the likelihood of all sensor measurements,
which itself factors as

f meas = ∏
i

f meas
i (Θi). (12)

Unary measurement factors can refer to odometer, GPS or
IMU measurements, while higher order factors on a subset
of states (Θi) often represent landmark observations.

STEAM: Like SAM, simultaneous trajectory estimation and
mapping (STEAM) (Barfoot et al 2014; Anderson and Bar-
foot 2015) addresses trajectory estimation problems. The
key difference is that in STEAM, the trajectory is no longer
treated as a discrete sequence of states Θ , but rather a continuous-
time trajectory sampled from a GP. The prior is a joint dis-
tribution on the full trajectory f prior = f gp(Θ), yielding a
factor graph

p(θθθ est |e) ∝ f gp f meas. (13)
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fmeas
i

f gp
i

fmeas
i

(a)

f start
i f goal

f gp
i

f obs
i

(b)

f start f goal

f obs
i

f gp
i

fmeas
i

(c)

Fig. 2: Example factor graph representation of (a) STEAM, (b) GPMP2, and (c) STEAP. Gray node shows current time-step.

GPMP2: GPMP2 (Dong et al 2016) is a probabilistic in-
ference framework for solving planning problems. It utilizes
the GP trajectory representation from STEAM to find colli-
sion free future trajectories that satisfy the GP prior. Unlike
SAM and STEAM, however, the likelihood is not based on
sensor measurements, but rather the likelihood of a trajec-
tory being free from collision with obstacles. The collision
factor is defined as

f obs = ∏
i

f obs
i (θθθ i). (14)

A fixed start and goal state (this can also be an end effector
goal in workspace) is also required in planning problem, and
therefore can be incorporated in to the likelihood. So factors
to fix start and goal configurations are also employed

f f ix = f start(θθθ 0) f goal(θθθ N). (15)

The full factor graph of GPMP2 is, therefore

p(θθθ plan|e) ∝ f gp f obs f f ix (16)

where θθθ plan signifies the future portion of the trajectory to
be planned.

SLAP: In real robotics applications, it is frequently the case
that both estimation and planning problems must be solved.
One approach to tackling this problem is SLAP (Penny 2014;
Agha-mohammadi et al 2015). Although previous work in
this area does not employ factor graphs, we reformulate SLAP
using them here to illustrate its relation to other problems.
SLAP can be viewed as splitting the inference problem into
two factor graphs, an estimation graph and a planning graph,
defined by

p(θθθ est |e) ∝ f prior f meas, (17)

p(θθθ plan|e) ∝ f prior f curr f obs f goal . (18)

If a continuous-time trajectory representation like GPs are
employed, we can replace f prior with f gp. SLAP solves the
estimation graph first to find an estimate of the current state
f curr(θθθ curr) and then uses it to initialize and solve the plan-
ning problem.

We summarize the factorization of these various problems
in Table. 1, with their factor graphs shown in Fig. 2.

Table 1: Summary of related problems.

Method Problem solved Factorization
SAM Estimation + Mapping f prior f meas

STEAM Estimation + Mapping f gp f meas

GPMP2 Planning f gp f obs f f ix

SLAP Estimation + Planning Estimation : f prior f meas

Planning : f prior f obs f f ix

STEAP Estimation + Planning f gp f meas f obs f f ix

5 Simultaneous Trajectory Estimation and Planning

In this paper, we present simultaneous trajectory estimation
and planning (STEAP), where the task is to perform infer-
ence on the entire factor graph from start to goal at once,
in contrast to SLAP, which would solve the estimation and
planning graph sequentially. We optimize the full trajectory
θθθ = θθθ est ∪θθθ plan represented by the GP prior in Section 3.1
given all sensor data and cost information collected in to
a single likelihood. Compared to prior work discussed in
the previous section, the likelihood here is interpreted more
broadly to represent events than happen in the past and in
the future, all together. The STEAP factor graph is defined
as,

p(θθθ |e) ∝ f gp f meas f obs f f ix. (19)

We define these factors in Section 5.1. Given the current
time-step, the solutions to the estimation and planning prob-
lems automatically fall out. During online execution as new
measurement or cost information is encountered, the like-
lihood, and by extension the factor graph, can be updated
appropriately. Performing inference on the new graph then
provides the updated estimation and replanning solutions.
We explain this procedure with a simple toy example in Sec-
tion 5.2. STEAP has the following major advantages:

(i) Optimization of a single graph allows information to
flow between the two sub-graphs of estimation and plan-
ning, which is not possible with SLAP. This increases per-
formance in both estimation and planning, and provides mu-
tual benefit. The collision-free likelihood of both the past
and the future part of the graph encourages the estimated
past trajectory to remain in areas without obstacles, since
a successfully traversed trajectory would not have passed
through obstacles. This helps contend with noisy (or drops
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in) raw measurements and reduces trajectory estimation er-
rors. Similarly, the trajectory estimation information corrects
the estimate of the current robot position, providing feed-
back for the planned future trajectory.

(ii) The number of variables in a STEAP factor graph
does not change much during execution i.e. only a few fac-
tors are added in each step. This allows for very efficient
incremental inference using the Bayes tree data structure
(Kaess et al 2011). Updating the solution with Bayes trees
only requires a small fraction of the runtime compared to
reoptimizing the full graph from scratch. Additional discus-
sion of incremental inference using the Bayes tree is in Sec-
tion 6.

5.1 STEAP factor definitions

5.1.1 The Gaussian process prior factor

A Gaussian RBF kernel defines a prior distribution of tra-
jectories with no pairwise independences. In other words,
all states are connected to a single GP prior factor, f gp =

f gp(Θ). This prior cannot be factored, and destroys the prob-
lem’s sparsity, making inference computationally expensive.
However, in the context of STEAM problems, Barfoot et al
(2014) showed that certain types of GP priors generated by
linear time varying (LTV) stochastic differential equations
(SDEs), are sufficient to model Markovian robot trajecto-
ries. These priors are highly structured, and factor according
to

f gp = ∏
i

f gp
i (θθθ i,θθθ i+1) (20)

where any GP prior factor connects to only its two neighbor-
ing states, forming a (Gauss-Markov) chain. This is shown
in Fig. 2 (a) where states (white circle) form a chain by con-
necting to GP prior factors (black circle). In GPMP2 (Dong
et al 2016), the GP prior on trajectories is generated by a
LTV-SDE defined on a vector space (Fig. 2 (b)). GP priors
have also been formulated with non-linear SDEs (Anderson
et al 2015) and on the SE(3) Lie group (Anderson and Bar-
foot 2015).

If the robot configuration is in vector space Rn, similar
to GPMP2, STEAP can use the GP prior defined in (Barfoot
et al 2014). But we develop STEAP for mobile manipulators
that have their configuration space defined by a Lie group
product θθθ i ∈ SE(2)×Rn where n is the degree-of-freedom
of the arm and the SE(2) Lie group defines a planar trans-
lation and rotation (yaw) for the mobile base. We employ a
constant velocity i.e. noise-on-acceleration model to define
a non-linear SDE that generates our GP prior. See Section 7
for details about the GP prior.

5.1.2 Obstacle factor

All obstacle factors are constructed similar to GPMP2 (Dong
et al 2016) except that they are defined for the Lie group con-
figuration space. The obstacle factors evaluate collision cost
using a hinge loss function and a signed distance field of the
environment. See (Dong et al 2016) for details.

5.1.3 Start and goal factor

These are multivariate Gaussian factors

f start(θθθ 0) = exp
{
− 1

2
‖ θθθ 0−θθθ start ‖2

Σ f ix

}
(21)

f goal(θθθ N) = exp
{
− 1

2
‖ θθθ N−θθθ goal ‖2

Σ f ix

}
(22)

with the mean as the start or goal and a small covariance
Σ f ix, and are used to tie down the trajectory at the start and
goal locations. When the trajectory has finished execution,
the goal factor is replaced with the pose measurement factor
so that the final posterior update gives the final trajectory
estimate.

5.1.4 Measurement factor

There are many types of sensors that provide different mea-
surements, and thus many types of measurement factors have
been proposed by the SLAM community (Dellaert and Kaess
2006). For example, measurements from an inertial mea-
surement unit (IMU) can be incorporated into the factor graph
with pre-integrated IMU factors (Forster et al 2015), and vi-
sual landmark measurements from a camera can be incorpo-
rated with Schur complement factors (Carlone et al 2014).

For the sake of simplicity, in the remainder of this paper
we use a multivariate Gaussian measurement factor for the
state measurement

f meas
i (θθθ i) = exp

{
− 1

2
‖ θθθ i−µµµ

meas
i ‖2

Σmeas

}
(23)

where the measurement queried from sensors has mean µµµmeas
i

with covariance Σmeas. The multivariate Gaussian is a typi-
cal noise assumption for many sensors. For example, GPS
can provide coordinate and velocity measurements in Carte-
sian space with covariance (Leandro et al 2005), and 2D/3D
laser scanners can provide a raw localization with covari-
ance from a 2D/3D point-cloud with the ICP algorithm (Censi
2007). Note that, although we only use multivariate Gaus-
sian measurement factors in our examples and evaluations,
the STEAP framework is general and can incorporate any
type of measurement factors.
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Legend

Robot state

Current
time-step

GP prior factor

Start and goal
factor

Obstacle factor

Measurement
factor

step = 0

t0 t1 t2 t3 t4

step = 1

step = 2

step = 3

step = 4

Fig. 3: A simple example illustrates STEAP using a robot (gray) that navigates to the goal (black circle) while avoiding
obstacles. At each step the right side shows the environment with ground-truth (green), estimated (red), and replanned (blue)
trajectories. The left side shows the corresponding factor graph. See text for details.

5.2 A STEAP example

We use an example, illustrated in Fig. 3, to describe how
STEAP works using Algorithm 1 that is complemented by
the block diagram in Fig. 8. Note that the small size of the
graph in Fig. 3 is just for illustration, in practice our ap-
proach can handle much larger graphs (see Section 9 for
the graph sizes used in our experiments). In this example,
a robot with stochastic dynamics starts at time-step t0 and
needs to reach the goal at time-step t4 while avoiding any
obstacles.

First, we construct a factor graph that will reflect the
prior distribution. A small, sparse set of robot states are con-
nected via GP factors that collectively form the prior distri-
bution of a continuous-time trajectory. Then, we add a start
and a goal factor with a small covariance (to tie the trajectory
down at the start and goal) and obstacle factors. In practice,
there are also multiple binary obstacle factors present be-
tween any two states (omitted here for clarity) that use GP
interpolation to project the cost between any two states back
on to those states and allow the trajectory to stay sparse but
still reason about obstacles between the sparse states (see
(Dong et al 2016) for details). The start, goal and obstacle
factors together form the likelihood. We can find the mode of
the posterior shown in blue at the top level of Fig. 3, which
is inherently a special case of our approach providing the

Algorithm 1 STEAP
θθθ : trajectory, f : factors, T : Bayes tree

1: θθθ init = initializeTrajectory()
2: FG = createFactorGraph( f gp, f obs, f f ix)
3: θθθ = inference(FG, θθθ init )
4: T = createBayesTree(FG, θθθ )
5: for i = 0 to N−1 do
6: θi:i+1 = interpolateGP(θθθ , i, i+1, resolution)
7: if collisionFree(θi:i+1) then
8: execute(θi:i+1)
9: f meas

i+1 = localize()
10: θθθ , T = incrementalInference(θθθ , f meas

i+1 , T )
11: else
12: return failure
13: end if
14: end for
15: return success

solution to the GPMP2 motion planning problem, since no
measurement factors are present and there is no state esti-
mation yet at this step.

Next, the planned solution between t0 and t1 is upsam-
pled to a desired resolution with GP interpolation, checked
for safety, and then executed on the robot. The ground-truth
trajectory is illustrated in green. Since the system is stochas-
tic, execution is noisy. We make an observation to gener-
ate a measurement factor and insert it into the graph at t1.
This new factor is combined with the old likelihood to pro-
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duce the updated likelihood. Using the Bayes tree to effi-
ciently organize computation, we generate a new MAP so-
lution. Note that, in this case, the factor graph is changed
by adding only one measurement factor, so the incremental
inference performed using the Bayes tree will be very fast.
The red portion of the trajectory is an estimate of the tra-
jectory traversed by the robot until current time-step t1 and
the blue portion of the trajectory is the replanned solution
to the goal. This whole process is then repeated (steps are
shown from top to bottom in Fig. 3) until the robot reaches
the goal at t4. At t4 again we have a special case of our ap-
proach that provides a solution to the trajectory estimation
problem (STEAM), but with extra obstacle factors.

6 Incremental Inference with the Bayes Tree Data
Structure

In Section 3.3, we discussed how to solve the MAP infer-
ence problem as non-linear least squares optimization. But
one significant drawback of using non-linear optimization
like Gauss-Newton or Levenberg-Marquardt to solve infer-
ence on factor graphs is that they are iterative methods, and
with every iteration the problem must be completely lin-
earized and resolved (the cost on every factor will be evalu-
ated and every variable is updated), even if the factor graph
is mostly unchanged.

To reduce these redundant calculations, Kaess et al (2012)
proposed efficient incremental updates of non-linear least
square problems with the Bayes tree data structure. When
re-solving a graph with only minor changes (in variables or
factors), only the parts of the Bayes tree associated with the
changes will be updated, leaving most of the Bayes tree un-
changed. By updating the solution in this incremental man-
ner, the efficiency of inference is significantly improved.

Since only a very small portion of the STEAP factor
graph changes (few variables with new measurement fac-
tors) at each time-step, we convert the factor graph into a
Bayes tree, and update the tree incrementally. By utilizing
this efficient incremental inference technique we get a sig-
nificant performance boost, and easily achieve real-time per-
formance, as illustrated in our experiments.

In this section, we first give a brief overview of the Bayes
tree and its relation to factor graphs, discuss how to perform
incremental inference on Bayes tree, and then give a detailed
example to show how to use a Bayes tree to perform incre-
mental inference for a STEAP problem. Readers are encour-
aged to refer to the iSAM2 paper (Kaess et al 2012) for a
more detailed and general explanation.

Algorithm 2 Variable elimination of factor graph
1: for all θ j , in ordering, do
2: Remove all factors fi connected to θ j from factor graph, define

S j = {all variables involved in all fi}.
3: f j(θ j,S j) = ∏i fi(θ).
4: Factorize f j(θ j,S j) = p(θ j|S j) fnew(S j).
5: Add p(θ j|S j) in Bayes net, add fnew(S j) back in factor graph.
6: end for

6.1 Building a Bayes tree from a factor graph

A Bayes tree is a directed tree-structured graphical model
which is derived from a Bayes net that has very close re-
lation to junction tree. Both the Bayes tree’s and junction
tree’s nodes are cliques of a Bayes net, but the Bayes tree is
directed to reflect the conditional relations in factored prob-
ability density.

Before we officially define the Bayes tree, we first intro-
duce the variable elimination algorithm (Dellaert and Kaess
2006), which converts a factor graph into a Bayes net. For a
given factor graph, we first choose an ordering of variables.
Although any variable ordering works for the explanation
here, different orderings generate Bayes nets with differ-
ent numbers of edges, and, in general, a smaller number of
edges is better for reducing computation. Choosing the op-
timal ordering is a NP-hard problem. To contend with this
problem, several approximation heuristics have been pro-
posed. We use COLAMD (Davis et al 2004) to estimate a
close-to-optimal ordering.

Given a factor graph and a variable ordering, we elimi-
nate each variable by Algorithm 2 and factorize the proba-
bility density over all variables to

p(θ) = ∏
j

p(θ j|S j), (24)

where S j ⊂ θ is the separator of θ j. Note that the factorized
probability density in Eq. (24) meets the conditional depen-
dencies of a Bayes net, so, by elimination, we convert a fac-
tor graph to a Bayes net. Fig. 4 shows an example of running
elimination Algorithm 2 on a GPMP2 planning factor graph
with reverse variable ordering, which is actually the optimal
variable ordering in this case.

For a Bayes net generated by Algorithm 2, we extract
all cliques Ck from the Bayes net and build a Bayes tree by
defining each node by one clique Ck. For each node of the
Bayes tree, we further define the conditional density p(Fk|Sk),
where Sk is the separator variables Sk, by Sk = Ck ∩Πk
intersecting between Ck and Ck’s parent node Πk, and the
frontal variables Fk, by Fk = Ck\Sk. The clique is written
as Ck = Fk : Sk. The probability density of a Bayes tree is
defined by the joint density of all nodes

p(θ) = ∏
k

pCk(Fk|Sk). (25)
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θ0 θ1 θ2 θ3 θ4

(a) Factor graph

θ0 θ1 θ2 θ3 θ4

(b) Eliminating θ0

θ0 θ1 θ2 θ3 θ4

(c) Eliminating θ1

θ0 θ1 θ2 θ3 θ4

(d) Eliminating θ2

θ0 θ1 θ2 θ3 θ4

(e) Eliminating θ3

θ0 θ1 θ2 θ3 θ4

(f) Eliminating θ4 and final Bayes net

Fig. 4: Example of applying variable elimination on a planning factor graph. Red arrows/factors indicate the parts that change
in Bayes net/factor graph respectively at step 5 of Algorithm 2.

Algorithm 3 Creating a Bayes tree from a Bayes net
1: for all p(θ j|S j), in reverse ordering, do
2: if S j = /0 then
3: Start a tree with a root clique Cr with pCr = p(θ j), Fr = {θ j}.
4: else
5: Find the parent clique Cp that contains the first eliminated

variable in S j is in Fp.
6: if Fp∩Sp ⊆ S j then
7: Add p(θ j|S j) in pCp , add θ j in Fp, and add S j in Sp.
8: else
9: Add a new clique C′ in tree with pC′ = p(θ j|S j), F ′ =

{θ j},S′ = S j as a child node of Cp.
10: end if
11: end if
12: end for

Factor Graph Bayes Tree

θ4, θ3

θ2 : θ3

θ1 : θ2

θ0 : θ1

θ0 θ1 θ2 θ3 θ4

Fig. 5: Example of a Bayes Tree of a planning factor graph.

The algorithm to convert a Bayes net to a Bayes tree is
summarized in Algorithm 3, and the Bayes tree example of
the toy planning factor graph from Fig. 4 is illustrated in
Fig. 5. Here, the example is straightforward: the Bayes net
has 4 cliques, {θ0,θ1}, {θ1,θ2}, {θ2,θ3} and {θ3,θ4}, so
the Bayes tree has 4 nodes.

6.2 Incremental inference on Bayes tree

Given a Bayes tree generated from a factor graph, we can
efficiently add new factors and perform incremental infer-
ence. One of the most important properties of the Bayes tree
is that if a factor, involving a variable θi, is added in the
Bayes tree, only the cliques between the cliques containing
θi and the root of the tree (assume the root of the tree is
at the top) will be affected. The sub-tree below the cliques
containing θi will remain unchanged during incremental in-

Algorithm 4 Incremental inference on a Bayes tree
Require: Bayes tree T , add factors F .
1: Remove top of T , reinterpret as factor graph.
2: Add F to factor graph.
3: Eliminate factor graph to Bayes net, then to Bayes tree.
4: Attach unchanged sub-tree to updated sub-tree.
5: return Updated Bayes tree T ∗.

ference. This means that by updating the Bayes tree a large
part of the computation that is redundant and involves only
untouched cliques, can be prevented compared to solving a
full new non-linear least squares optimization problem.

The procedure to update a Bayes tree with new factors
is stated in Algorithm 4. Given a set of new factors, we first
find all the cliques which contain the variables involved in
those new factors, and reinterpret the sub-tree as a factor
graph. After adding new factors in the factor graph, we per-
form elimination on the factor graph to get the correspond-
ing Bayes net, and further convert the Bayes net in to a
Bayes tree. Finally, we attach the untouched sub-tree to the
updated sub-tree, to get the final updated tree. The procedure
is further explained by a toy example in Fig. 6. In this exam-
ple we add a unary factor to a planning factor graph at θ2.
As explained in the previous sub-section, we have the Bayes
net of the factor graph in Fig. 6(b), where the dashed boxes
mark the affected part of the tree. We see that the clique
θ0 : θ1 remains untouched during the whole update proce-
dure.

6.3 Using the Bayes tree in STEAP

We are now ready to discuss how the Bayes tree can be
used to speed up STEAP. At the beginning of the STEAP
algorithm, the factor graph is the same as the planning fac-
tor graph in GPMP2 (Dong et al 2016). A Bayes tree is
constructed from the factor graph using the approach dis-
cussed in Section 6.1. After construction of the Bayes tree,
the factor graph is no longer needed or maintained, since
all remaining steps are performed directly on the Bayes tree.
When the Bayes tree needs to be updated with new measure-
ment factors, we update the tree and perform incremental
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θ0 θ1 θ2 θ3 θ4

(a) Add a factor to factor graph

θ4, θ3

θ2 : θ3

θ1 : θ2

θ0 : θ1

θ4, θ3

θ2 : θ3

θ1 : θ2

θ0 : θ1

θ1 θ2 θ3 θ4

θ1 θ2 θ3 θ4

(b) Adding a factor to a Bayes tree

Fig. 6: An example of how to add factors and perform incre-
mental inference on a Bayes tree. (a) The inference problem
illustrated as a factor graph. The added factor is displayed in
red. (b) Steps to add the red factor into Bayes tree.

inference using the approach described in Section 6.2. An
example is shown in Fig. 7 that corresponds to the STEAP
example in Section 5.2.

As mentioned in Section 5, one of the advantages of
STEAP, compared to other trajectory estimation and plan-
ning approaches, is that it can use Bayes trees to gain a sig-
nificant speed up while performing incremental inference. In
the example in Fig. 7, we see that for each step of STEAP,
only part of the Bayes tree is updated leaving the remaining
tree unchanged. Therefore, incremental inference is more
efficient while maintaining similar accuracy compared to
batch inference, which needs to perform all the steps (lin-
earization, solving linear systems, etc.) on the full graph.
We also gain additional efficiency improvement from the
iSAM2 (Kaess et al 2012) implementation of the Bayes tree
(which we use) that avoids excessive linearization opera-
tions by fluid relinearization. We will see in the experimen-
tal section how the Bayes tree and iSAM2 improve the effi-
ciency of STEAP compared to other approaches.

7 GP Priors

7.1 GP priors on vector space

GP priors on vector-valued system states θθθ(t) can be gener-
ated by linear time-varying stochastic differential equations
(LTV-SDEs) (Barfoot et al 2014)

θ̇θθ(t) = A(t)θθθ(t)+u(t)+F(t)w(t), (26)

t = 0

θ4, θ3

θ2 : θ3

θ1 : θ2

θ0 : θ1

θ0 θ1 θ2 θ3 θ4

t = 1

θ4, θ3

θ2 : θ3

θ1 : θ2

θ0 : θ1

t = 2

θ4, θ3

θ2 : θ3

θ1 : θ2

θ0 : θ1

t = 3

θ4, θ3

θ2 : θ3

θ1 : θ2

θ0 : θ1

t = 4

θ4, θ3

θ2 : θ3

θ1 : θ2

θ0 : θ1

Fig. 7: The Bayes tree of the STEAP example (red and blue
are the estimation and planning parts of the graph respec-
tively) from Section 5.2. At t = 0 the Bayes tree is built from
the factor graph shown on the left, and from t = 1 to t = 4 the
incremental inference is performed on the tree, with affected
sub-trees marked by dashed boxes.

where u(t) is the known system control input, w(t) is white
process noise, and both A(t) and F(t) are time-varying sys-
tem matrices. The white process noise is represented by

w(t)∼ GP(0,QCδ (t− t ′)), (27)

where QC is the power-spectral density matrix, which is a
hyperparameter (Barfoot et al 2014), and δ (t − t ′) is the
Dirac delta function. The mean and covariance of the GP
is computed by taking the first and second order moments
of the solution to Eq. (26)

µµµ(t) = ΦΦΦ(t, t0)µµµ0 +
∫ t

t0
ΦΦΦ(t,s)u(s)ds (28)

K(t, t ′) = ΦΦΦ(t, t0)K0ΦΦΦ(t ′, t0)>+∫ min(t,t ′)

t0
ΦΦΦ(t,s)F(s)QCF(s)>ΦΦΦ(t ′,s)>ds (29)

where µµµ0 is the initial mean value of first state, K0 is the
covariance of first state, and ΦΦΦ(t,s) is transition matrix.
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7.1.1 Constant velocity GP prior

The constant-velocity GP prior is generated by a LTV-SDE
with a noise-on-acceleration model

p̈(t) = w(t), (30)

where p(t) is the N-dimensional vector-valued position (or
pose) variable of trajectory, if the system has N degrees of
freedom. To convert this prior into the LTV-SDE form of
Eq. (26), a Markov system state variable is defined

θθθ(t) .
=

[
p(t)
ṗ(t)

]
, (31)

The prior in Eq. (30) then can easily be converted into a
LTV-SDE in Eq. (26) by defining

A(t) =
[

0 1
0 0

]
, u(t) = 0, F(t) =

[
0
1

]
. (32)

7.1.2 GP prior factor

Given the LTV-SDE formulation defined in Eq. (32), we
define the GP factor between any two states at ti and ti+1
by (Barfoot et al 2014)

f gp
i (θθθ i,θθθ i+1) = exp

{
− 1

2
‖ΦΦΦ(ti+1, ti)θθθ i−θθθ i+1‖2

Qi,i+1

}
(33)

where

ΦΦΦ(t,s) =
[

1 (t− s)1
0 1

]
,Qi,i+1 =

[ 1
3 ∆ t3

i QC
1
2 ∆ t2

i QC
1
2 ∆ t2

i QC ∆ tiQC

]
. (34)

7.1.3 Constant time GP interpolation

The posterior mean of the trajectory at any time τ can be
approximated by Laplace’s method and expressed in terms
of the current trajectory θθθ at time points ttt (Barfoot et al
2014):

θθθ(τ) = µµµ(τ)+K(τ, ttt)K−1(θθθ −µµµ). (35)

Although the interpolation in Eq. (35) naı̈vely requires O(N)

operations, with structured kernels θθθ(τ) can be computed in
as fast as O(1) (Barfoot et al 2014; Dong et al 2016).

7.2 GP prior on Lie groups

The sparse GP prior defined in GPMP2 (Dong et al 2016)
works well for robot manipulators since their configurations
can be defined using a vector space. But not all robots’ con-
figuration spaces can be well represented with a vector space.
For example, the orientations of rigid body in 3D space can-
not be represented by vectors without singularity (Euler an-
gle) or extra degrees (quaternion). Lie groups offer more

general robot configuration space representations. For ex-
ample, SE(2) can represent position and orientation for a
planar base of a mobile manipulator, and SE(3) can rep-
resent position and orientation for an aerial vehicle. Prior
work (Anderson and Barfoot 2015) proposed the sparse GP
prior on SE(3) which is useful for trajectory estimation. In
this section we extend the sparse GP priors on Lie groups
(Chirikjian 2011) that will be useful for more general con-
figuration representations. This section is an overview of
GP priors on Lie groups, a more detailed discussion can be
found in our technical report (Dong et al 2017a).

A N-dimensional matrix Lie group G is a sub-group of
the general linear group and defines a smooth differentiable
manifold whose local tangent space is described by its as-
sociated Lie algebra g (Chirikjian 2011). For example, the
Lie algebra of SE(2) is defined by a skew symmetric ma-
trix. We can switch between them using the exponential map
exp : g→ G and the logarithm map log : G→ g and to con-
vert elements in local coordinate of G to Lie algebra and
vice versa we can use the hat operator ∧ : RN → g and the
vee operator ∨ : g→ RN respectively (Chirikjian 2011).

7.2.1 Constant velocity GP prior

We define a constant velocity GP prior here to match the
vector space prior in GPMP2 (Dong et al 2016), but just
like the vector space, other priors can also be applied here.
Let T ∈ G represent a state in G, such that T (t) defines a
continuous-time trajectory in G. To generate the GP we need
to first construct a stochastic differential equation (SDE) with
a Markovian state (Barfoot et al 2014). Let that state be
θθθ(t) .

= {T (t),ϖϖϖ(t)}, with the SDE as a double integrator
noise-on-acceleration model that will yield a constant ve-
locity prior,

ϖ̈ϖϖ(t) = w(t), w(t)∼ GP(0,QCδ (t− t ′)) (36)

where ϖϖϖ(t) is the ‘body-frame velocity’ variable defined by

ϖϖϖ(t) .
= (T (t)−1Ṫ (t))∨. (37)

and w(t) is a white noise, zero mean Gaussian process and
power-spectral density matrix QC (Barfoot et al 2014). Since
∀ T ∈ G, T−1Ṫ ∈ g (Chirikjian 2011), we can apply the
∨ operator on T (t)−1Ṫ (t). However, unlike GPMP2 (Dong
et al 2016), this SDE is non-linear. Fortunately through lin-
earization we can convert it to the linear time-varying SDE
(LTV-SDE) that GPMP2 uses.

7.2.2 Local linearization

With linearization on the Lie group around any Ti, we can
define both a local GP and a LTV-SDE on the linear tangent
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Fig. 8: Block diagram
of our framework
showing all the com-
ponents and how
they interact. Blue
boxes are modules
and gray boxes are
data. Sensor measure-
ments flow from the
Robot Module to
the Localization

Module. This block
diagram is also
complemented by
Algorithm 1.
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space to leverage the constant-velocity GP prior. A local GP
at any time t, ti ≤ t ≤ ti+1 will be

T (t) = Ti exp(ξξξ i(t)
∧), ξξξ i(t)∼ N(0,K(ti, t)) (38)

where the local pose variable ξξξ i(t) ∈ RN around Ti is

ξξξ i(t)
.
= log(T−1

i T (t))∨. (39)

Then the local LTV-SDE is defined using the local pose sim-
ilar to Eq. (36) as a double integrator noise-on-acceleration
model to give a constant velocity prior

ξ̈ξξ i(t) = w(t), w(t)∼ GP(0,QCδ (t− t ′)) (40)

with the local Markovian state for the LTV-SDE as

γγγ i(t)
.
= {ξξξ i(t), ξ̇ξξ i(t)}. (41)

To show the equivalence between the original nonlinear SDE
and the local approximation we use the identity (Chirikjian
2011)

T (t)−1Ṫ (t) =
(
Jr(ξξξ i(t))ξ̇ξξ i(t)

)∧ (42)

where Jr is the right Jacobian of G. Following from Eq. (37)
we get

ξ̇ξξ i(t) = Jr(ξξξ i(t))
−1

ϖϖϖ(t) (43)

If the time interval between any ti and ti+1 is small then the
approximation

ξ̇ξξ i(t)≈ ϖϖϖ(t) (44)

is good. Then linear SDE Eq. (40) is a good approximation
of non-linear SDF Eq. (36), so we linearize the SDE and we
can apply LTV-SDE GP prior by (Barfoot et al 2014).

7.2.3 GP prior factor

We define the GP factor between any two states at ti and ti+1
with their local pose using the linearized SDE formulation
on the Lie group manifold

f gp
i (θθθ i,θθθ i+1)

= exp
{
− 1

2
‖ΦΦΦ(ti+1, ti)γγγ i− γγγ i+1‖2

Qi,i+1

}
(45)

where the logarithm map provide transformation from SE(2)
to R3 and vice versa with the exponential map, and

ΦΦΦ(t,s) =
[

1 (t− s)1
0 1

]
,Qi,i+1 =

[ 1
3 ∆ t3

i QC
1
2 ∆ t2

i QC
1
2 ∆ t2

i QC ∆ tiQC

]
. (46)

We use this GP prior in our current implementation.

8 Implementation Details

We implement STEAP within the PIPER (Mukadam 2017)
package using ROS (Quigley et al 2009) and GPMP2 (Dong
et al 2016) and have open-sourced the code. Fig. 8 shows
a block diagram of the framework. The offline phase as-
similates (i) robot-specific information including model and
physical parameters, (ii) problem definitions and optimiza-
tion parameters, and (iii) a pre-generated signed distance
field (SDF) of the environment, which is assumed to be static.
In the online phase, this information is passed to our central
module, STEAP Module, that solves STEAP problems and
communicates with the Robot Module (simulated or physi-
cal) with sensors, and the Localization Module that takes
raw sensor measurements and outputs a noisy pose estimate
for the robot that can be interpreted by the STEAP Module.

Note that in our framework, the Localization Module

is free to be any source of raw or processed sensor informa-
tion, as long as suitable factors are defined to fuse sensor in-
formation in the factor graph, e.g. GPS, LIDAR, monocular,



STEAP 13

or stereo camera data. In our implementation we use a depth
image-based localization algorithm, detailed in Section 8.4.

8.1 STEAP module

This module uses the robot and problem configuration. In
the first step, the module initializes the problem by con-
structing an initial factor graph, performing inference to get
the first planned solution, and constructing a Bayes tree for
future iterations. During every other step, the module per-
forms incremental inference by updating the Bayes tree di-
rectly. At every step, the replanned solution is upsampled
and checked for safety, and is sent to the Robot Module.
When the Localization Module returns a current pose
measurement, new sensor measurement factors are added to
the Bayes tree and the updated posterior is evaluated. This
procedure repeats until the full trajectory completes execu-
tion or exits due to collision failure. Given the generic im-
plementation of this module, our framework can be used on
any simulated or real robot as long as the robot information
is provided in the offline phase.

8.2 Robot module

This module consists of the robot API and controllers that
can understand and execute the trajectory passed to it by the
STEAP Module for either a real robot or an interface with
Gazebo for a simulated robot. Sensors on the robot pass in-
formation to the Localization Module. Note that in our
simulator, adjustable Gaussian noise is mixed in both sys-
tem dynamics (more precisely vehicle velocities) and sensor
measurements (more precisely depth measurements of depth
camera simulator), to simulate the real-world stochasticity.

8.3 Mapper

Obstacle factors require a signed distance field (SDF) to cal-
culate obstacle cost. Although we can calculate SDFs from
CAD models in simulation, we will not have these mod-
els available in most real-world environments. Therefore,
we build SDFs from sensor data. We use depth scans from
depth sensors (a simulated depth camera in simulation and
a PrimeSense, shown in Fig. 9, in real-world experiments),
and an occupancy grid mapping approach (Thrun et al 2005,
Ch.9) to generate the SDF. The space is first discretized into
small cells, and a probability of occupancy po is assigned to
each cell, with initial po = 0.5 (since we have no informa-
tion). All pos are updated by sensor measurements, and after
all sensor data is received, we assume cells with po≥ 0.5 are
occupied, and cells with po < 0.5 are unoccupied. Note that
we assume cells with po = 0.5, which indicates no depth

Fig. 9: Left: the PrimeSense depth camera mounted on the
robot base. Right: one 8m×6m×1.5m occupancy grid map
built by the mapper module.

measurement available, are occupied, since it is safer to as-
sume that locations never observed are occupied by obsta-
cles. True camera poses are provided by a motion capture
system during the mapping process. After occupancy grid
mapping, we calculate the signed distance field by the ef-
ficient distance transformation (Felzenszwalb and Hutten-
locher 2012). We use CUDA (Nickolls et al 2008) to im-
plement occupancy grid mapping and distance transforma-
tion, allowing us to achieve real-time performance on scenes
roughly of size 8m×6m×1.5m with 3cm resolution. A map
constructed with this approach is shown in Fig. 9.

8.4 Localization module

The Localization module reads raw sensor data from the
Robot Module, calculates a pose estimate of the robot, and
provides this information to the STEAP Module. Here it’s
free to choose any Localization algorithm. We choose an
ICP-style iterative approach, which similar to tracking in
KinectFusion (Izadi et al 2011) but operates on the full SDF
generated by the Mapper rather than the truncated SDF (TSDF)
in KinectFusion. We use CUDA to implement and paral-
lelize the tracking module to achieve real-time performance.
Although additional sensor data like RGB images, odome-
try, and laser scans are available to the robot, we only use
depth images from PrimeSense in our experiments.

8.5 Computational complexity

Since our approach can involve performing inference on ar-
bitrary factor graphs and incremental inference on their cor-
responding Bayes trees, the computational complexity de-
pends on the problem and the structure of the graph or tree
and how the tree changes over time. Considering the case
of the experiments in this paper where the graphs are chain-
like and measurement factors are unary, the complexity of
the batch step is O(T D2), where T is the number of time-
steps (or states) and D is the dimension of the system state.
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The time complexity O(T D2) comes from solving the block-
tridiagonal linear system with block size D×D.

In the online step, the time complexity of the incremental
update is O(V D2), where V is the total number of variables
(or states) in all the affected cliques of the Bayes tree starting
from the root of the tree. In the beginning since all states in
the Bayes tree are affected, V is the same as T and the time
complexity is equal to the batch step complexity. When the
robot is moving along the trajectory, V is much smaller, as
shown in Fig. 7.

The time complexity for STEAP discussed above only
applies to cases of chain-like graphs (as shown in Fig. 3)
that have a start-to-goal variable ordering. In the presence of
non-unary measurement factors (for example, higher-order
measurement factors like landmark observations) that con-
nect to states across greater time-intervals, or in the case of
loop-closures, the time complexity will be greater. In gen-
eral, the time complexity increases as the sparsity in the
graph decreases, and is also dependent on the variable or-
dering selected by the COLAMD heuristics.

9 Evaluation

We evaluate our framework with simulation and real-world
experiments.1 The simulation benchmark is performed on
two datasets: a planar 2-link mobile arm in several randomly
generated 2D environments as shown in Fig. 10, and a 18-
DOF PR2 robot in a simulated indoor environment as shown
in Fig. 11. The real-world experiments are performed on a
mobile manipulator, with an omni-drive base and a 6-DOF
Kinova JACO2 arm, in an indoor environment as shown in
Fig. 1.

In our experiments we compare our proposed approach,
simultaneous trajectory estimation and planning (STEAP),
against an open loop execution (OL). In OL the initial infer-
ence solves the GPMP2 planning problem and the planned
trajectory is executed without any estimation or replanning
until the final time-step or a collision. In our simulation ex-
periments, we also compared against simultaneous localiza-
tion and planning (SLAP) that uses the current measurement
factor in the graph, but updates only a truncated version of
the graph associated with the future states to replan. This
graph also uses the GP prior factors from STEAP.

9.1 Benchmark with a planar 2-link mobile arm

For this benchmark we use a simulated 2-link planar mo-
bile arm with base of size 1m× 0.7m and link length 0.6m
in an environment of size 30m×20m. The robot is equipped

1 A video of experiments is available at https://youtu.be/

lyayNKV1eAQ

Fig. 10: STEAP result on an example from the simulation
benchmark with a planar 2-link mobile arm. Ground-truth
(green), estimated past (red) and replanned future (blue) tra-
jectories are shown with the current robot pose between the
red and blue trajectories and the goal at the end of the blue
trajectory. Best viewed in color.

with a simulated 2D laser scanner for localization using ICP.
The environment is populated with 20 randomly generated
obstacles of size 1m× 1m. The graph consists of 30 states
from start to goal with 5 interpolated binary obstacle factors
between any two states. We compare OL, SLAP and STEAP

across different amounts of robot dynamics noise (ndyn), im-
plemented as uniform bounded additive noise (m/s) to the
robot velocity, and camera measurement noise (ncam), im-
plemented as additive Gaussian noise (m−1) when receiving
depth information from the camera on the robot. Each set-
ting is run with 40 distinct seeds (each seed yields a new en-
vironment) to account for stochasticity, which are kept the
same across all three scenarios. In each trial we record if the
trajectory successfully finishes without collision (success),
the distance from the goal (goal error) at the end of exe-
cution, and L2 norm of the ground-truth trajectory with the
estimated trajectory (estimation error).

The results for this benchmark are summarized in Table
2.A–2.E. The goal and estimation error are aggregates of
runs where success is true (the robot reached the goal with-
out colliding with any obstacles). As expected, OL exhibits a
low success rate that drops further with an increase in ndyn.
SLAP has lower success rates compared to OL; a possible
reason is the low precision trajectory estimation from SLAP

confuses the robot. Comparatively STEAP has a higher suc-
cess rate than SLAP and OL, and also follows the decreasing
trend with increasing ndyn.

The goal error in STEAP is much lower than SLAP and
OL, with the help from high precision trajectory estimation.
The trajectory estimation error is significantly smaller with
STEAP compared to SLAP and the difference between them
increases with increasing ncam. This can be attributed to si-
multaneously solving the trajectory estimation and planning
problems; the motion plan helps in providing a better esti-

https://youtu.be/lyayNKV1eAQ
https://youtu.be/lyayNKV1eAQ
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Table 2.A Success rate on planar 2-link mobile arm benchmark.

ncam 0.02 0.1
OL SLAP STEAP SLAP STEAP

ndyn

0.1 0.5250 0.1250 0.5750 0.0750 0.7000
0.2 0.3250 0.1250 0.6000 0.1000 0.4750
0.5 0.2500 0.0750 0.3750 0.0500 0.4500

Table 2.B Goal translational error (in m).

ncam 0.02 0.1
OL SLAP STEAP SLAP STEAP

ndyn

0.1 0.7463 0.7556 0.3413 0.7067 0.4377
0.2 0.9715 0.8012 0.4888 1.0793 0.5162
0.5 1.4179 1.2110 0.6872 1.1295 0.7345

Table 2.C Goal rotational error (in rad).

ncam 0.02 0.1
OL SLAP STEAP SLAP STEAP

ndyn

0.1 0.0805 0.1978 0.0269 0.0497 0.0379
0.2 0.0952 0.2344 0.0433 0.0847 0.0401
0.5 0.0952 0.2344 0.0433 0.0847 0.0401

Table 2.D Estimation translational error (in m).

ncam 0.02 0.1
SLAP STEAP SLAP STEAP

ndyn

0.1 0.3662 0.1598 0.9217 0.2213
0.2 0.3644 0.2183 0.8885 0.2242
0.5 0.3937 0.3065 1.0125 0.3309

Table 2.E Estimation rotational error (in rad).

ncam 0.02 0.1
SLAP STEAP SLAP STEAP

ndyn

0.1 0.0470 0.0183 0.1287 0.0266
0.2 0.0480 0.0280 0.1132 0.0297
0.5 0.0527 0.0450 0.1265 0.0468

mate of the robot’s trajectory and in turn a better estimate of
the trajectory helps in generating a better motion plan.

9.2 Benchmark with 18-DOF full-body PR2

We additionally evaluated our approach on a simulation dataset
in 3D, with a 18-DOF PR2 robot in an indoor setting. The
PR2 has two 7-DOF arms (without grippers), a 3-DOF mo-
bile base, 1-DOF linear actuator that moves the torso in the
vertical direction, and a 2D laser scanner on the robot base
(10cm above the ground level) used for localization. The en-
vironment consists of two cabinets, a desk and several ran-
dom obstacles so that the laser scanner receives non-trivial
readings when the robot is facing outwards. The benchmark
consists of a total of 6 tasks, each with a start and a goal
state, and the robot is tasked with reaching the goal states
from the start states. The environment and an example prob-
lem from the benchmark is shown in Fig. 11. We compare
OL, SLAP and STEAP across different ndyn and ncam settings,

Fig. 11: Workspace setup for PR2 full-body problems. An
example problem with start and end robot state, and planned
trajectory of the PR2 base is shown. As done in GPMP2, the
PR2 body is approximated with a set of spheres for collision
checking.

with a graph of 40 states from start to goal. Each setting is
run for 120 trials (6 tasks with 20 distinct seeds) and similar
metrics as the 2D benchmarks are recorded.

The results for this benchmark are summarized in Ta-
ble 3.A-3.F, which support the finding in the previous 2D
benchmark. We see that STEAP has higher success rates com-
pared to SLAP and OL. This is a result of the lower esti-
mation errors (compared to SLAP) and better quality plans
achieved through joint inference. STEAP has a significantly
lower estimation errors with larger ncam. The goal error in
SLAP and STEAP are smaller than OL since both are feedback
approaches that can reduce the error when approaching the
goal. We also observe that STEAP has a smaller performance
drops caused by a high value of both ndyn and ncam, than
SLAP and OL.

We also report timing results for this benchmark. On av-
erage STEAP takes about 17ms per time-step, which is sig-
nificantly faster than SLAP with an average of about 130ms
per time-step.

9.3 Experiments with a real robot

Real-world experiments were performed in an 8m× 6m in-
door environment. Various obstacles (desks, sofas and small
objects like boxes and cans) are placed in the environment,
to simulate domestic scenes. During the experiments, ground-
truth robot trajectories are recorded by an Optitrack motion
capture system. A photo of the robot traversing the environ-
ment and a map of the environment can be found in Fig. 1
and Fig. 9, respectively. Our implementation runs on a desk-
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Table 3.A Success rate on 18-DOF full-body PR2 benchmark.

ncam 0.1 0.5
OL SLAP STEAP SLAP STEAP

ndyn

0.02 0.3833 0.7500 0.8333 0.5417 0.6917
0.1 0.0750 0.3083 0.8583 0.0667 0.6250
0.5 0.0083 0.0500 0.3500 0.0083 0.3083

Table 3.B Goal translational error (in m).

ncam 0.1 0.5
OL SLAP STEAP SLAP STEAP

ndyn

0.02 0.2032 0.0798 0.0426 0.0970 0.0943
0.1 0.4197 0.1108 0.0440 0.1647 0.1024
0.5 2.8040 0.1357 0.0936 0.4100 0.1238

Table 3.C Goal rotational error (in rad).

ncam 0.1 0.5
OL SLAP STEAP SLAP STEAP

ndyn

0.02 0.1078 0.0396 0.0219 0.0587 0.0543
0.1 0.3206 0.0690 0.0261 0.0944 0.0644
0.5 0.5170 0.0803 0.0473 0.2780 0.0784

Table 3.D Estimation translational error (in m).

ncam 0.1 0.5
SLAP STEAP SLAP STEAP

ndyn

0.02 0.0807 0.0287 0.1487 0.0739
0.1 0.1777 0.0307 0.1749 0.0728
0.5 0.2100 0.0595 0.2550 0.0858

Table 3.E Estimation rotational error (in rad).

ncam 0.1 0.5
SLAP STEAP SLAP STEAP

ndyn

0.02 0.0415 0.0168 0.0689 0.0423
0.1 0.0906 0.0185 0.0790 0.0459
0.5 0.1007 0.0308 0.1310 0.0475

Table 3.F Average runtime (in s).

ncam 0.1 0.5
SLAP STEAP SLAP STEAP

ndyn

0.02 0.1181 0.0141 0.1273 0.0188
0.1 0.1377 0.0149 0.1353 0.0193
0.5 0.1474 0.0185 0.1438 0.0195

top computer equipped with Intel 4.0GHz quad-core CPU,
32GB memory and one NVIDIA Titan X GPU. Robot sen-
sor data is streamed to the desktop over WiFi, and STEAP
commands are streamed back to robot after processing.

We design 2 problems for performance evaluation. In
each problem the robot begins from a start configuration
and is tasked with reaching the goal configuration. For both
problems the graph consists of 50 states from start to goal
with 2 interpolated binary obstacle factors between any two
states. Fig. 12 shows a screenshot when the robot is run-
ning STEAP for problem 1. To evaluate the performance of
our STEAP implementation, we performed 10 runs for each
problem, in which 5 runs switch the start and goal configu-

Fig. 12: Visualization of STEAP results on one run of prob-
lem 1. The green line is the ground-truth trajectory as deter-
mined by the motion capture system, and green robot outline
shows the current pose of the Vector robot. The blue line is
the planned trajectory and the red line is the estimated tra-
jectory. The yellow axis is current raw pose estimate. The
ground plane is cut for visibility. Best viewed in color.

Table 4: Real-world experimental results

Problem 1 Problem 2
OL success rate 0/10 0/10

STEAP success rate 9/10 10/10
Goal translation error (cm) 14.20 5.19

Localization error (cm) 7.07 6.45
Trajectory estimation error (cm) 3.48 2.53

rations. We record the planned, estimated and ground-truth
trajectories and calculate the same performance criteria as
in simulation: success rate, final goal error, and trajectory
estimation error.

Table. 4 reports performance in these real-world exper-
iments. We first run one-time batch planning by GPMP2
and use an open loop controller to follow the planned tra-
jectory. Since the control command execution on the omni-
directional wheels is noisy, the robot base cannot follow
the planned trajectory well, so every run ends with a col-
lision. With the state estimation and replanning provided by
STEAP, the robot can follow planned trajectories better, and
compensate for perturbations. With STEAP the robot can
achieve a 95% overall success rate for the given tasks, with
a final translation error of about 14.2cm in problem 1, and
5.19cm in problem 2. This goal error is due to the finite-
horizon trajectory setup that we use. Since if the robot over-
shoots when near the end of the trajectory, it may not have
enough time steps left to recover. The goal error can be re-
duced with a receding-horizon formulation of our problem.

In addition to improving planning results, STEAP helps
with trajectory estimation. We show the raw localization er-
ror in Table. 4. Due to the noisy depth measurements, the lo-
calization module provides poor estimates of the robot pose.
Sometimes the localization module additionally fails due to
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the scene being out of sensor range (for example when the
robot is too close to obstacles). With STEAP, we can reduce
the estimation error by about 50-60% as shown in Table. 4.
In the video of experiments,1 one can see that although the
raw localization positions have significant jumps between
each measurement, the estimation results in STEAP are sta-
bilized given previous sensor information and the planned
trajectory.

To evaluate the efficiency of our implementation, we time
the localization and STEAP modules separately. Timing re-
sults show that, in real-world experiments, localization and
STEAP modules have average runtimes of 19.3ms and 76.0ms
respectively, and maximum runtimes of 30.3ms and 149ms
respectively, indicating that our localization implementation
can easily process the depth image stream at 30Hz, and run
STEAP at ∼ 10Hz.

10 Limitations and Future Work

The primary limitation of our current work is that it is only
applicable in known, static environments. We use an exist-
ing map of the environment and precompute a signed dis-
tance field for collision checking. In dynamic environments,
the map and the signed distance field would need to be con-
stantly updated, which can be a major computational bot-
tle neck, especially in large environments. Using techniques
like incremental mapping (Yan et al 2017), incremental signed
distance fields (Oleynikova et al 2017), and dynamic track-
ing (Schmidt et al 2014), we can extend our method to per-
form SLAM and planning simultaneously online and handle
dynamic environments.

Our current implementation is limited to holonomic sys-
tems, like the omni-directional mobile base we use in our ex-
periments. It does not support nonholonomic and inequality
constraints. But, they can be incorporated as soft constraints
with small covariances, for example, the configuration and
velocity limit factors (Mukadam et al 2017c). A sequential
quadratic programming type procedure would have to be set
up to handle hard constraints.

Our approach is a local trajectory optimization method
and is, therefore, prone to local minima. In the context of es-
timation, trajectory optimization rarely suffers from bad lo-
cal minimas, since obtaining reasonable initial values is not
hard during estimation (e.g. from odometry). In the context
of planning, trajectory optimization suffers from bad local
minimas (ones that are in collision) primarily in extremely
cluttered or maze type environments due to the nature of the
optimization methods used. Readers are encouraged to refer
to Dong et al (2016) and Mukadam et al (2017c) for some
quantitative evaluations on several commonly used trajec-
tory optimization techniques. In case of batch optimization
i.e. the first inference step, several ideas like random initial-
izations and graph-based initializations (Huang et al 2017)

exist to improve results. However, there are no known meth-
ods to address this problem during incremental inference
using the Bayes tree, except by re-solving a new batch op-
timization problem, which will be computationally expen-
sive. Developing new incremental algorithms that are better
able to contend with local minima is an interesting research
direction.

Our approach is capable of fusing information from mul-
tiple sensors in an asynchronous fashion using GP interpo-
lation (Yan et al 2017), we are interested in exploring this
capability more fully. Finally, as discussed in the results sec-
tion, a receding horizon formulation of STEAP would help
reduce goal-errors and better support navigation with explo-
ration. We leave this as future work.

11 Conclusion

We formulate the problem of simultaneous trajectory es-
timation and planning (STEAP) as probabilistic inference.
By representing the prior distribution of a continuous-time
trajectory and likelihood function of costs and observations
with factor graphs, we can efficiently perform inference to
compute the posterior distribution of the trajectory. We solve
STEAP in an online setting to simultaneously estimate and
smooth the trajectory history as well as replan for the fu-
ture trajectory as new information is encountered. This is
made possible by performing efficient incremental inference
to update the previous solution. We conducted experiments
in simulation and on a real mobile manipulator and showed
that our framework is able to perform in real-time and ro-
bustly handle the stochasticity associated with execution.
Our results demonstrate that this framework is suitable for
online applications with high-degree-of-freedom systems in
known, static real-world environments.
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