Skip to main content
Log in

Robust and adaptive dynamic controller for fully-actuated robots in operational space under uncertainties

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

A practical control method that can perform multiple tasks in operational space is proposed for a fully actuated robot with high kinematic redundancy. Its dynamic control is often realized through force-level operational-space control framework, which computes joint torques for the required forces of prioritized multiple tasks. This approach requires an accurate dynamic model that is a major hurdle to overcome for implementation in real robots. To exempt from complex and demanding inverse dynamics computations, the proposed controller incorporates adaptive sliding-mode and online dynamics estimation schemes. The proposed operational space controller has two merits: it can obtain highly accurate control performance without calculating complex robot dynamics, and it can adapt the control parameters online to effectively compensate the uncertainties when the posture of a humanoid robot is substantially changed during operation; thus, a relatively simple, adaptive and robust control is realized for practical use for a kinematically redundant robots in operational space. The effectiveness of the proposed control method is numerically validated using a dynamic simulator. The simulated scenarios include that a fully-actuated humanoid robot undergoes severe changes in its inertia with respect to changes in posture. Experiments with a 23 degrees-of-freedom torque-controlled humanoid, CoMan, verify that the controller can perform three multiple operational-space tasks under uncertain external disturbances with high accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abiko, S., & Hirzinger, G. (2009). Adaptive control for a torque controlled free-floating space robot with kinematic and dynamic model uncertainty. In 2009 IEEE/RSJ international conference on intelligent robots and systems (IROS’09) (pp. 2359–2364). IEEE.

  • Arai, H., Tanie, K., & Tachi, S. (1993). Dynamic control of a manipulator with passive joints in operational space. IEEE Transactions on Robotics and Automation, 9(1), 85–93.

    Article  Google Scholar 

  • Baerlocher, P., & Boulic, R. (1998). Task-priority formulations for the kinematic control of highly redundant articulated structures. In 1998 IEEE/RSJ international conference on intelligent robots and systems (IROS’98) (Vol 1, pp. 323–329). IEEE.

  • Baerlocher, P., & Boulic, R. (2004). An inverse kinematics architecture enforcing an arbitrary number of strict priority levels. The Visual Computer, 20(6), 402–417.

    Article  Google Scholar 

  • Caccavale, F., & Siciliano, B. (2001). Quaternion-based kinematic control of redundant spacecraft/manipulator systems. In 2001 IEEE international conference on robotics and automation (ICRA’01) (Vol 1, pp. 435–440). IEEE.

  • Chang, P. H., & Lee, J. W. (1994). An observer design for time-delay control and its application to dc servo motor. Control Engineering Practice, 2(2), 263–270.

    Article  Google Scholar 

  • Chang, P. H., & Lee, J. W. (1996). A model reference observer for time-delay control and its application to robot trajectory control. IEEE Transactions on Control Systems Technology, 4(1), 2–10.

    Article  Google Scholar 

  • Chang, P. H., Kim, D. S., & Park, K. C. (1995). Robust force/position control of a robot manipulator using time-delay control. Control Engineering Practice, 3(9), 1255–1264.

    Article  Google Scholar 

  • Chang, Y. (2009). Adaptive sliding mode control of multi-input nonlinear systems with perturbations to achieve asymptotical stability. IEEE Transactions on Automatic Control, 54(12), 2863–2869.

    Article  MathSciNet  MATH  Google Scholar 

  • Chiaverini, S. (1997). Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators. IEEE Transactions on Robotics and Automation, 13(3), 398–410.

    Article  Google Scholar 

  • Cho, S., Jin, M., Kuc, T. Y., & Lee, J. S. (2014). Control and synchronization of chaos systems using time-delay estimation and supervising switching control. Nonlinear Dynamics, 75(3), 549–560.

    Article  MathSciNet  MATH  Google Scholar 

  • Dallali, H., Mosadeghzad, M., Medrano-Cerda, G.A., Docquier, N., Kormushev, P., Tsagarakis, N., Li, Z., & Caldwell, D. (2013). Development of a dynamic simulator for a compliant humanoid robot based on a symbolic multibody approach. In 2013 IEEE International Conference on Mechatronics (ICM’13) (pp. 598–603). IEEE.

  • Dariush, B., Gienger, M., Jian, B., Goerick, C., & Fujimura, K. (2008). Whole body humanoid control from human motion descriptors. In 2008 IEEE international conference on robotics and automation (ICRA’08) (pp. 2677–2684). IEEE.

  • Escande, A., Mansard, N., & Wieber, P. B. (2014). Hierarchical quadratic programming: Fast online humanoid-robot motion generation. International Journal of Robotics Research, 33(7), 1006–1028.

    Article  Google Scholar 

  • Featherstone, R. (2014). Rigid body dynamics algorithms. Berlin: Springer.

    MATH  Google Scholar 

  • Henze, B., Roa, M. A., & Ott, C. (2016). Passivity-based whole-body balancing for torque-controlled humanoid robots in multi-contact scenarios. The International Journal of Robotics Research, 35(12), 1522–1543.

    Article  Google Scholar 

  • Herzog, A., Righetti, L., Grimminger, F., Pastor, P., & Schaal, S. (2014). Balancing experiments on a torque-controlled humanoid with hierarchical inverse dynamics. In 2014 IEEE/RSJ international conference on intelligent robots and systems (IROS’14) (pp. 981–988). IEEE.

  • Herzog, A., Rotella, N., Mason, S., Grimminger, F., Schaal, S., & Righetti, L. (2016). Momentum control with hierarchical inverse dynamics on a torque-controlled humanoid. Autonomous Robots, 40(3), 473–491.

    Article  Google Scholar 

  • Hsia, T.C., & Gao, L.S. (1990). Robot manipulator control using decentralized linear time-invariant time-delayed joint controllers. In 1990 IEEE international conference on robotics and automation (ICRA’90) (pp. 2070–2075).

  • Hsia, T. S. (1989). A new technique for robust control of servo systems. IEEE Trans on Industrial Electronics, 36(1), 1–7.

    Article  Google Scholar 

  • Hsia, T. S., Lasky, T., & Guo, Z. (1991). Robust independent joint controller design for industrial robot manipulators. IEEE Transactions on Industrial Electronics, 38(1), 21–25.

    Article  Google Scholar 

  • Huang, Y. J., Kuo, T. C., & Chang, S. H. (2008). Adaptive sliding-mode control for nonlinearsystems with uncertain parameters. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 38(2), 534–539.

    Article  Google Scholar 

  • Jeong, J. W., Chang, P. H., & Lee, J. (2010). Enhanced operational space formulation for multiple tasks using time delay estimation. In 2010 IEEE/RSJ international conference on intelligent robots and systems (IROS’10) (pp. 4390–4395). IEEE.

  • Jin, M., & Chang, P. H. (2009). Simple robust technique using time delay estimation for the control and synchronization of lorenz systems. Chaos, Solitons and Fractals, 41(5), 2672–2680.

    Article  MATH  Google Scholar 

  • Jin, M., Kang, S. H., & Chang, P. H. (2008). Robust compliant motion control of robot with nonlinear friction using time-delay estimation. IEEE Transactions on Industrial Electronics, 55(1), 258–269.

    Article  Google Scholar 

  • Jin, M., Lee, J., Chang, P. H., & Choi, C. (2009). Practical nonsingular terminal sliding-mode control of robot manipulators for high-accuracy tracking control. IEEE Transactions on Industrial Electronics, 56(9), 3593–3601.

    Article  Google Scholar 

  • Jin, M., Lee, J., & Ahn, K. K. (2015). Continuous nonsingular terminal sliding-mode control of shape memory alloy actuators using time delay estimation. IEEE/ASME Transactions on Mechatronics, 20(2), 899–909.

    Article  Google Scholar 

  • Jung, S., Hsia, T., & Bonitz, R. (2004). Force tracking impedance control of robot manipulators under unknown environment. IEEE Transactions on Control System Technology, 12(3), 474–483.

    Article  Google Scholar 

  • Kanoun, O., Lamiraux, F., & Wieber, P. B. (2011). Kinematic control of redundant manipulators: Generalizing the task-priority framework to inequality task. IEEE Transactions on Robotics, 27(4), 785–792.

    Article  Google Scholar 

  • Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile robots. The International Journal of Robotics Research, 5(1), 90–98.

    Article  Google Scholar 

  • Khatib, O. (1987). A unified approach for motion and force control of robot manipulators: The operational space formulation. IEEE Journal on Robotics and Automation, 3(1), 43–53.

    Article  Google Scholar 

  • Khatib, O., Sentis, L., & Park, J.H. (2008). A unified framework for whole-body humanoid robot control with multiple constraints and contacts. In Proceedings of the European robotics symposium ’08 (pp. 303–312) Springer.

  • Lee, J., Chang, P. H., & Jamisola, R. S. (2013). Relative task prioritization for dual-arm with multiple, conflicting tasks: Derivation and experiments. In 2013 IEEE international conference on robotics and automation (ICRA’13) (pp. 1928–1933). IEEE.

  • Lee, J., Chang, P. H., & Jamisola, R. S. (2014). Relative impedance control for dual-arm robots performing asymmetric bimanual tasks. IEEE Transactions on Industrial Electronics, 61(7), 3786–3796.

    Article  Google Scholar 

  • Lee, J., Dallali, H., Jin, M., Caldwell, D., & Tsagarakis, N. (2016a). Robust and adaptive whole-body controller for humanoids with multiple tasks under uncertain disturbances. In 2016 IEEE international conference on robotics and automation (ICRA’16) (pp. 5683–5689). IEEE.

  • Lee, Y., Hwang, S., & Park, J. (2016b). Balancing of humanoid robot using contact force/moment control by task-oriented whole body control framework. Autonomous Robots, 40(3), 457–472.

    Article  Google Scholar 

  • Li, H., Bai, Y., & Su, Z. (2011). Adaptive sliding mode control of electromechanical actuator with improved parameter estimation. In \(8{th}\) Asian control conference (ASCC’11) (pp 608–612).

  • Li, Z., Zhou, C., Tsagarakis, N., & Caldwell, D. (2016). Compliance control for stabilizing the humanoid on the changing slope based on terrain inclination estimation. Autonomous Robots, 40(6), 955–971.

    Article  Google Scholar 

  • Liu, M., Lober, R., & Padois, V. (2015). Whole-body hierarchical motion and force control for humanoid robots. Autonomous Robots pp 1–12.

  • Mansard, N., Khatib, O., & Kheddar, A. (2009). A unified approach to integrate unilateral constraints in the stack of tasks. IEEE Transactions on Robotics, 25(3), 670–685.

    Article  Google Scholar 

  • Mistry, M., Buchli, J., & Schaal, S. (2010). Inverse dynamics control of floating base systems using orthogonal decomposition. In 2010 IEEE international conference on robotics and automation (ICRA) (pp. 3406–3412). IEEE.

  • Nakamura, Y., & Hanafusa, H. (1986). Inverse kinematic solutions with singularity robustness for robot manipulator control. Journal of dynamic systems, measurement, and control, 108(3), 163–171.

    Article  MATH  Google Scholar 

  • Nakamura, Y., & Hanafusa, H. (1987). Optimal redundancy control of robot manipulators. International Journal of Robotics Research, 6(1), 32–42.

    Article  Google Scholar 

  • Nakamura, Y., Hanafusa, H., & Yoshikawa, T. (1987). Task-priority based redundancy control of robot manipulators. International Journal of Robotics Research, 6(2), 3–15.

    Article  Google Scholar 

  • Nakanishi, J., Mistry, M., & Schaal, S. (2007). Inverse dynamics control with floating base and constraints. In 2007 IEEE international conference on robotics and automation (ICRA’07) (pp. 1942–1947). IEEE.

  • Nakanishi, J., Cory, R., Mistry, M., Peters, J., & Schaal, S. (2008). Operational space control: A theoretical and empirical comparison. International Journal of Robotics Research, 27(6), 737–757.

    Article  Google Scholar 

  • Ott, C., Dietrich, A., & Albu-Schäffer, A. (2015). Prioritized multi-task compliance control of redundant manipulators. Automatica, 53, 416–423.

    Article  MathSciNet  MATH  Google Scholar 

  • Park, J., & Khatib, O. (2006). Contact consistent control framework for humanoid robots. In 2006 IEEE international conference on robotics and automation (ICRA’06) (pp. 1963–1969). IEEE.

  • Peters, J., & Schaal, S. (2008). Learning to control in operational space. The International Journal of Robotics Research, 27(2), 197–212.

    Article  Google Scholar 

  • Plestan, F., Shtessel, Y., Bregeault, V., & Poznyak, A. (2010). New methodologies for adaptive sliding mode control. International Journal of Control, 83, 1907–1919.

    Article  MathSciNet  MATH  Google Scholar 

  • Righetti, L., Buchli, J., Mistry, M., & Schaal, S. (2011). Inverse dynamics control of floating-base robots with external constraints: A unified view. In 2011 IEEE international conference on robotics and automation (ICRA’11) (pp. 1085–1090). IEEE.

  • Righetti, L., Buchli, J., Mistry, M., Kalakrishnan, M., & Schaal, S. (2013). Optimal distribution of contact forces with inverse-dynamics control. The International Journal of Robotics Research, 32(3), 280–298.

    Article  Google Scholar 

  • Saab, L., Ramos, O. E., Keith, F., Mansard, N., Soueres, P., & Fourquet, J. Y. (2013). Dynamic whole-body motion generation under rigid contacts and other unilateral constraints. IEEE Transactions on Robotics, 29(2), 346–362.

    Article  Google Scholar 

  • Sadeghian, H., Villani, L., Keshmiri, M., & Siciliano, B. (2014). Task-space control of robot manipulators with null-space compliance. IEEE Transactions on Robotics, 30(2), 493–506.

    Article  Google Scholar 

  • Sentis, L., Park, J., & Khatib, O. (2010). Compliant control of multicontact and center-of-mass behaviors in humanoid robots. IEEE Transactions on Robotics, 26(3), 483–501.

    Article  Google Scholar 

  • Sentis, L., Petersen, J., & Philippsen, R. (2013). Implementation and stability analysis of prioritized whole-body compliant controllers on a wheeled humanoid robot in uneven terrains. Autonomous Robots, 35(4), 301–319.

    Article  Google Scholar 

  • Shahbazi, M., Lee, J., Caldwell, D., & Tsagarakis, N. (2017). Inverse dynamics control of bimanual object manipulation using orthogonal decomposition: An analytic approach. In 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 4791–4796). IEEE.

  • Siciliano, B., & Slotine, J. J. E. (1991). A general framework for managing multiple tasks in highly redundant robotic systems. In 1991 IEEE international conference on advanced robotics (ICAR’91) (pp. 1211–1216). IEEE.

  • Su, W. C., Drakunov, S. V., & Ozguner, U. (2000). An O(T2) boundary layer in sliding mode for sampled-data systems. IEEE Transactions on Automatic Control, 45(3), 482–485.

    Article  MathSciNet  MATH  Google Scholar 

  • Tsagarakis, N. G., Morfey, S., Cerda, G. M., Zhibin, L., Caldwell, D. G. (2013). Compliant humanoid coman: Optimal joint stiffness tuning for modal frequency control. In 2013 IEEE international conference on robotics and automation (ICRA’13) (pp. 673–678). IEEE.

  • Tsagarakis, N. G., Caldwell, D. G., Negrello, F., Choi, W., Baccelliere, L., Loc, V., et al. (2017). WALK-MAN: A high-performance humanoid platform for realistic environments. Journal of Field Robotics, 34(7), 1225–1259.

    Article  Google Scholar 

  • Wang, H., & Xie, Y. (2012). Prediction error based adaptive Jacobian tracking for free-floating space manipulators. IEEE Transactions on Aerospace and Electronic Systems, 48(4), 3207–3221.

    Article  Google Scholar 

  • Youcef-Toumi, K., & Ito, O. (1990). A time delay controller for systems with unknown dynamics. ASME Journal of Dynamic Systems, Measurement, and Control, 112(1), 133–142.

    Article  MATH  Google Scholar 

  • Youcef-Toumi, K., & Wu, S. T. (1992). Input/output linearization using time delay control. Journal of Dynamic Systems, Measurement, and Control, 114(1), 10–19.

    Article  MATH  Google Scholar 

  • Zhou, C., Li, Z., Wang, X., Tsagarakis, N., & Caldwell, D. (2016). Stabilization of bipedal walking based on compliance control. Autonomous Robots, 40(6), 1041–1057.

    Article  Google Scholar 

  • Zhu, Z., Xia, Y., & Fu, M. (2011). Adaptive sliding mode control for attitude stabilization with actuator saturation. IEEE Transactions on Industrial Electronics, 58(10), 4898–4907.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the European Commission projects Cognitive Interaction in Motion (CogIMon) H2020-ICT-23-2014 under Grant 644727, and in part by the Industrial Technology Innovation Program under Grant 10080355 (Development of Series Elastic Actuator and Manipulator with Compliance Control for Corresponding Collision and Minimizing Impulse) funded by the Ministry of Trade, Industry & Energy, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maolin Jin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: attenuation of noise effects

In the control law (32), the operational space force reference for ith task is given by (22) and (31) as

$$\begin{aligned} {\mathbf{f}}_i = {\mathbf{f }}_{i(t - L)} + \bar{\mathbf{A}}_i({\ddot{{\mathbf {x}}}}_i^* - {\ddot{{\mathbf {x}}}}_{i(t - L)} ). \end{aligned}$$
(A.1)

If a first-order digital LPF is applied to \(\mathbf{f}_i\) with the cutoff frequency \(\omega \), it can be modified as follows:

$$\begin{aligned} {\mathbf{f }}_i^{f} = \frac{\omega '}{(1 + \omega ')} {\mathbf{f }}_i + \frac{1}{(1 + \omega ')} {\mathbf{f }}_{i(t - L)}^{f} , \end{aligned}$$
(A.2)

where \({\mathbf{f}}_i^{f}\) denotes the output from the filter and \(\omega ' \triangleq \omega L\). Substituting (A.1) into (A.2), one can obtain the following filtered control law:

$$\begin{aligned} {\mathbf{f}}_i^{f}&= {\mathbf{f}}_{i(t - L)}^{f} + \frac{\omega '}{(1 + \omega ')} {{\bar{\mathbf{A}}}}_i\left( {\ddot{{\mathbf {x}}}}_i^* - {\ddot{{\mathbf {x}}}}_{i(t - L)} \right) \nonumber \\&= {\mathbf{f}}_{i(t - L)}^{f} + \alpha _\omega \bar{\mathbf{A}}_i\left( {\ddot{{\mathbf {x}}}}_i^* - {\ddot{{\mathbf {x}}}}_{i(t - L)} \right) , \end{aligned}$$
(A.3)

where \(\alpha _\omega \triangleq \omega '(1 + \omega ')^{ - 1}\) denotes a positive number lower than 1, i.e., \(0<\alpha _\omega <1\). Comparing (A.1) with (A.3), one can conclude that lowering the elements of \({{{\bar{\mathbf{A}}}}}_i\) has the same effect as using the first-order digital LPF for the operational space force references calculated in the proposed control law. With excessively high gains, the control performance will be degraded due to the noise, with too small gains the control performance will also be degraded due to the small gain. In this paper, as a practical way referring to the calculation of \({\bar{\mathbf{A}}}_i\) shown in Eq. (20), the diagonal \({\bar{\mathbf{M}}}\) is reduced with \(\alpha _\omega \). The same filtering effect is thus simply applied to all tasks.

Appendix B: Proof of stability

The bounded-input-bounded-output (BIBO) stability of the overall closed-loop system with the proposed control law can be shown in the same manner of Jin et al. (2009).

Substituting the control force input (22) into (18) yields the closed-loop error dynamics shown in Eq. (27). If \(\mathbf{J}_{(i|P)}\) is assumed to be full rank, Eq. (27) can be expressed as

$$\begin{aligned}&({\ddot{{\mathbf {x}}}}_i^* - {\ddot{{\mathbf {x}}}}_i ) = \varvec{\epsilon }_i, \quad \text { or } \quad \end{aligned}$$
(B.1)
$$\begin{aligned}&{\ddot{\mathbf{e}}}_i + 2 \lambda {\dot{\mathbf{e}}}_i + \lambda ^2 \mathbf{e}_i = \varvec{\epsilon }_i, \end{aligned}$$
(B.2)

where \(\varvec{\epsilon }_i \triangleq \bar{\mathbf{A}}_i^{-1} ({\bar{{\varvec{\eta }}}}_i - {\breve{{\varvec{\eta }}}}_i)\) denotes the remaining error of the TDE for the ith operational-space task. Multiplying \({{\bar{\mathbf{A}}}}_i\) to (B.1) and combining (8),(9), (12), (22), and (31) give the following:

$$\begin{aligned} {\mathbf{A}}_i \varvec{\epsilon }_i&= \left( \mathbf{A}_i - {{\bar{\mathbf{A}}}}_i\right) {\ddot{{\mathbf {x}}}}_i^* + \left( {\bar{{\varvec{\eta }}}}_i - {\breve{{\varvec{\eta }}}}_i\right) ,\nonumber \\&= \left( \mathbf{A}_i - {{\bar{\mathbf{A}}}}_i\right) {\ddot{{\mathbf {x}}}}_i^* + {\bar{{\varvec{\eta }}}}_i - [ \mathbf{f}_{i(t-L)} - {{\bar{\mathbf{A}}}}_i {\ddot{{\mathbf {x}}}}_{i(t-L)} ],\nonumber \\&= \left( \mathbf{A}_i - {{\bar{\mathbf{A}}}}_i\right) {\ddot{{\mathbf {x}}}}_i^* + \left[ \bar{\mathbf{A}}_i - {\mathbf{A}}_{i(t-L)}\right] {\ddot{{\mathbf {x}}}}_{i(t-L)}\nonumber \\&\quad +\, \left[ {{{\varvec{\eta }}}}_i - {{{\varvec{\eta }}}}_{i(t-L)} \right] . \end{aligned}$$
(B.3)

Then, substituting \({{\varvec{\epsilon }}}_{i(t-L)}\) from (B.1) into (B.3) yields

$$\begin{aligned} {{\varvec{\epsilon }}}_{i} = \left( \mathbf{I} - \mathbf{A}_i^{-1} \bar{\mathbf{A}}_i\right) {{\varvec{\epsilon }}}_{i(t-L)} + \varvec{\kappa }_{1,i} + \varvec{\kappa }_{2,i}, \end{aligned}$$
(B.4)

where \(\varvec{\kappa }_{1,i} \triangleq (\mathbf{I} - \mathbf{A}_i^{-1} {{\bar{\mathbf{A}}}}_i) [{\ddot{{\mathbf {x}}}}_i^* - {\ddot{{\mathbf {x}}}}_{i(t-L)}^*] \) and \(\varvec{\kappa }_{2,i} \triangleq \mathbf{A}_i^{-1} (\mathbf{A}_i - \mathbf{A}_{i(t-L)}) {\ddot{{\mathbf {x}}}}_{i(t-L)} + [{{{\varvec{\eta }}}}_i - {{{\varvec{\eta }}}}_{i(t-L)} ]\) which are bounded for a sufficiently small L. Refer to Jin et al. (2009); Jung et al. (2004); Su et al. (2000) for details on the boundedness of \(\varvec{\kappa }_{1,i}\) and \(\varvec{\kappa }_{2,i}\).

In the discrete-time domain, equation (B.4) for kth sampling can be represented as

$$\begin{aligned} {{\varvec{\epsilon }}}_{i(k)} = \left( \mathbf{I} - \mathbf{A}_{i(k)}^{-1} {\bar{\mathbf{A}}}_{i(k)}\right) {{\varvec{\epsilon }}}_{i(k-1)} + \varvec{\kappa }_{1,i(k)} + \varvec{\kappa }_{2,i(k)}. \end{aligned}$$
(B.5)

From the viewpoint of \({{\varvec{\epsilon }}}_{i(k)}\), \(\varvec{\kappa }_{1,i(k)}\), and \(\varvec{\kappa }_{2,i(k)}\) are forcing functions.

Suppose that the desired trajectory and initial error are bounded, then the following condition assures the boundedness of \({{\varvec{\epsilon }}}_{i}\):

$$\begin{aligned} ||\mathbf{I} - \mathbf{A}_{i}^{-1} {{\bar{\mathbf{A}}}}_i ||< 1. \end{aligned}$$
(B.6)

For the adaptive gain \({{\bar{\mathbf{A}}}}_{i}\), one can prevent the drift using a saturation technique with \(\gamma ^-\) and \(\gamma ^+\) of \({\bar{m}}_j\) as shown in (23) and (25); this can limit the search space of the gain \({{\bar{\mathbf{A}}}}_{i}\), which is widely accepted for adaptive control. Therefore, \({{\varvec{\epsilon }}}_{i}\) in the closed-loop error dynamics of ith task, shown in Eq. (B.1) and (B.2), is bounded, and the overall system is BIBO stable.

Appendix C: Control of floating base system

The dynamics of a floating base system such as a humanoid robot can be expressed as two coupled dynamic equations: floating base dynamics of six under-actuated DoFs and the rigid body dynamics of n-DoFs actuated joints. Its equation of motions can be represented as follows (Righetti et al. 2011; Henze et al. 2016):

(C.1)

where denote the inertia and the Coriolis matrices, respectively, \(\ddot{\mathbf{x}}_b, \dot{\mathbf{x}}_b \in {{\mathbb {R}}}^6\) denote acceleration and velocity of the floating base, respectively, denotes a gravity vector, denotes nonlinear effects, and denotes a vector of the generalized external forces.

The dynamic equation can be expressed as the following partitioned form (Featherstone 2014):

(C.2)

where \(\mathbf{M}_b^c \in {{\mathbb {R}}} ^{ 6 \times 6 }\) denotes the composite rigid body inertia of the robot, \({\mathbf{F}}_s \in {{\mathbb {R}}}^{ 6 \times n }\) denotes a matrix which includes the spacial forces required at the floating-based system, and \( \mathbf{h}_b^c\) is the spatial bias force for the composite rigid body containing the full floating-based system while \(\mathbf{h}\) is the corresponding force vector of Centrifugal, gravity, friction, and external torques of the actuated joints.

Multiplying \(\mathbf{F}_s^T (\mathbf{M}_b^c)^{-1}\) to the first row of (C.2) and subtracting from the second row yield

(C.3)

From (C.3), one can obtain the dynamic equation of fully-actuated joints as follows:

$$\begin{aligned} {{\varvec{\tau }} } = \left[ \mathbf{M}(\mathbf{q}) - \mathbf{F}_s^T \left( \mathbf{M}_b^c\right) ^{-1}{} \mathbf{F}_s\right] \ddot{\mathbf{q}} + \mathbf{h} - \mathbf{F}_s^T \left( \mathbf{M}_b^c\right) ^{-1} \mathbf{h}_b^c, \end{aligned}$$
(C.4)

which provides a direct relation between \({{\varvec{\tau }} }\) and \(\ddot{\mathbf{q}}\) influenced by the dynamics of the floating base (Nakanishi et al. 2007). Since the coefficients of (C.4) can be regarded as those of the standard fully-actuated joint dynamics, one can rearrange (C.4) in the same form of (1) as follows:

$$\begin{aligned} {{\varvec{\tau }} } = \mathbf{M}' \ddot{\mathbf{q}} + \mathbf{c} + \mathbf{g} + {{\varvec{\nu }}} + {{\varvec{\tau }}}_d' \end{aligned}$$
(C.5)

with

$$\begin{aligned} \left\{ \begin{array}{l} \mathbf{M}' \triangleq \mathbf{M}(\mathbf{q}) - \mathbf{F}_s^T (\mathbf{M}_b^c)^{-1}{} \mathbf{F}_s \\ {{\varvec{\tau }}}_d' \triangleq {{\varvec{\tau }}}_d - \mathbf{F}_s^T (\mathbf{M}_b^c)^{-1} \mathbf{h}_b^c. \end{array} \right. \end{aligned}$$

Therefore, the proposed controller (32) can be applied to the actuated joints in the same manner derived in Sect. 2.2. The dynamic effects due to the floating base are regarded as additional disturbances in the composite dynamic term \(\varvec{\zeta }(\mathbf{q}, \dot{\mathbf{q}}, \ddot{\mathbf{q}})\) in (17), which are effectively tackled by the adaptive gain and TDE component in the controller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Dallali, H., Jin, M. et al. Robust and adaptive dynamic controller for fully-actuated robots in operational space under uncertainties. Auton Robot 43, 1023–1040 (2019). https://doi.org/10.1007/s10514-018-9780-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-018-9780-z

Keywords

Navigation