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Abstract

This thesis presents a framework for optimizing both the shape and the motion of a planar
rigid end-effector to satisfy a desired manipulation task. We frame this design problem as a
nonlinear optimization program, where shape and motion are decision variables represented
as splines. The task is represented as a series of constraints, along with a fitness metric,
which force the solution to be compatible with the dynamics of frictional hard contact while
satisfying the task.

We illustrate the approach with the example problem of moving a disk along a desired
path or trajectory, and we verify it by applying it to three classical design problems: the
rolling brachistochrone, the design of teeth of involute gears, and the pitch curve of rolling
cams. We conclude with a case study involving the optimization and real implementation
of the shape and motion of a dynamic throwing arm.
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Chapter 1

Introduction

Jai alai players use a cesta to catch and throw a ball at high speeds and with high accuracy

(Figure 1-1). The cesta is an evocative example of the interplay between shape and mo-

tion. Their coordination allows players to transfer a large amount of energy to a ball while

controlling its trajectory.

One might see jai alai as an interesting but contrived example of dynamic manipulation.

An example where both shape and motion play key roles in determining the interaction be-

tween end-effector and object. On the contrary, in many solutions for robotic manipulation

and locomotion, contact is designed and planned for pointy feet and finger tips. In these

solutions, shape is usually of little relevance, and motion planning alone is tasked with

controlling interaction. One might choose to see these solutions as equally contrived.

This thesis starts from the assumption that shape and motion are design freedoms, and

studies the problem of simultaneously optimizing them for planar manipulation tasks. The

main contribution is a general framework to design shapes and to plan motions that work

together to accomplish kinematic or dynamic tasks such as reaching a goal state, follow a

path or a trajectory, or optimize a fitness function. A significant part of the contribution is

in the representations for motion, shape, and tasks, that enable the optimization. The long

term goal of our work is a better understanding, and the development of tools to effectively

use shape and actuation in manipulation.
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Figure 1-1: Jai alai player throwing a ball. The cesta allows players to transfer a large
amount of energy to the ball while controlling its rolling trajectory.

The proposed approach to design shape and motion, and the structure of this thesis, is

as follows:

- The problem has the form of a nonlinear program where shape and motion are

decision variables. The dynamics-kinematics of planar contact are represented as

constraints, similar to previous works on trajectory optimization through contact

[13, 15].

- The representation of shape, motion, interaction, and task, is in terms of splines

and dynamic-kinematic constraints at collocation points. Chapter 3 describes the

system, Chapter 4 the interaction and task constraints, and Chapter 5 their spline

parametrization.

- We illustrate the approach in Chapter 6 with the toy example task of moving a disk

along a desired path or trajectory. We show the differences between optimizing either
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the manipulator's shape, or its trajectory, or both. A key observation is that often both

shape and motion can be used to satisfy the same task, and that there is an inherent

nullspace in their combined design space.

- We verify the approach in Chapter 7 by formulating classical problems with known

solutions: gear tooth profiles, rolling cams of variable transmission, and the rolling

brachistochrone. The optimization approach yields correct solutions, and offers flex-

ibility in studying variations.

- We implement the problem of planar dynamic throwing in Chapter 8. In the opti-

mized solutions, the shape and throwing trajectory cooperate with gravity to max-

imize reach and respect the frictional limits of the interaction between a throwing

palm and a ball.

We finish with a discussion of the main challenges involved in simultaneously optimiz-

ing shape and motion and promising directions for future work.

It should be noted that the body of this thesis was submitted as a conference paper to

Robotics: Science and Systems. At the time of writing, the paper has been accepted and

will be presented this July.
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Chapter 2

Related Work

Shape optimization for contact The field of shape optimization for contact interactions is

a broad subset of mechanism design for automation. Examples include the design of part

feeders, traps, fences, finger shapes, gear teeth, and cams. Caine [3] develops a framework

and set of computational tools for designing the shapes of features in a vibratory bowl

feeder. Similarly, Brokowski et al. [2] optimize the shape of a curved fence used to reorient

parts traveling along a conveyer belt. Rodriguez and Mason [20, 21, 19] build a framework

for computing end effector shapes for 1 DOF actuators and desired contact interactions

based on sets of contact normals. Gear design is a relatively large field with extensive

recent work [5, 11, 10, 24, 25] on methods to design shapes and pitch curves of circular

and non-circular gears.

Trajectory optimization through contact The nonprehensile manipulation and locomo-

tion communities have been especially interested in motion optimization involving fric-

tional contact. Lynch and Mason. [12] introduced a control system for a one joint non-

prehensile manipulator, enabling it to preform various dynamic tasks such as throwing and

catching with a flat palm/arm. Ryu et al. [22] and Lippiello et al. [9] both create control

frameworks for stabilizing and driving planar rolling systems. Becker and Bretl [1] design

a set of control inputs for a sphere rolling on a table such that the cumulative rotation of the

sphere is invariant with respect to its size- a unique example of motion planning that takes

shape uncertainty into account. Posa et al. [15] propose one of the very few frameworks for

17



trajectory optimization for systems that undergo intermittent frictional interaction based on

a complementarity formulation for contact resolution.

Simultaneous shape and motion optimization Despite the abundance of work on either

shape or motion optimization for contact interactions, there is relatively little work that

approach both simultaneously. Reist and D'Andrea. [16, 17] optimize the motion and con-

cavity of a paddle juggler capable of stably bouncing a ball without feedback. The approach

is limited to the particular application, and the contact manipulation is limited to periodic

instantaneous impacts. Chen [4] optimizes both the shape and control input for an un-

deractuated throwing arm. Lynch [13] explores the design space (shape and motion) of a

contact juggler for the task of butterfly juggling in a planar rolling system. This system is

the closest work to this thesis, and serves as primary inspiration for the proposed approach.

18



Chapter 3

A Planar Manipulation System

This thesis focuses on a type of planar contact manipulation system consisting of two rigid

bodies: a hand H and an object B, which share a single contact point, as illustrated in

Figure 3-1. This chapter describes the notation and coordinates that we will use to describe

their shapes, motions, and interactions. Throughout the thesis we will use subscripts h and

b referring to hand and object respectively.

In the thesis we will make use of the following notation:

- (Ah, Oh) = (Ph,, Phy, Oh) and (p' , Ob) = (Pb ,, Ob) describe the planar poses of

hand and object.

- Ch(s), 5 (s) : [0, 1] -+ R2 parametrize the shape profiles of hand and object in their

respective frames.

- Sh and sb are the values of the parameter s at contact, thus 6h(sh) and b(Sb) are the

contact point in the hand and object reference frames.

- iJ(s) = (s) is the tangent vector to a shape at point 6(s) in the hand and object

reference frames.

- h(s) = R(') - is the normalized outward facing surface normal to a shape at

point 6(s) in the hand and object reference frames.

Note that we will make frequent use of the rotation matrix about axis i by 0 radians, noted

by R(O).

19
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x

-. B
Oh Ch C

nb

Ph Ab

W X

Figure 3-1: Planar manipulation system consisting of a hand H manipulating an object B.
We make use of an inertial reference frame W, and moving frames attached to the hand
and ball. Their configurations are given by their position vectors and orientations (A, Oh)
and (P, Ob). Hand and object interact at contact point located at 'h or ' and with normals

nh and ^ b, all defined in the hand and object reference frames.

The motion of the type of planar system we consider in this thesis is then parametrized

by the time-dependent functions:

Ph(t), Oh(t) i b(t), Ob(t)

its shape is parametrized by the functions:

(S), 'b(S)

and its interaction by the evolution of the contact point:

Ch (Sh), 5b(Sb)

which evolve in time with the parameters sh(t), Sb(t).

20



Note that the variables describing the system can be split into two categories: design

variables 5 h, 0 h, Ch, c which describe parts of the system that can be directly controlled,

i.e., the shape and motion of the hand and the shape of the ball; and descriptor variables

Pb, Ob, Sh, Sb which describe underactuated degrees of freedom determined by the evolution

of the design variables, i.e, the motion of the ball and the evolution of the contact point.

The system is also affected by the following constants, which we assume to be known:

the mass of the object m, its moment of inertia I, gravity g, and the coefficient of friction

between hand and object y.
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Chapter 4

A Planar Manipulation Task

Figure 4-1: Example of a simple planar manipulation task. Under gravity, the hand (white)
moves an object (grey ball) along a trajectory. Note that the orientation of the object is
linked to its displacement along the path.

We study two types of planar manipulation tasks framed as constrained satisfaction/optimization

problems:

1. Produce a desired motion of the object, in the form of either a goal state, a path, or a

trajectory to follow, e.g. move along a curve, as shown in Figure 4-1.

2. Optimize a behavior of the object defined by a fitness function, e.g., throw fast.

23



To simplify interactions, and for the sake of optimization complexity, we restrict the

search for solutions to where hand and object interact with sticking or rolling contact, but

do not slip with respect to each other.

The task then takes the form of a nonlinear optimization program with shape and tra-

jectory as decision variables, subject to dynamic, kinematic, and task constraints. A big

part of the work, which we describe in the two following sections, is in finding a tractable

way to formulate these constraints.

4.1 Kinematic and Dynamic Constraints

Before tailoring the system to any particular task, we need to make sure that the interactions

it produces adhere to the laws of physics. To do so, we impose a series of kinematic

and dynamic constraints that guarantee that contact is maintained with no penetration, that

frictional forces are such that objects do not slide with respect to each other, and that the

acceleration of the system is along the resultant of forces.

The expression of the kinematics of contact in the form of constraints was already

described by Montana [14]. The algebraic representation we use in this thesis is similar to

the one proposed by Lynch et al. [13] to describe contact juggling. For their expression,

we will make use of the notation introduced in Chapter 3 to describe the shape and motion

of the system. For simplicity of notation, we suppress the dependencies of 5', - and their

derivatives on sh and Sb respectively.

Contact Constraint The contact points in the hand and object must be the coincident in

the world reference frame:

Ph + RO) -h=pb+R(Ob) - (4.1)

Tangency Constraint At the point of contact, the vectors tangent to the hand and object

must be opposing each other (note that Z measures the orientation angle of a vector):

Oh + Z'h = Ob + ZV' - 7r (mod 27r) (4.2)

24



Rolling Constraint The speed of the contact point in the hand and object must be opposite:

Wh h = -- S b (4.3)

Inertia Constraint The angular acceleration of the object must be consistent with the sum

of torques (T r x f = Ia):

( R(GO) - C'b) X m M , N (4.4)

Friction Cone Constraint The contact force exerted by the hand on the object must be

inside the friction cone. If f = R(-Oh)mnAb - 4) is the contact force applied from the

hand to the object, in the hand reference frame, then:

Vh A < Pfih -f (4.5)

We refer to the first three constraints as kinematic constraints which we impose to all prob-

lems in this thesis, and the last two as dynamic constraints which we impose only when

appropriate.

These constraints are only a local approximation to the physics of interaction. They

do not explicitly prevent, for example, the hand and object from intersecting at some point

other than the studied contact point due to their global shapes, or due to their local curva-

tures. The global problem, while important and interesting, is significantly more difficult

to formalize. The local constraints have proven useful and sufficient for the problems ana-

lyzed in the thesis.

4.2 Manipulation Task Constraints

The previous constraints narrow the set of possible manipulation systems to those that are

physically sound. Now we explore additional constraints and the use of fitness functions to

represent manipulation tasks.

Decision variable constraints It is common to reduce the dimension of the problem by

25



directly restricting the range of acceptable values of decision variables a.

Ce = k (4.6)

k i < a k 2  (4.7)

Common examples are to constrain the hand to rotate about a pivot Ph (0, 0), or to fix the

shape of the object, for example to be a circumference of radius r, c (s) (r cos(s), r sin(s)).

Initial and endpoint constraints We often want to constrain the hand or object to start

from or reach a configuration:

h (tokf) k1 and/or Oh(to f) (4.8)

b(to tf) k 2 and/or Ob(tO f 2 (4.9)

to start from rest:

Pb(to) = 0 and Ob(to) = sb(to) 0 (4.10)

Ph(to) = 0 and Oh(to) - (to) 0 (4.11)

or to (additionally) start from a static equilibrium:

A(to) = 0 and Ob(to) - s(to) = 0 (4.12)

p(to) = 0 and Oh(tO) = s'to) = 0 (4.13)

Implicit motion constraints In some cases, constraints only implicitly affect the decision

variables. The most frequent use is to constrain the object or hand to move along a path,

rather than a trajectory. These are formulated as general implicit non-linear constraints:

A Ph,-0 ) = 0 (4.14)

Regularization constraints Occasionally, we might want to incorporate extra constraints

to guide the solver to find or avoid a particular type of solution. The two most frequently
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used regularization constraints are fixing the x component of the hand shape to a given

function:

Chx (s) = k(s) (4.15)

and constraining each point of the hand shape to a line that varies with s:

ki(s)chx(s) + k2(s)ch,(s) = k3(s) (4.16)

The second being a more general version of the first. Both are effective at preventing hand

shapes that self-intersect and at preventing the solver from diverging.

Fitness metric Often, we want to optimize a behavior with respect to a performance metric,

rather than satisfy a particular constraint. These become part of the cost function of the

optimization problem. Two performance metrics we will study in this thesis are throwing

distance and travel time.
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Chapter 5

Discretization

The shape and motion of the system are functions of space and time. The formulation in

Chapter 4 is continuous, but for optimization purposes, we use a discrete representation.

We want a representation that supports smoothness C2 and that is sparse, i.e., each decision

variable has a limited domain of influence both in space and time.

To do so, we describe shape and motion as linear combinations of shifted basis func-

tions, as illustrated in Figure 5-1. Let 4D(x) be any given decision variable, dependent on

x, which could be either time t or space s. Then we construct:

N

Za(x) = iE (L(x) - i) (5.1)

where:

- E is a cubic B-spline basis function with uniformly spaced knot points, which is

twice differentiable (smoothness) and only non-zero in the interval (-2, 2) (sparsity).

- O ... aN are coefficients that weight the basis functions. Note that these become the

discrete decision variables that discretize the continuous decision variable D.

- L(-) is a factor that non-dimensionalizes x as appropriate. For shape variables, s is

already dimensionless, so L(s) = s. For motion variables, we transform time as

L(t) = $, where T is a global time constant that determines the duration of motion

( is a decision variable in the optimization program, allowing trajectories of varying
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length), and -y is a normalizing constant that ensures each component of the trajectory

has the same nominal duration regardless of the number of basis functions used in its

representation (which allows varying resolution).

The use, of basis functions allows us to compute in closed form the derivatives of the

decision variables, which are necessary for many of the constraints described in Chapter 4:

N

>(x) = aoE (L(x) - i) I(x) (5.2)

N

<>(x) = akE (L(x) - i) L(x)2  (5.3)
i=1

where we used that L(x) = 0.

Ideally, the constraints of motion would hold true at all times. However, for resolution

purposes, we impose the motion constraints at M + 1 evenly distributed points along the

trajectory, playing the role of collocation points in trajectory optimization [8]. In particular,

each of the continuous motion constraints in a problem G(t, ei, .. , aN, -) is imposed as

M 1 constraints in the optimization program G (tj = yr, ... , aN, ) forj = 0... M.

We extend this discretization to a periodic domain to represent closed shapes and periodic

motions.

It should be noted that our specific implementation of collocation drops any of the

numerical convergence guarantees that are normally provided by collocation methods. We

are willing to forego these guarantees in favor of ease of implementation. However, we

plan to explore different collocation methods in the future.
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Collocation points
to ti t2  t3  t4  t5  t6  t7

I I I I I I I

a3 5

-1 0 1 2 3 4 5 6 7
Control points

Figure 5-1: Spline construction of the continuous decision variable <b(x) with the dis-
cretized parameters a, ... aN, with N = 5, and with M + 1 = 8 collocation points where
we will impose all constraints. Note that the domain of each basis is (-2, 2) which gives
sparsity to the spline representation.
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Chapter 6

Illustrative Toy Problem

In this chapter we describe the method to optimize shape and motion with the simple prob-

lem of moving a ball under gravity along a desired path Pb, with a rotational paddle.

We start by exploring these two problems: (Prob. 1) For a given fixed hand motion,

is there a hand shape that forces the ball to travel along the desired path? and (Prob. 2)

For a given fixed hand shape, is there a hand motion that forces the ball to travel along the

desired path?

We can formulate both problems as a shape-motion pair that satisfies the following

constraints:

- Kinematic: contact, tangency and rolling.

- Dynamic: inertia and friction.

- Fixed decision variables:

- The object is a ball c-(s) = (l cos(s), l sin(s)).

- The hand pivots about the origin: 1h(t) 0.

- (Prob. 1) Fixed hand motion Oh (t) = k - t, for example to constant velocity.

- (Prob. 2) Fixed hand shape -'(s), for example, to a straight line.

- Task: The ball moves along a desired path given as a level set G(15(t)) = 0. In this

example we use a parabola.
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Hand orientation
0

-0.1 -
()
C
-a -0.2-

" -0.3 -

-0.4 -

-0.5
0 0.1 0.2 0.3 0.4 0.5 0.6

time (seconds)

Figure 6-1: Toy problem of moving a ball under gravity along a given path, drawn with a
dotted line. There are infinite solutions in the shape-motion nullspace. Here we show the
solution when the hand is forced to moved along a fixed trajectory, e.g., constant angular
velocity, and only the hand shape is a design freedom.

Figure 6-1 and Figure 6-2 show the outcome of the optimization. Both solutions satisfy

all constraints and succeed in transporting the ball along the desired path, while rolling

under the effect of gravity on the moving hand.

This is an illustrative example of the nullspace that exists in the shape-motion design

space. It is ultimately the combination of both that produces the desired object manipula-

tion, but in many cases we can reproduce the effect of a motion in a shape, as well as the

effect of a shape in a motion.
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Hand orientation
0

-0.1
C

*.--0.2-

-0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

time (seconds)

Figure 6-2: Solution when the hand shape is fixed, e.g., a straight line, and only the hand
trajectory is a design freedom. Note that the ball follows exactly the same path as in the
previous case, though at a different velocity.
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Note in the previous examples that the ball traverses the path at different speeds.

Freeing both shape and motion in the optimization problem, and exploiting their nullspace,

give us enough design freedom to control the trajectory ' (t) along which the ball will

move, not just its path.

Hand orientation

0.2

U,
C:
CZ 0

CU

S-0.2

-0.4 -

0 0.1 0.2 0.3 0.4 0.5 0.6
time (seconds)

Figure 6-3: Solution when both hand shape and trajectories are design freedoms. Note that
in this case we can impose the trajectory of the ball, not just its path, illustrated by the fact
that the ball moves at a constant speed along the curved path.

The problem has a very similar formulation to the previous one, but we instead replace

the task constraint with a stricter constraint on the ball motion ' (t) = p (t), and remove

the constraints on the shape or motion of the hand. The solution, illustrated in Figure 6-3,

succeeds in moving the ball along the desired path, but now, for example, with constant

speed.
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Chapter 7

Classical Problems

In this chapter, we formulate three classical problems with known solutions to validate the

proposed optimization approach.

7.1 Rolling Brachistochrone

A brachistochrone curve is the path that allows an object to travel from A to B in the short-

est amount of time, when starting from rest at A and accelerated by gravity '. A classical

result in mechanics is that when the object is a frictionless bead, the brachistochrone is

a section of a cycloid [23]. Rodgers [18] showed that in the case of a rolling disk the

brachistochrone is also a cycloid.

We represent the problem of the rolling brachistochrone with the proposed framework,

where the path is a non-moving hand and the object is a disk, whose rolling trajectory

down the hand ' (t) becomes the brachistochrone when it achieves minimum travel time.

We impose the following constraints:

- Kinematic: contact, tangency and rolling.

- Dynamic: inertia. Since the disk rolls without slipping (infinite friction), we omit

the friction cone constraint.

- Fixed decision variables:
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- The object is a disk ' (s) = (I cos(s), 1 sin(s)).

- The hand is static (t) = 6 and 0(t) = 0.

- Initial and endpoint constraints:

- The disk starts at rest:

bP(to) = 0, Ob(tO) - Sb(tO) = 0.

- The disk starts at ) 5 (to) = A.

- The disk ends at pb(tf) = B.

- Task: The duration of the trajectory is T T.

A

B

Figure 7-1: Brachistochrone for a rolling cylinder. The analytical solution of the trajectory
of the center of the cylinder converges (dotted line) to a cycloid (continuous line), when
reducing the time to traverse from A to B.

We can formulate the problem by adding a cost on T to the objective function. From

our experience, this is subject to local minima and very sensitive when approaching the

real minimum time. In practice, we make the convergence more robust by stepping on T

outside of the optimizer. The process starts with T equal to the time it takes for the roller

to traverse a straight line from A to B, and gradually ask the program to find paths with

smaller and smaller values of T until a solution cannot be found. Figure 7-1 shows the

sequence of solutions converging to a cycloid.
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7.2 Involute Gears

Gear design is a classic shape design problem. A pair of meshing circular gears roll in

contact to prevent frictional wear, and have constant gear ratio. The fundamental law of

gearing [7] states that these two properties are equivalent to constraining the line of action

to pass through the pitch point at all times. Figure 7-2 illustrates these concepts.

Centei

Pitc fi

line

nircle

Tooth profile

Line of action

Pressure angle

Figure 7-2: Anatomy of a gear. The interaction between gears is largely determined by
their tooth profile. The center line is the line connecting the two rotation centers, the
line of action is orthogonal to the contact tangent between the two gears, hence is the
direction along which force is transferred from one gear to another. The pressure angle,
complementary to the angle between the line of action and the center line, is key in the
design of gears.
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Involute gears, i.e., gears with teeth shaped as involute curves, are a popular solution

that satisfy the above properties. One unique (and useful) property of the meshing between

involute gears is that the line of action is constant throughout contact. As a consequence, the

pressure angle a, which determines the amount of power that can be transmitted through

the gear train, is constant throughout the meshing.

We now formulate the problem of finding gear shapes that satisfy the above properties

with the proposed optimization approach. More concretely: for a given center distance

between gears 1, gear ratio r, and pressure angle a, find gear teeth that mesh adequately.

We will indeed recover involute gears. In this case both hand and object are a pair of

meshing gear teeth, and we impose the following constraints:

- Kinematic: contact, tangency and rolling.

- Fixed decision variables:

- The driving gear rotates about the origin )h(t) -- 0.

- The driven gear rotates about the point ps(t) = (1, 0).

- Task:

- Constant gear ratio r. We achieve this by fixing the trajectory of the gears

6h(t) = wt, Ob(t) = -rwt.

- Constant pressure angle a. That is:

Oh + ZVh(Sh) = a + 7r (mod 27r)

Note that in this case we do not impose dynamic constraints, since the meshing between

gears can be seen as a purely kinematic/geometric problem. Another distinction from other

problems, is that in this case we are looking for both the shape of hand and object (both

gears).

Figure 7-3 shows the obtained shapes corresponding to the section of a single geartooth

for pressure angles a = (.5, .6, .7, .8, .9) - E and gear ratio r = 1.5. These curves can

then be assembled into entire gear profiles. The resulting profiles match exactly with the

expected analytical result corresponding to involute gears, also depicted in Figure 7-3.
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-- Center line
Line of action

2 - Tooth shape (computed)
- - - Involute (theory)

1 0 @Pitch point
0 Gear center
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-2
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Figure 7-3: Gear tooth profiles obtained for five different pressure angles (t. The figure
shows the corresponding line of action for each desired pressure angle (orthogonal to the
gear tooth profile at the pinch point) and the recovered gear tooth profiles. These corre-
spond very accurately to involute curves, known to provide constant pressure angle.

7.3 Pitch Curve of non-Circular Gears

Every planar gear is characterized by a pitch curve, an imaginary smooth curve that defines

its perimeter. The pitch curves of two meshing gears are in rolling contact as the gears

rotate. For a circular gear, the pitch curve is a circle.

A classic problem in noncircular gear design is that of finding a pair of pitch curves

R1 (01), R2 (62) for meshing gears with a given transfer function h(0 1) = and center

distance 1. The typical approach [24] is to limit the problem to pitch lines that contact

along the center line, in which case:

R1 (61) + R 2 (02 (01))= 1, h(01) =R,(1)
R 2(02(01))

due to contact and rolling constraints. The solution to these equations is then:

Lh(01) L
R1 (01) = R 2(02(01)) =

I + h(01)' I + h(01)
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Alternatively, we formulate the problem with the proposed framework, and, if desired,

remove the above limitation. In this case, the hand and object shapes are the pitch curves.

If we want to design a pair of pitch curves with transfer function h(.), the solution should

satisfy:

- Kinematic: contact, tangency and rolling.

- Fixed decision variables:

- The driving gear rotates about the origin Ph(t) .=

- The driven gear rotates about the point 'A(t) = (1, 0).

- The orientations of both gears are Oh(t) = wt and Ob(t) = -H(wt), where

H'(0) = h(0).

- Periodic boundary constraints: We impose that the contact point resets after a full

rotation of the gear sh(0) sh(tf)mod Nh and sb( 0 ) = sb(tf)mod Nb.

Figure 7-4 shows an example with transfer function h(6) = 1 + ' cos(O) (the same

as an example in [10]). The resulting pitch curves, seen in Figure 7-5, align closely with

the analytical result.
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Figure 7-4: A desired transmission profile and transmission ratio h(01) =0
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F

Figure 7-5: The pair of computed pitch curves that satisfy the transmission profile/ratio
given in Figure 7-4.
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Chapter 8

Dynamic Throwing

Inspired by the jai alai cesta in Figure 1-1, we set to design and implement a planar IDOF

thrower. Optimal throwing, in the context of a rotating paddle, requires an agreement

between shape and trajectory. To do so, we look for a combination of shape and throw

trajectory that maximizes the distance travelled by the ball before hitting the ground. To

avoid degenerate solutions, we impose the following ad-hoc constraints: 1) The angular

acceleration of the hand is bounded by d, 2) the ball starts at rest at a given location A, 3)

the ball is released within radius I of the origin, and 4) we constrain to rolling interactions.

We define a problem that optimizes the distance the ball travels before hitting the ground

with the following constraints:

- Kinematic: contact, tangency and rolling.

- Dynamic: inertia and friction.

" Fixed decision variables:

- The object is a ball c-(s) = (1 cos(s), l sin(s)).

- The hand pivots about the origin: 0h(t) 0.

- Bounded angular acceleration: IOh(t) a.

- Initial and endpoint constraints:

- The system starts at static equilibrium as in (4.10)-(4.13).
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- The ball starts at pA(to) A.

- The ball leaves the hand within a radius 1A (tf)I = I.

Overhand throw: The result, as seen in Figure 8-1 is a hand shape that is concave up

near the center, and concave down near the tip.

Underhand throw: The resulting shape, seen in Figure 8-3, is concave down near the center,

and concave up near the tip.

Experiments The experimental setup consists of a motor attached to a rigid base. The

computed hand shapes for underhand and overhand throwing are fused into a two-ended

lasercut hand profile. The motor controller (Galil DMC 4020) has position/velocity track-

ing functionality, allowing the system to execute the computed trajectories. The resulting

motion was captured with a high speed camera. We also use a Vicon motion tracking

system to measure Pb(t). It should be noted that there is no feedback and the initial posi-

tions were set manually. The optimization and experimental results are similar as seen in

Figure 8-1 and Figure 8-3.
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Figure 8-1: The optimal overhand throw obtained is composed of two phases: a first gentle
inclination where gravity accelerates the ball, followed by a fast upward stroke. The stream
of pictures shows a real throw.
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Figure 8-2: The optimized overhand throw trajectory overlaid with 29 throws from the
experimental setup.
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Figure 8-3: The optimal underhand throw we
gentle inclination where gravity accelerates the
stream of pictures shows a real throw.

obtain is composed of two phases: a first
ball, followed by a fast upward stroke. The
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Figure 8-4: The optimized overhand throw trajectory overlaid with 19 throws from the
experimental setup.
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Chapter 9

Discussion

Solver Our implementation uses SNOPT [6] for solving the presented nonlinear programs.

Multiple contact modes This work assumes rolling/sticking contact, and does not cur-

rently permit other contact modes (sliding, impact etc.). This is a imitation we plan to

address in the future by exploring complementarity formulations.

Fitness objective vs. constraint satisfaction Posing some design objectives (i.e. travel

time) as an optimization cost often results in local minima. We fix this by instead imposing

the design objective as a constraint that iteratively increases or decreases. In the present

implementation, this requires human supervision to determine the sequence of constraint

values.

Optimizing for stability In the future, we plan to use our approach to optimize shape and

motion for either open loop stability or controllability. For stability, one possibility is to

use the fitness objective:

F(a) = max A(t)
tE[O,tf]

where A(t) is the maximal Lyapunov exponent of the linearized system at time t.

Problem precision and solution sensitivity We use intuition and trial and error to deter-

mine the number of control points and collocation points, which is not satisfying. Some

regions of the solution require higher resolutions than others, and high resolution discretiza-

tions require more accurate initial guesses for solution convergence. The solution is also
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sensitive to the number of collocation and control points, the relative scaling of costs vs.

constraints, and the initial guess. A potential solution is to use multiscale optimization

techniques that automatically increase resolution where necessary.

Shape regularization We need shape regularization for two reasons. First, the shape func-

tion has many extra degrees of freedom. For instance, 'h(s) and ch(f(s)) describe the

same contour for all monotonically increasing functions f. This could be resolved if s

corresponded to arc-length, however this is difficult to implement in practice. Without

regularization, the control points representing shape tend to spread out unevenly, result-

ing in poor solutions. Second, any sufficiently general representation of shape is capable

of self-intersections. Our formulation, which relies on local constraints, cannot prevent

self-intersections, which are a global feature.

Though the regularization constraints shown in (4.15) and (4.16) are effective at ad-

dressing these issues, they require human supervision. We plan to explore alternative shape

representations that reduce dimensionality, and to develop heuristics for finding more nat-

ural regularization constraints of a given task.

9.1 Contact Juggling Robot: Progress and Future Work

We have built a contact juggling robot, further discussed in Appendix A, to validate the

results generated by the shape and motion optimization. So far, our system can perform

two types of tasks:

- Execute an open-loop trajectory (Figure A-6).

- Balance the ball at a specific point (Figure A-7).

Executing open-loop trajectories is done using the motor controller's PVT mode, which

is described in Section A.2. Balancing the ball is done by applying an LQR controller that is

derived from the system model. The hand/ball positions/velocities measured by the motion

capture system are used as feedback. The next step is to close the loop during the execution

of a trajectory, which should stabilize the trajectory. We plan to use a TVLQR controller to

do this.
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Appendix A

Experimental Setup

A.1 Overview

We have built a contact juggling robot to validate the results generated by the shape and

motion optimization. The robot consists of a single motor fixed to a base, to which the

hand shape profiles are attached. A motor controller drives the motor, allowing the robot

to execute the desired trajectories. We use a motion capture system to measure the position

and velocity of the ball, as well as the orientation and angular velocity of the hand. This

data is used to validate the optimization results. We use MATLAB as the central environ-

ment to manage all of these operations: it receives the data from the motion capture system,

computes the desired trajectories, and sends corresponding motion commands to the motor

controller. Currently, trajectories are executed without feedback, and are thus sensitive to

initial conditions and perturbations. In the future, we plan to close the loop using feedback

from the motion capture system, stabilizing the trajectories. Figure A-1 details the infor-

mation flow between the individual components of the system. Figure A-2 is a picture of

the setup.
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Computer Desired Output

Torque Current
DesiredMor

Controller MotorMotor
Trajectory Controller

Motor Encoder Signal
Ball/Hand Position/Velocity Output
Position iAcceleration

Tracker

Camera +----------.Hand/Ball

Figure A-1: System Diagram

Figure A-2: A picture of the experimental setup. The hand, control box, and motion capture
cameras can all be seen.

A.2 The Motor Controller

Our motor controller is a Galil 4020. The motor controller serves two key functions. First,

it is able to drive the motor to desired positions, velocities, and (with some difficulty) accel-

erations. Second, it converts the encoder signal provided by the motor to a readable pair of

numbers corresponding to the absolute orientation of the motor shaft (i.e. the hand orienta-
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tion) and its angular velocity. Since the motion capture system also provides an estimate of

the hand orientation and angular velocity, we primarily rely on the motor controller's first

capability: to drive the motion of the hand along a specific trajectory. The motor controller

provides two means of doing this: jogging mode and PVT mode. Each has its own merits

and weaknesses.

A.2.1 Jogging Mode

In jogging mode, the motor controller sets (jogs) the angular velocity of the motor using

a tight feedback loop. This process requires a single command to the motor controller,

which greatly reduces the delay between when a desired angular velocity is computed in

MATLAB and when it is executed by the controller. However, we need the motor controller

to drive the motor to specific angular accelerations, not velocities, which is problematic

since jogging mode was not designed with this in mind.

A.2.2 PVT Mode

In PVT (position/velocity trajectory) mode, the motor controller is given a time sequence of

position/velocity pairs. The controller then drives the motor along a trajectory that satisfies

these position/velocity values at the corresponding times. Along each time segment, the

motor is driven at a constant angular acceleration (no jerk). This provides a means to set

the angular acceleration of the motor by computing the corresponding position/velocity

values. PVT mode is designed to be used for a single precomputed open-loop trajectory.

This is great for testing the trajectories generated by the optimization, if feedback isn't

necessary. Unfortunately, PVT mode is not designed to be used in real time, so using it for

closed-loop control creates many latency issues.

A.3 Motion Capture System

We use a Vicon system for state estimation. This system consists of infrared (IR) camera-

emitters and markers. The cameras (Figure A-3) emit IR, which is reflected by the IR
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reflective markers, and then detected by the cameras. The Vicon system then computes the

position of the markers in space using the position of the markers in the camera images.

Several IR reflective markers are fixed to the hand (Figure A-5), allowing us to compute

the hand's position and orientation from the positions of the markers. Similarly, the ball is

covered in IR reflective tape (Figure A-4), allowing the motion capture system to compute

its position as well.

Figure A-3: The cameras used for the motion capture system.
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Figure A-4: The ball is covered in IR reflective tape, allowing the motion capture system
to measure its position.

A.4 Hand

* *

* *

Figure A-5: IR reflective markers are attached to the hand, allowing the motion capture
system to measure its position and orientation.

The hand is made of laser-cut acrylic. It consists of two parallel faces that are attached

to one another via standoffs. The ball rolls along the top of the hand. A high friction surface

is attached the the perimeter of the hand, and acts as a rolling surface, preventing the ball
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from sliding. We have streamlined the process of converting the optimized hand shape into

a working, testable hand. At this point, it takes about an hour to laser-cut the hand, add the

friction surface, and attach the markers.

Figure A-6: Throwing is executed as an open-loop trajectory.

Figure A-7: The hand is capable of balancing the ball.
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