Skip to main content

Advertisement

Log in

Hybrid CPG–FRI dynamic walking algorithm balancing agility and stability control of biped robot

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

Dynamic walking fulfill agility and stability simultaneously is one of the most difficulty for biped robot control. The traditional zero moment point (ZMP) is the most commonly used reference point for biped robot static and quasi dynamic walking control. However, human walking experimental results indicate that during walking process of human beings, the ZMP trajectory is not always conformed to the requirement of stability, such as giant strides, acceleration walking or fast walking. In order to reveal the mechanism of the biped dynamic walking, this paper proposed a novel stability criterion for the biped walking by tuning the conventional fixed support polygon area to an adjustable one. This method includes the tiptoe underactuated phase of the support foot during the biped walking. A new algorithm for the real-time biped walking generation by combining central pattern generation (CPG) with foot rotation indicator (FRI) is presented. The FRI monitor establishes the mapping function between the center of mass of the biped robot with the boundary of the elastic support polygon. By introducing FRI information, the CPG parameters can be adjusted in real time to generate a rhythmic and stable walking pattern. Numerical simulation results show that the proposed algorithm extends the application area of the ZMP criterion and improves the walking velocity of the biped robot. Moreover, the algorithm builds a bridge for the dynamic biped walking from the robot agility to motor parameters. This means that the agility of the biped robot can be quantitative controlled by modulating the motor parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aoi, S., & Tsuchiya, K. (2011). Generation of bipedal walking through interactions among the robot dynamics, the oscillator dynamics, and the environment: Stability characteristics of a five-link planar biped robot. Autonomous Robots, 30(2), 123–141.

    Article  Google Scholar 

  • Farzaneh, Y., Akbarzadeh, A., & Akbari, A. A. (2014). Online bio-inspired trajectory generation of seven-link biped robot based on t–s fuzzy system. Applied Soft Computing, 14, 167–180.

    Article  Google Scholar 

  • Ferreira, J. P., Crisostomo, M., & Coimbra, A. P. (2012). SVR controller for a biped robot in the sagittal plane with human-based ZMP trajectory reference and gait. International Journal of Humanoid Robotics, 9(03), 1250018.

    Article  Google Scholar 

  • Fu, C., & Chen, K. (2006). Research progress on stability and control strategy for biped robots. Chinese High Technology Letters, 16(3), 319–324.

    Google Scholar 

  • Goswami, A. (1999). Postural stability of biped robots and the foot-rotation indicator (FRI) point. The International Journal of Robotics Research, 18(6), 523–533.

    Article  Google Scholar 

  • He, B., Wang, Z., Shen, R., & Hu, S. (2014). Real-time walking pattern generation for a biped robot with hybrid CPG–ZMP algorithm. International Journal of Advanced Robotic Systems, 11(10), 160.

    Article  Google Scholar 

  • Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences, 79(8), 2554–2558.

    Article  MathSciNet  MATH  Google Scholar 

  • Huang, Q., & Nakamura, Y. (2005). Sensory reflex control for humanoid walking. IEEE Transactions on Robotics, 21(5), 977–984.

    Article  Google Scholar 

  • Huang, Q., Yokoi, K., Kajita, S., Kaneko, K., Arai, H., Koyachi, N., et al. (2001). Planning walking patterns for a biped robot. IEEE Transactions on Robotics and Automation, 17(3), 280–289.

    Article  Google Scholar 

  • Kajita, S., Hirukawa, H., Harada, K., & Yokoi, K. (2014). Introduction to humanoid robotics. Berlin: Springer.

    Book  Google Scholar 

  • Li, Z., Zhou, C., Zhu, Q., & Xiong, R. (2017). Humanoid balancing behavior featured by underactuated foot motion. IEEE Transactions on Robotics, 33(2), 298–312.

    Article  Google Scholar 

  • Matsuoka, K. (1985). Sustained oscillations generated by mutually inhibiting neurons with adaptation. Biological Cybernetics, 52(6), 367–376.

    Article  MathSciNet  MATH  Google Scholar 

  • Miyake, Y. (2009). Interpersonal synchronization of body motion and the Walk-Mate walking support robot. IEEE Transactions on Robotics, 25(3), 638–644.

    Article  Google Scholar 

  • Nakamura, Y., Mori, T., Sato, M.-A., & Ishii, S. (2007). Reinforcement learning for a biped robot based on a CPG—Actor—Critic method. Neural Networks, 20(6), 723–735.

    Article  MATH  Google Scholar 

  • Nassour, J., Hénaff, P., Ouezdou, F. B., Cheng, G. (2010). A study of adaptive locomotive behaviors of a biped robot: Patterns generation and classification. In International conference on simulation of adaptive behavior, pp. 313–324.

  • Or, J. (2010). A hybrid CPG–ZMP control system for stable walking of a simulated flexible spine humanoid robot. Neural Networks, 23(3), 452–460.

    Article  Google Scholar 

  • Or, J., & Takanishi, A. (2004). A biologically inspired CPG–ZMP control system for the real-time balance of a single-legged belly dancing robot. IEEE/RSJ International Conference on Intelligent Robots and Systems, 1, 931–936.

    Google Scholar 

  • Park, H.-W., Ramezani, A., & Grizzle, J. (2013). A finite-state machine for accommodating unexpected large ground-height variations in bipedal robot walking. IEEE Transactions on Robotics, 29(2), 331–345.

    Article  Google Scholar 

  • Perrin, N., Stasse, O., Baudouin, L., Lamiraux, F., & Yoshida, E. (2012). Fast humanoid robot collision-free footstep planning using swept volume approximations. IEEE Transactions on Robotics, 28(2), 427–439.

    Article  Google Scholar 

  • Popovic, M. B., Goswami, A., & Herr, H. (2005). Ground reference points in legged locomotion: Definitions, biological trajectories and control implications. The International Journal of Robotics Research, 24(12), 1013–1032.

    Article  Google Scholar 

  • Taga, G. (1995a). A model of the neuro-musculo-skeletal system for human locomotion. I. Emergence of basic gait. Biological Cybernetics, 73(2), 97–111.

    Article  MATH  Google Scholar 

  • Taga, G. (1995b). A model of the neuro-musculo-skeletal system for human locomotion II. Real-time adaptability under various constraints. Biological Cybernetics, 2(73), 113–121.

    Article  MATH  Google Scholar 

  • Vukobratović, M., & Borovac, B. (2004). Zero-moment point thirty five years of its life. International Journal of Humanoid Robotics, 1(01), 157–173.

    Article  Google Scholar 

  • Vukobratovic, M., Frank, A., & Juricic, D. (1970). On the stability of biped locomotion. IEEE Transactions on Biomedical Engineering, 1, 25–36.

    Article  Google Scholar 

  • Wang, L., Liu, Z., Chen, C. P., Zhang, Y., Lee, S., & Chen, X. (2013). Fuzzy SVM learning control system considering time properties of biped walking samples. Engineering Applications of Artificial Intelligence, 26(2), 757–765.

    Article  Google Scholar 

  • Wang, T., Guo, W., Li, M., Zha, F., & Sun, L. (2012). CPG control for biped hopping robot in unpredictable environment. Journal of Bionic Engineering, 9(1), 29–38.

    Article  Google Scholar 

  • Wang, Z., He, B., Zhou, Y., Yuan, T., Xu, S., & Shao, M. (2018). An experimental analysis of stability in human walking. Journal of Bionic Engineering, 15(5), 827–838.

    Article  Google Scholar 

  • Westervelt, E. R., Chevallereau, C., Choi, J. H., Morris, B., & Grizzle, J. W. (2007). Feedback control of dynamic bipedal robot locomotion. Boca Raton: CRC Press.

    Google Scholar 

Download references

Acknowledgements

The work was supported by National Natural Science Foundation of China (Grant Nos. 51605334, U1713215, and 51705368), and Shanghai Municipal Science and Technology Commission Project (Grant No. 17DZ1203405). We thank the reviewers and editors for their helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin He, Zhipeng Wang or Yanmin Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, B., Si, Y., Wang, Z. et al. Hybrid CPG–FRI dynamic walking algorithm balancing agility and stability control of biped robot. Auton Robot 43, 1855–1865 (2019). https://doi.org/10.1007/s10514-019-09839-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-019-09839-2

Keywords

Navigation