
Autonomous Robots (2020) 44:673–689
https://doi.org/10.1007/s10514-019-09840-9

Distributed multi-target search and tracking using the PHD filter

Philip M. Dames1

Received: 30 April 2018 / Accepted: 2 February 2019 / Published online: 22 February 2019
© The Author(s) 2019

Abstract
This paper proposes a distributed estimation and control algorithm that enables a team of mobile robots to search for and
track an unknown number of targets. These targets may be stationary or moving, and the number of targets may vary over
time as targets enter and leave the area of interest. The robots are equipped with sensors that have a finite field of view and
may experience false negative and false positive detections. The robots use a novel, distributed formulation of the Probability
Hypothesis Density (PHD) filter, which accounts for the limitations of the sensors, to estimate the number of targets and the
positions of the targets. The robots then use Lloyd’s algorithm, a distributed control algorithm that has been shown to be
effective for coverage and search tasks, to drive their motion within the environment. We utilize the output of the PHD filter as
the importance weighting function within Lloyd’s algorithm. This causes the robots to be drawn towards areas that are likely to
contain targets. We demonstrate the efficacy of our proposed algorithm, including comparisons to a coverage-based controller
with a uniform importance weighting function, through an extensive series of simulated experiments. These experiments
show teams of 10–100 robots successfully tracking 10–50 targets in both 2D and 3D environments.

Keywords Multi-target tracking · Distributed estimation and control · Voronoi partition · PHD filter

1 Introduction

Target search and tracking is a canonical task in robotics,
encompassing problems such as mapping, surveillance, and
search and rescue. In any such scenario, a team of robots is
tasked with exploring an area of interest in order to locate
and track multiple targets. These targets may be stationary
or mobile. The number of targets is often unknown and may
change over time as targets enter or leave the area of interest.
Being able to track the number of targets and the target posi-
tions requires the robots to have: (1) an estimation algorithm
capable of this task and (2) a control algorithm that drives
the robots to explore in order to detect new targets as well as
to track previously detected targets. Both of these problems
have been heavily studied individually in the literature. One

This is one of the several papers published in Autonomous Robots
comprising the Special Issue on Multi-Robot and Multi-Agent
Systems.

B Philip M. Dames
pdames@temple.edu
http://sites.temple.edu/pdames/

1 Department of Mechanical Engineering, Temple University,
Philadelphia, PA 19122, USA

of the primary contributions of our paper is that it focuses on
their combination.

Probabilistic search methods are best suited to the prob-
lem of target tracking as the robots have significant noise
in the sensors. Multi-target tracking is particularly difficult
as robots must also solve the data association problem (i.e.,
matching measurements to targets) and account for the pos-
sibility of false positive or false negative detections. Stone
et al. (2013) discuss in their book a number of probabilis-
tic, multi-target tracking approaches, including the Multiple
Hypothesis Tracker (MHT) (Blackman 2004), Joint Prob-
abilistic Data Association (JPDA) (Fortmann et al. 1983),
and the Probability Hypothesis Density (PHD) filter (Mahler
2003). All of these approaches simultaneously solve the data
association and tracking problems. We elect to use the PHD
filter as its representation of the targets, as a target density
function over the state space of the targets, naturally pairs
with Voronoi-based control algorithms, as we will discuss in
detail later.

Actively detecting and tracking multiple moving targets
effectively requiresmultiple robots. There aremany different
approaches to solve this problem, which (Robin and Lacroix
2016) discuss in their survey article. One approach is Coop-
erative Multi-robot Observation of Multiple Moving Targets

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-019-09840-9&domain=pdf
http://orcid.org/0000-0002-7257-0075

674 Autonomous Robots (2020) 44:673–689

(CMOMMT), from Parker (2002), in which a team of robots
attempts to simultaneously observe all of the targets. When
this is not possible, the team attempts to minimize the time
during which any individual target is not viewed. Another
approach is to use an information-theoretic objective to select
actions for a team of robots in order to reduce the uncertainty
in the targets’ positions (Hoffmann and Tomlin 2010; Dames
and Kumar 2015). However, both of these approaches are
centralized and do not scale above a small team of robots.
Hollinger et al. (2015) propose a decentralized variation in
which robots do not have guaranteed communication, but
they only consider tracking a single target.

One of the most successful algorithms for distributed cov-
erage and target tracking is Voronoi-based control. The basic
idea is to divide the search area using the Voronoi parti-
tion and then for each robot to move towards the centroid
of its Voronoi cell, a process known as Lloyd’s algorithm.
One of the first applications is from Cortes et al. (2004).
Pimenta et al. (2008) expand the idea to heterogeneous teams
of robots.Arslan andKoditschek (2016) allow for robotswith
non-holonomic constraints or higher order dynamics. Bhat-
tacharya et al. (2014) enable Lloyd’s algorithm to be used to
explore non-convex and non-Euclidean environments. Lee
and Egerstedt (2013) use Lloyd’s algorithm to track a time-
varying density function with a team of robots. However,
the density function in all of these works is not tied to any
specific target tracking method.

Specific applications of Voronoi-based coverage tech-
niques to the problem of target tracking tend to focus on
pursuer-evader games. Huang et al. (2011) and Zhou et al.
(2016) consider the multiple-pursuers, single-evasion prob-
lem and formulate a decentralized algorithm to guarantee
capture. Pan et al. (2012) consider an interestingmodification
to this problem where some pursuers act as guards to prevent
the evader from leaving the environment. Pierson and Rus
(2017) consider the more realistic scenario of non-convex
environments where the pursuers must avoid collisions with
static obstacles. They do this by introducing the obstacle-
aware Voronoi cell, which is guaranteed to be safe.

Our approach is most similar to those works that address
the problem of multiple robots tracking multiple targets. One
such work is from Pierson et al. (2017) who present a dis-
tributed strategy to guarantee capture of multiple evaders
using multiple pursuers in 2D and 3D environments. The
pursuers are assigned to evaders and follow the gradient of
the area of their evader’s Voronoi cell. After capture, pur-
suers are reassigned to another evader. Pimenta et al. (2009)
present a decentralized approach for Simultaneous Cover-
age and Tracking (SCAT). They use the continuous time
variant of Lloyd’s algorithm to create a control law with
guaranteed exponential convergence to a local minimum of
the objective function. The importance weighting function,
which determines the relative importance of each portion

of the environment, is a linear combination of a constant
term to encourage coverage and of radial basis functions cen-
tered at each target location to encourage tracking. However,
Pimenta et al. do not discuss how the target locations are
known.

In this paperwe simultaneously consider the detection and
tracking tasks. The primary contribution is that we directly
address the multi-target estimation problem, using a novel,
distributed formulation of the PHD filter to detect and track
targets using noisy measurements from the robots. The pro-
posed distributed PHD filter only requires each robot to
maintain the PHD in a local neighborhood but still yields
an identical estimate to a centralized solution. This greatly
decreases the memory and computational requirements for
each robot and improves the scalability of the solution. We
then use the PHD as the importance weighting function in
Lloyd’s algorithm, a new combination. This naturally and
effectively drives the robots to follow previously detected
targets and to explore unknown areas that may contain new
targets.We demonstrate the efficacy of this approach through
a series of simulated experiments with static and moving tar-
gets. This is an extension of our previous conference paper
(Dames 2017). We have added background material and a
more detailed analysis of the previous results, includingof the
computational time. The biggest contribution is an entirely
newset of experiments that extend the previously 2Dscenario
to a 3D one in which a team of multirotor UAVs tracks a col-
lection of targets moving on the ground. These experiments
demonstrate the flexibility of the proposed distributed esti-
mation and control algorithms towork in a variety of settings,
including with some uncertainty in the poses of the sensors.

2 Problem formulation

We have a team of R robots exploring a convex environment
E ⊂ R2 in search of an unknown number of targets. The pose
of robot r at time t is qtr . At each time step, robot r collects a
set of localmeasurements, Zt

r = {zt1,r , . . . , ztmt
r ,r

}, which has
mt

r measurements. The number of measurements varies over
time due to false positive and false negative detections and
due to themotion of both targets and robots causing targets to
enter and leave the sensor field of view (FoV). The team seeks
to determine the set of targets, Xt = {xt1, . . . , xtn}, where
each xti ∈ E . Note that this set encodes both the number of
targets (i.e., the cardinality of the set |Xt |) and the state of
each target (i.e., the elements of the set xti).

2.1 Random finite sets

The sets X and Z from above are realizations of randomfinite
sets (RFSs). An RFS is a set containing a random number of

123

Autonomous Robots (2020) 44:673–689 675

random elements, e.g., each of the n elements xi in the set
X = {x1, . . . , xn} is a vector indicating the state of a single
target. See Mahler (2007) for a more thorough treatment of
the mathematics presented in this section.

In deriving the PHD filter, Mahler (2003) assumes that:
(1) the clutter and true measurement RFSs are independent
and (2) the clutter, target, and birth RFSs are Poisson. The
first assumption is standard for target localization tasks. The
second assumption is a result of assuming that the number of
points in each finite region is independent if the regions do
not overlap (Daley and Vere-Jones 2003). A Poisson RFS is
one that has independently and identically distributed (i.i.d.)
elements andwhere thenumber of elements follows aPoisson
distribution. The likelihood of such an RFS X is

p(X) = e−λ
∏

x∈X
v(x), (1)

where v(·) is the Probability Hypothesis Density (PHD), λ =∫
E v(x) dx , and p(∅) = e−λ. The PHD is a density function

over the state space of the targets, with the unique property
that the integral of the PHD over a region S ⊆ E is the
expected cardinality of an RFS X in that region. The PHD is
also the first statistical moment of a distribution over RFSs.
Note that it is not a probability density function, but it may be
turned into one by normalizing by the expected cardinality,

p(x) = λ−1v(x). (2)

2.2 PHD filter

The PHD filter tracks the first moment of the distribution
over RFSs, recursively updating the PHD using models of
target motion and the measurement sets collected by the
robots. Targets may be stationary or mobile, may appear in
the environment, or may disappear. The target motionmodel,
f (x | ξ), describes the uncertain motion of a target from an
initial state ξ to a new state x . The birth model, b(x), is
a PHD and describes both the number and locations of the
new targets in the environment. For many situations the birth
PHD will only be non-zero near the boundaries of the envi-
ronment, where new targets can enter the area of interest.
Finally, the survival probability, ps(x), models the survival
(and conversely the disappearance) of a target with state x .

Each robot is equippedwith a sensor to detect targets. This
sensor may experience false negative detections, return noisy
measurements to true targets, or receive false positive detec-
tions. The detection model, pd(x | q), of a robot with state q
detecting a target with state x characterizes the true (and false
negative) detections. Note that the probability of detection is
identically zero for all x outside the sensor FoV. The mea-
surementmodel, g(z | x; q), is the probability of a robotwith
state q receiving measurement z from a detected target with

state x . Finally, the false positive (or clutter) measurements
are modeled by the clutter PHD, c(z | q), which describes
both the number and locations of the clutter measurements.

Using these target and sensor models, the PHD filter pre-
diction (3) and update (4)–(6) equations are:

v̄t (x) = b(x) +
∫

E
f (x | ξ)ps(ξ)vt−1(ξ) dξ (3)

vt (x) = (1 − pd(x | q))v̄t (x) +
∑

z∈Zt

ψz,q(x)v̄t (x)

ηz(v̄t)
(4)

ηz(v) = c(z | q) +
∫

E
ψz,q(x)v(x) dx (5)

ψz,q(x) = g(z | x, q)pd(x | q), (6)

where ψz,q(x) is the probability of a sensor at q receiving
measurement z from a target with state x .

2.3 Lloyd’s algorithm

The goal of Lloyd’s algorithm is to minimize the value of the
function

H({q1, . . . , qR) =
∫

E
min

r∈{1,...,R} f (d(x, qr))φ(x) dx, (7)

where d(x, q) measures the distances between elements in
E , f (·) is a monotonically increasing function, and φ(x) is
a non-negative weighting function. We use f (x) = x2, a
standard choice. The minimum inside of the integral induces
a partition on the environment Vr = {x | d(x, qr) ≤
d(x, qi),∀i �= r}. This is the Voronoi partition, and these
Vr are the Voronoi cells.

Cortes et al. (2004) show that the gradient of (7) with
respect to the state of each robot is independent of the states
of the other robots, and a minimum is achieved when each
robot r is at the weighted centroid of its Voronoi cell, Vr ,

q∗
r =

∫
Vr

xφ(x) dx
∫
Vr

φ(x) dx
. (8)

The process of iteratively moving towards the weighted cen-
troid of their Voronoi cells, known as Lloyd’s algorithm,
offers several advantages. First, this algorithm achieves a
local minimum of (7). Second, the robots separate from each
other since they move to the centroids of their own cells, thus
avoiding redundancy in their actions. Finally, as long each
robot is able to communicate with its Voronoi neighbors, this
is a distributed control algorithm since each robot is able to
compute its Voronoi cell, Vr , and therefore its action.

Pimenta et al. (2009) build on this idea by using a weight-
ing function of the form φ(x, t) = ∑n

i=1 αiφi (x, t) + β,
where φi (x, t) is a radial basis function centered at the loca-
tion of target i ,αi is a tuning constant to define the importance

123

676 Autonomous Robots (2020) 44:673–689

of target i , and β is a tuning constant to define the importance
of coverage. While Pimenta et al. show that this approach
works to track moving targets, they manually chose the αi

andβ and did not provide details on how to perform the target
tracking.

In this work, we use the PHD as the weighting function,
settingφ(x) = v(x). This naturally guides the robots towards
areas of high target density and requires no manual tuning.
When the locations of the targets are unknown and the PHD is
close to uniform, the robots will attempt to uniformly cover
the environment. Then, as areas are found to be empty of
targets, v(x) will decrease and the robots will avoid those
regions. Once a robot detects a target, v(x) will increase and
the robot will be incentivized to track the target as it moves.

Each robot sets as it goal position the weighted centroid of
its Voronoi cell. In practice, robots have a maximum achiev-
able velocity, and so they will not be able to instantly reach
their goals. We assume that the robots are both holonomic
and kinematic, which means that the robots will move in a
straight line path toward their goal positions at the maximum
velocity. As the robots move, their onboard sensors collect
newmeasurements at a fixed rate. Upon receiving a newmea-
surement set the robots will update the PHD filter, leading
to a new v(x). To account for this new information, and the
motion of the targets, the robots compute a new centroid,
even if they have not yet reached the previous goal.

2.4 Assumptions

Throughout this work we assume that each robot knows its
own pose at all times. While this is a strong assumption, it
is not unrealistic. Robots operating in indoor environments
with high-quality a priorimaps (Dames and Kumar 2015) or
robots operating outdoors with GPS receivers can, in some
instances, navigate for long periods of time with negligible
uncertainty in the pose. We also demonstrate in Sect. 5.3
that the team’s performance is nearly unaffected by small
uncertainties in the robot’s poses.

If the pose uncertainty is not negligible, then we would
need to propagate the uncertainty between the robot and
target poses, causing sensor measurements to become cor-
related over time. To account for this, we could use several
approaches. First, we could use the work of Moratuwage
et al. (2013) to perform collaborative SLAM with dynamic
targets using the PHD filter. However, this approach utilizes
a Rao–Blackwellized particle filter, which assumes a cen-
tralized solution and does not scale well beyond a handful
of robots. Second, we could utilize a smoothing approach to
track targets, as is commonly done inmodern SLAM (Simul-
taneous Localization and Mapping) systems (Grisetti et al.
2010). However, to the best of our knowledge no computa-
tionally tractable approach exists for the PHD filter. Finally,

we could use the PHD filter to simultaneously estimate both
the robot and target poses.

We also assume that each robot is capable of communi-
cating with all of its Voronoi neighbors and with all of the
robots with overlapping sensor FoVs. Note that the second
condition is, in practice, a subset of the first since each robot’s
Voronoi region is typically larger than its FoV. Future work
will aim to relax this assumption using multi-hop commu-
nication, which would only require that the communication
network be connected. We also assume that each robot has a
unique ID. This is necessary to induce a strict total order on
the measurement updates in order to create a globally consis-
tent estimate. Finally, we assume that all communication is
perfect. Future work will address issues of imperfect, lossy,
or delayed communication, which must be considered for
real-world implementation.

3 Distributed estimation

As Mahler (2009) notes, “even in the two-sensor [or two-
robot] case, the theoretically rigorous formula for the PHD
filter corrector equation is computationally intractable.” The
workaround for this problem is to iteratively apply the PHD
update equation, (4), for each sensor. This approach has
been shown to perform well in practice in a centralized set-
ting, where a single robot is responsible for maintaining
the PHD for the entire team (Mahler 2009). We have also
shown in our previous work (Dames and Kumar 2013, 2015)
that this approach can also work in a decentralized setting,
and Punithakumar et al. (2006) have used it in a distributed
setting. Punithakumar et al. represent the PHD as a set of
weighted particles, as in Vo et al. (2005), and consider the
case of a set of static nodes, some of which are equipped with
sensors while others have computational capabilities. Each
computational node maintains an identical copy of the PHD
filter, using a quantization method to transmit measurements
between nodes.

LikePunithakumar et al. (2006),we take a fully distributed
approach and represent the PHD using a set of weighted
particles. We divide the environment into a collection of
equally-sized, square bins and place a single, stationary
particle at the centroid of each bin. This is similar to the bin-
occupancy filter, which (Erdinc et al. 2009) note is closely
related to the PHD filter.

In our distributed architecture, each robot r has both sens-
ing and computational capabilities and is responsible for
maintaining the estimate of the PHD within its Voronoi cell,
Vr . Thus, robot r must only store the locations, x j , (and cor-
responding weights,w j) of the particles within Vr . Note that
even if the target state includes more than just the position of
the target (e.g., the orientation or velocity), only the position
is used to determine ownership.

123

Autonomous Robots (2020) 44:673–689 677

1

2 3

4
5

6

(a)Particle exchange

1

2 3

4
5

6

(b) PHD prediction

1

2 3

4
5

6

(c) PHD update

Fig. 1 Example with 6 robots (the numbered squares), focusing on
robot 1 (the solid square). The solid lines show the current Voronoi
cell of each robot. a The dashed lines show robot 1’s previous Voronoi
cell. This overlaps with the current cells of robots 2–5, so robot 1 must
transfer ownership of any particles in the overlapping regions to the
corresponding neighbor. bThe dashed line shows the expandedVoronoi
cell of robot 1, which contains all possible final positions of targets that
begin within the original Voronoi cell. c The dashed lines shows the
sensor FoV of each robot. Robot 1’s FoV overlaps with those of robots 5
and 6 so these robots must exchange measurement sets and synchronize
their PHD updates

Algorithm 1 Particle Exchange
1: Share state, qtr , with neighbors N (r)
2: Compute Voronoi cell, V t

r
3: Share Voronoi cell, V t

r , with neighbors N (r)
4: for i ∈ N (r) do
5: Compute 	Vr ,i = V t−1

r ∩ V t
i

6: Send particles in 	Vr ,i to robot i
7: end for

Algorithm 2 Distributed PHD Prediction Step for Robot r
1: Compute expand Voronoi cell, V t

r ,e
2: Perform PHD prediction using (3)
3: for i ∈ N (r) do
4: Compute 	Ve,i = V t

r ,e ∩ V t
i

5: Send particles in 	Ve,i to robot i
6: end for

3.1 Particle exchange

As robots move about, so do their Voronoi cells. This means
that robotsmust be able to transfer ownership of local regions
of the environment to one another. To do this, each robotmust
store its previousVoronoi cell, V t−1

r , and share its current cell
with each of its neighbors. Each robot r then computes the
intersection of its own previous cell with the current cells of
its neighbors and transfers ownership of the particles in each
of those intersecting regions to its neighbors. Algorithm 1
outlines this process, which is also shown in Fig. 1a.

3.2 PHD prediction step

Algorithm 2 outlines the distributed PHD prediction step. As
targets move about, they may leave the Voronoi cell of one
robot and enter the cell of another robot. To account for this,
each robotmust run the prediction step over a larger area than
its Voronoi cell in order to contain all of the PHD mass after
target motion, as Fig. 1b shows. Consider an arbitrarymotion

model with finite support, so that the motion of the target
is bounded during each time step. Each robot expands its
Voronoi cell using the convex hull of the targetmotionmodel,
adding in phantom particles with zero initial weight outside
of its Voronoi cell. The robot then runs the PHD prediction
step, (3). Finally, the robot sends to all of its neighbors any
phantom particles that lie within each neighbor’s Voronoi
cell using Algorithm 1, replacing V t−1

r with the expanded
Voronoi cell.

If the support of the motion model is infinite (e.g., a
Gaussian random walk) this algorithm will still work, but
it will require all robots to exchange information with all
other robots, either directly or indirectly.Alternatively, robots
could artificially truncate the target motion, but this would
cause some error to accrue.

3.3 PHD update step

The distributed PHD update step, outlined in Algorithm 3,
requires two special considerations: first, each application
of (4) depends on all particles within the sensor FoV, and
second, the result of iteratively applying (4) depends on the
order that the measurement sets are applied if and only if the
FoVs of the two sensors overlap. When a robot receives a
new measurement set, it must first check if its sensor FoV is
fully contained within its Voronoi cell, as Fig. 1c shows. If
so, the robot simply applies the standard update step, since
it is guaranteed that the FoV of other sensors do not overlap
with its own FoV, as Remark 1 shows.

Remark 1 Let all robots have identical sensors with a circular
FoV centered at the position of the robot. Let int(Vr) be the
interior of the Voronoi cell, which is an open set defined by
removing the boundary of the Voronoi cell, and let Fr be
the sensor FoV of robot r . If Fr ⊂ int(Vr), then Fr ∩ Fi =
∅,∀i �= r .

Proof We will prove the Remark by contradiction. Let the
radius of the sensor FoV be RFoV and let d(x, y) be the
distance between any two points x and y. From the definition
of the Voronoi cell and the fact that Fr ⊂ int(Vr), it must be
that RFoV < 1

2d(qr , qi) for any i �= r . Assume that there
exists some i �= r and a point x that lies within both Fr and
Fi . Since x ∈ Fr , d(qr , x) ≤ RFoV. Similarly, d(qi , x) ≤
RFoV. Using the triangle inequality, d(qr , qi) ≤ d(qr , x) +
d(qi , x) ≤ 2RFoV < d(qr , qi). The distanced(qr , qi) cannot
be strictly less than itself, therefore no such point x may exist.

�
Corollary 1 If Fr �⊂ int(Vr) then Fr ∩Vi �= ∅ (and Fr ∩Fi �=
∅) for at least one i �= r .

Corollary 2 Remark 1 also holds for non-circular FoVs so
long as all robots have identical FoVs and a circle centered

123

678 Autonomous Robots (2020) 44:673–689

Algorithm 3 Distributed PHD Update Step for Robot r
1: if Ft

r ⊂ int(V t
r) then

2: Update PHD using Z j with (4)
3: else
4: Find neighbors N (r) = {i | Ft

r ∩ V t
i �= ∅}

5: for i ∈ N (r) do
6: Exchange Zt , qt , and r with robot i
7: end for
8: Nu(r) = N (r) � Remaining updates
9: while Nu(r) �= ∅ do
10: Set active ID j = minNu(r)
11: if j = Active ID of robot j then
12: for z j ∈ Z j do
13: Compute ηrz j = ∫

Vr
ψz j ,q j (x)v(x) dx

14: end for
15: if j = r then
16: Wait for {ηkzr }zr∈Zr from all k ∈ N (r)
17: Compute ηzr = c(zr ; q) + ∑

k∈N (r) ηkzr
18: Send {ηzr }zr∈Zr to neighbors N (r)
19: else
20: Send {ηrz j }z j∈Z j to robot j
21: Wait for {ηz j }z j∈Z j from robot j
22: end if
23: Update PHD using Z j with (4)
24: Nu(r) ← Nu(r) \ { j}
25: end if
26: end while
27: end if

at the robot and containing the FoV is entirely contained
within the Voronoi cell.

Recall that we assume that each robot is able to communi-
cate with all robots that have an overlapping sensor FoV (line
4 in Algorithm 3). Robot r will also send its measurement
set Zt

r , its state qtr , and its ID r to each of these neighbors
(lines 5–7). The team then must ensure that measurements
are applied in the same order on each robot, which is accom-
plished using the active ID andNu(r) (lines 8–10). Once the
active ID is set, all robots must wait until that robot activates
itself (line 11). The active robot then communicates with its
neighbors in order to compute the normalization constant for
each measurement, ηz , in the PHD filter update (5) (lines 12–
22). This is necessary because the active robot does not have
all of the information about the PHD to compute the normal-
ization constants in (5). Note that each neighbor computes
the portion of these normalization constants within its own
Voronoi cell (lines 12–13) and sends it to the active robot
(line 20). The active robot aggregates these pieces and sends
the full normalization constants to all of the neighbors (lines
15–18). The active robot and each of its neighbors can then
update the PHD using the active measurement set (line 23).
Once this is done, all robots remove the active robot ID from
their list of updates (line 24) and repeat this process until all
measurement sets have been processed. These steps ensure
that the distributed update step yields an identical PHD to a
centralized implementation of the PHD filter.

This distributed PHD filter in Algorithm 3 is low band-
width, since each exchange of data is small. Robots only need
to exchange measurement sets (a set of scalars or vectors),
poses (a single vector), IDs (a scalar), and normalization
constants (a set of scalars). Since there is theoretically no
upper bound on the number of measurements, there is no
upper bound on the bandwidth. But in practice the num-
ber of measurements will typically be small, making this
much more efficient than sending direct information about
the PHD, which would include 10’s to 1000’s of particles
(each of which is a vector for the pose and a scalar for the
weight).

Algorithm 3 requires six messages to be sent between any
pair of robots, three when each robot is updating the PHD
in each cell. The first messages contain the measurement
set, pose, and robot ID (line 6). The second messages con-
tain the partial normalization terms from each neighbor (line
20). The third messages contain the complete normalization
terms (lines 18/21). Therefore the complexity of the algo-
rithm is linear with respect to the number of neighbors. Since
the number of Voronoi neighbors remains unchanged when
another robot is added to the team outside of the local neigh-
borhood, the number of neighbors is constant with respect
to the size of the team. Therefore, Algorithm 3 has constant
complexity in the size of the team and so the number of iter-
ations through the while loop, i.e., the number of neighbors,
has constant complexity in the size of the team (line 9) as
does each round of communication within the loop (lines 11,
18, and 20).

4 2D search and tracking

We conduct a set of simulated experiments usingMatlab in
order to demonstrate the efficacy of our proposed distributed
estimation and control algorithm.The environment is an open
100×100mareawith no obstacles. The robots are holonomic
with a maximum velocity of 2 m/s. Each robot is equipped
with an onboard sensor that collects data at 2 Hz with

pd(x | q) =
{
0.8 ‖x − q‖ ≤ 5 m

0 else
(9)

g(z | x, q) = N (z | x, 0.25I2) (10)

c(z | q) = 3.66 · 10−3 (11)

where N (z | μ,
) is a Gaussian distribution with mean
μ and covariance
. The total expected number of clutter
detections per measurement set is

∫
c(z | q) dz = 0.287,

which corresponds to a 75% chance of receiving 0 clutter
detections.

The PHD is represented by a uniform grid of particles. The
grid resolution is 1m, and initially the weight of each particle

123

Autonomous Robots (2020) 44:673–689 679

is set to w j = 10−4, so that the total expected number of tar-
gets is initially 1. To extract an estimated target set we convert
the PHD to an image and use the LocalMaximaFinder
from theMatlabComputer Vision toolboxwith a neighbor-
hood size of 3 and a threshold of 0.05. The resulting maxima
are used as the best guess of the target set.

We measure the error of this estimated target set with
respect to the true target set using the Optimal SubPattern
Assignment (OSPA) metric, which is commonly used in the
PHD filter literature (Schuhmacher et al. 2008). The error
between two sets X ,Y , where |X | = m ≤ |Y | = n without
loss of generality, is

d(X ,Y) =
(
1

n
min
π∈�n

m∑

i=1

dc(xi , yπ(i))
p + cp(n − m)

)1/p

,

(12)

where c is a cutoff distance, dc(x, y) = min(c, ‖x− y‖), and
�n is the set of all permutations of the set {1, 2, . . . , n}.OSPA
finds the lowest cost assignment, where elements x ∈ X and
y ∈ Y can be matched only if they are within distance c of
each other. We use c = 10 m and p = 1.

To demonstrate the advantage of using the PHD as the
importance weighting function φ(x) within Lloyd’s algo-
rithm, we compare the results of teams using our algorithm
to teams using Lloyd’s algorithm with a uniform importance
weighting function. In practice, using a uniform weighting
function will lead the robots to evenly spread out and cover
the environment Cortes et al. (2004). We use the same col-
lection of starting locations for the robots and targets to make
the comparisons between the two methods as consistent as
possible.

We do not compare against any other methods since
all other target tracking algorithms make a more restric-
tive set of assumptions about sensing, estimation, targets,
etc. For example, CMOMMT (Parker 2002) assumes that
there are no false positive or false negative detections; SCAT
(Pimenta et al. 2008) completely ignores sensing and esti-
mation, assuming that target locations are provided to the
team; and game-theoretic approaches are typically limited to
a single target (Pan et al. 2012). Future work will explore the
impact that these assumptions have on the performance of
the team as they compare to our approach.

4.1 Stationary targets

When searching for static targets, the target motion models
are trivial. The motion model is the identity map, the sur-
vival probability is unity, and the birth PHD is zero. This is
true for both the ground truth motion of the targets and the
models used by the robots in the PHD prediction equation
(3). We run trials with three different nominal numbers of

0 20 40 60 80 100
0

20

40

60

80

100
Robot path
Target
Starting box

Fig. 2 Figure showing the paths taken by the robots during a single
trial with 20 robots and 9 static targets

targets, 10, 30, and 50, with the locations drawn uniformly
at random from an area that is 120 × 120 m. Any targets
that begin outside of the environment are discarded, effec-
tively randomizing the number of targets in each trial. On
average, the number of targets inside of the environment is
6.6, 20.0, and 33.5, respectively. The robots begin each trial
at randomized locations within the box at the bottom center
of the environment shown in Fig. 2 and explore for 250 s.

In each trial, robots begin by sweeping out the environ-
ment. As the robots detect that areas have no targets, the PHD
weight decreases, thereby shifting the centroid away from
regions without targets. If a robot locates a target (or targets,
if multiple targets are in close proximity to one another), it
stops exploring to keep that target within its FoV. Figure 2
shows this behavior over the course of a single run.1 Fig-
ure 3a–c show the statistics of the final OSPA error over ten
trials for team size of 10–100 robots and for robots using the
PHD as the importance weighting function. As the size of the
team surpasses the number of targets, the OSPA error reaches
a minimum and does not decrease any further as more robots
are added to the team. This is expected from the emergent
behavior of the team.

The robots using a uniform importance weighting func-
tion (i.e., a coverage strategy) perform significantly worse
than robots that use the PHD as the importance weighting
function, as Fig. 3d–f show. For the coverage strategy, the
median OSPA error for a team of the same size remains con-
sistent as the number of targets increases. This is due to the
fact that the target locations are drawn uniformly at random
and so a coverage-based control scheme will tend to see the
same fraction of targets on average. The spread decreases
because the density of targets increases, so the total fraction
of the targets that have been seen is less sensitive to missing
or seeing an extra target.

The only instance where the constant weighting function
is not at a disadvantage compared to the PHD weighting
function is when the number of robots is small compared
to the number of targets. This is due to the fact that robots

1 The video accompanying the conference version of this paper can be
found at https://youtu.be/DgtP4rY7Awk.

123

https://youtu.be/DgtP4rY7Awk

680 Autonomous Robots (2020) 44:673–689

10 20 30 40 50 60 70 80 90 100
of robots

0

2

4

6

8

10
M

ed
ia

n
O

S
P

A
 E

rr
or

(a) 10 Targets - PHD

10 20 30 40 50 60 70 80 90 100
of robots

0

2

4

6

8

10

M
ed

ia
n

O
S

P
A

 E
rr

or

(b) 30 Targets - PHD

10 20 30 40 50 60 70 80 90 100
of robots

0

2

4

6

8

10

M
ed

ia
n

O
S

P
A

 E
rr

or

(c) 50 Targets - PHD

10 20 30 40 50 60 70 80 90 100
of robots

0

2

4

6

8

10

M
ed

ia
n

O
S

P
A

 E
rr

or

(d) 10 Targets - Constant

10 20 30 40 50 60 70 80 90 100
of robots

0

2

4

6

8

10
M

ed
ia

n
O

S
P

A
 E

rr
or

(e) 30 Targets - Constant

10 20 30 40 50 60 70 80 90 100
of robots

0

2

4

6

8

10

M
ed

ia
n

O
S

P
A

 E
rr

or

(f) 50 Targets - Constant

Fig. 3 Boxplots showing the final OSPA error statistics over 10 runs for teams of 10–100 robots and 10, 30, or 50 static targets. The final value is
measured as the median over the last 5% of the run. The robots use either the PHD as the weighting function (a–c) or a constant weighting function
(d–f)

using the PHD tend to stop exploring when they see a target.
When there are fewer robots than targets, this will leave some
targets unviewed, while robots using the constant weighting
function will not stop and will thus have the opportunity to
localize more targets, despite the fact that their motion is not
guided by the current target estimates.

Figure 4 shows the 95%rise timeof theOSPAerrormetric,
meaning the time it takes for the OSPA error to reach a value
within 5% of the final value (from Fig. 3). There are four
important trends. First, for teams using the PHD, the trend
in the rise time as a function of the team size is consistent,
rising up to a peak before decaying down to an asymptote.
This indicates that it is an emergent property of the search
and tracking algorithm. Second, the value of the asymptote
increases slightlywith the number of targets. This is due to the
fact that there is a fixed cost for the robots to spread out over
the environment, plus a small, incremental cost to localize
each target. This is consistentwith the author’s previouswork
on multi-target search methods (Dames and Kumar 2015).
Third, the rise times are quite consistent for robots using
the PHD when the number of robots matches or exceeds the
number of targets. This matches the trend in the final OSPA
error in Fig. 3a–c and indicates a saturation point for the
number of robots necessary to complete a given task. Lastly,

the rise times are much more consistent when the robots
use the PHD as the importance weighting function, further
indicating that this choice of weighting function is effective
for target search and tracking.

4.2 Moving targets

We next consider searching for and tracking dynamic tar-
gets moving about the environment. The number of targets
varies over time as new targets enter the search area and oth-
ers leave. The ground truth motion for the mobile targets
is a variant of a random walk. The targets move forward at
1 m/s while the heading direction updates at 10 Hz, changing
by 	θ at each update. 	θ is drawn from a Gaussian distri-
bution with zero mean and standard deviation 0.1 rad. The
motion model used in the PHD filter is different from the
true behavior. The robots assume that the targets follow a
truncated Gaussian random walk, so the target state is only
the 2D position (with no orientation). The Gaussian has a
spherical covariance matrix with standard deviation 0.35 m
(corresponding to a velocity of 0.7 m/s since the filter update
rate is 2 Hz) and is truncated to be within 2 m of the cur-
rent position. This gives the robots the advantage of having
greater maneuverability, but the disadvantage of having an

123

Autonomous Robots (2020) 44:673–689 681

10 20 30 40 50 60 70 80 90 100
of robots

0

50

100

150

200

250

300
R

is
e

Ti
m

e
fo

r O
S

P
A

 E
rr

or

10 20 30 40 50 60 70 80 90 100
of robots

0

50

100

150

200

250

300

R
is

e
Ti

m
e

fo
r O

S
P

A
 E

rr
or

10 20 30 40 50 60 70 80 90 100
of robots

0

50

100

150

200

250

300

R
is

e
Ti

m
e

fo
r O

S
P

A
 E

rr
or

10 20 30 40 50 60 70 80 90 100

of robots

0

50

100

150

200

250

300

R
is

e
Ti

m
e

fo
r O

S
P

A
 E

rr
or

10 20 30 40 50 60 70 80 90 100

of robots

0

50

100

150

200

250

300

R
is

e
Ti

m
e

fo
r O

S
P

A
 E

rr
or

10 20 30 40 50 60 70 80 90 100

of robots

0

50

100

150

200

250

300

R
is

e
Ti

m
e

fo
r O

S
P

A
 E

rr
or

(a) 10 Targets - PHD (b) 30 Targets - PHD (c) 50 Targets - PHD

(d) 10 Targets - Constant (e) 30 Targets - Constant (f) 50 Targets - Constant

Fig. 4 Boxplots showing the 95% rise time of the OSPA error statistics over 10 runs for teams of 10–100 robots and 10, 30, or 50 static targets.
The robots use either the PHD as the weighting function (a–c) or a constant weighting function (d–f)

0
0

20

20

40

40

60

60

80

80

100

100

Robot path
Starting box

Fig. 5 Figure showing the paths taken by the robots during a single
trial with 20 robots and (initially) 20 dynamic targets

incorrect target motion model, making the PHD prediction
step less accurate.

Targets may enter or leave the environment by crossing its
boundaries. To account for this, the probability of survival
and the birth PHD are

ps(x) =
{
0.5 ‖x − ∂E‖ ≤ 2 m

1 else
(13)

b(x) =
{
5.26 · 10−5 ‖x − ∂E‖ ≤ 5 m

0 else
(14)

where ∂E is the boundary of the environment. The total num-
ber of expected target births is

∫
E b(x) dx = 0.1 per update

step. Targets are added to the true target set by drawing sam-
ples from the birth PHD, so the birth model matches the true
statistics of the targets. This is unlike the survival probability
model, where the true targets survive with probability 1 until
their motion causes them to leave the environment, in which
case the survival probability is 0. Regardless of the number
of initial targets, the number of targets over the final half of
the experiment is around 35.

The team of robots behaves markedly differently when
tracking dynamic targets as opposed to static targets, as Fig. 5
shows.2 Instead of uniformly spreading out, most the team
clusters around the boundary of the environment due to the
birth PHD providing a constant source of weight in the PHD.
The remaining robots spread out over the central region of the
environment. When a central robot detects a target, it moves
with that target, keeping the target in its FoV. When a new
target enters the environment and moves towards the center,
the robot that first detects it follows the target away from the
boundary as long as there are other robots nearby to take its
place.

This change in the emergent behavior of the team leads to
a change in the OSPA error, as Fig. 6 shows. For dynamic tar-
gets, wemeasure theOSPA error as themedian value over the

2 The video accompanying the conference version of this paper shows
the team in action and can be found at https://youtu.be/DgtP4rY7Awk.

123

https://youtu.be/DgtP4rY7Awk

682 Autonomous Robots (2020) 44:673–689

10 20 30 40 50 60 70 80 90 100

of robots

0

2

4

6

8

10
M

ed
ia

n
O

S
P

A
 E

rr
or

M
ed

ia
n

O
S

P
A

 E
rr

or

10 20 30 40 50 60 70 80 90 100

of robots

0

2

4

6

8

10

M
ed

ia
n

O
S

P
A

 E
rr

or

10 20 30 40 50 60 70 80 90 100

of robots

0

2

4

6

8

10

M
ed

ia
n

O
S

P
A

 E
rr

or

10 20 30 40 50 60 70 80 90 100

of robots

0

2

4

6

8

10

10 20 30 40 50 60 70 80 90 100

of robots

0

2

4

6

8

10
M

ed
ia

n
O

S
P

A
 E

rr
or

10 20 30 40 50 60 70 80 90 100

of robots

0

2

4

6

8

10

M
ed

ia
n

O
S

P
A

 E
rr

or

(a) 10 Targets - PHD (b) 20 Targets - PHD (c) 30 Targets - PHD

(d) 10 Targets - Constant (e) 30 Targets - Constant (f) 50 Targets - Constant

Fig. 6 Boxplots showing the median OSPA error statistics over 10 runs
for teams of 10–100 robots and 10, 20, or 30 dynamic targets. Note that
this is the initial number of targets. The true number of targets reaches

an average of ≈35 regardless of the initial number. The robots use
either the PHD as the weighting function (a–c) or a constant weighting
function (d–f)

final quarter of the run (250 s out of 1000 s). This measures
the steady-state performance of the team as it gives time for
the robots to spread out across the environment. In this case,
the trend in the OSPA error is nearly invariant to the initial
number of targets. For teamsusing thePHDas the importance
weighting function, the team size at which the error reaches
an asymptote is largely a function of the size of the environ-
ment and the size of the sensor FoV. In our scenario 68 robots
are required to completely cover the entire region where tar-
gets may be born (i.e., b(x) > 0) if they were perfectly
spaced, hence the OSPA error remained largely constant at
70 robots and above. Once the boundary is sufficiently cov-
ered by robots, the remainder are completely free to fill the
center, with additional robots providing diminishing returns
as the center area became saturated. The minimum error also
increases compared to the static case due to the mismatch
between the true and assumed target motion models as well
as the occasional failure of the team to detect a target in the
center of the environment.

We can also see that, in the case of dynamic targets,
robots using the PHD as the importance weighting function,
Fig. 6a–c, have an even greater advantage over robots using
a constant importance weighting function, Fig. 6d–f, than in

the case of static targets. One factor leading to this is that
robots using the constant weighting function do not prior-
itize areas where new targets are likely to appear. In our
scenario, where new targets appear along the boundaries of
the environment, this puts the coverage-based controller at
a significant disadvantage since relatively few robots will be
near the boundaries.

Figure 7 shows the 95% rise time of theOSPA errormetric
for the scenario with dynamic targets. Note that the rise time
is less meaningful than with the static targets since the true
target set is constantly changing. Despite this, we can still
draw two meaningful conclusions. First, the overall shape of
the trend as a function of the team size is consistent with the
static target scenario, rising to a peak before decaying to an
asymptote. The main difference is that the rise times are less
consistent (due to the fact that the true target set constantly
changes). Second,when there are enough robots to “saturate”
the environment (about 60+ robots in Fig. 6a–c), the rise time
decreases and gets more consistent as the size of the team
increases. This happens because the area not covered by at
least one robot decreases, thus decreasing the chance of a
missed target. Before this saturation point, the team does not
complete the task (meaning some targets are not tracked), and

123

Autonomous Robots (2020) 44:673–689 683

10 20 30 40 50 60 70 80 90 100

of robots

0

100

200

300

400
R

is
e

Ti
m

e
fo

r O
S

P
A

 E
rr

or

10 20 30 40 50 60 70 80 90 100

of robots

0

100

200

300

400

R
is

e
Ti

m
e

fo
r O

S
P

A
 E

rr
or

10 20 30 40 50 60 70 80 90 100

of robots

0

100

200

300

400

R
is

e
Ti

m
e

fo
r O

S
P

A
 E

rr
or

10 20 30 40 50 60 70 80 90 100

of robots

0

100

200

300

400

R
is

e
Ti

m
e

fo
r O

S
P

A
 E

rr
or

10 20 30 40 50 60 70 80 90 100

of robots

0

100

200

300

400

R
is

e
Ti

m
e

fo
r O

S
P

A
 E

rr
or

10 20 30 40 50 60 70 80 90 100

of robots

0

100

200

300

400

R
is

e
Ti

m
e

fo
r O

S
P

A
 E

rr
or

(a) 10 Targets - PHD (b) 20 Targets - PHD (c) 30 Targets - PHD

(d) 10 Targets - Constant (e) 20 Targets - Constant (f) 30 Targets - Constant

Fig. 7 Boxplots showing the 95% rise time of the OSPA error statistics over 10 runs for teams of 10–100 robots and 10, 20, or 30 dynamic targets.
The robots use either the PHD as the weighting function (a–c) or a constant weighting function (d–f)

so the rise time is not a meaningful statistic. The same is true
for robots using a constant importance weighting function.

4.3 Computation time

In addition to evaluating the tracking performance of the
team, we also investigate the computational cost and com-
plexity of our estimation and control algorithms. All sim-
ulations were run in a Matlab environment on a single
Windows desktop computer with a 3.4 GHz, quad-core Intel
Xeon processor and 16GB of RAM. Figure 8 shows the aver-
age time (in ms) per time step per robot of the simulation as
a function of the number of robots and targets.

Given that the distributed PHD filter has constant com-
plexity in the size of the team (as discussed in Sect. 3.3), we
expect to see a constant computational time as the number
of robots increases. Figure 8 confirms this. We believe that
the high cost per robot for small team sizes is due to the con-
stant overhead of the simulation, while the slight increase
for large team sizes is due to inefficiencies in our simulation.
For example, Line 4 of Algorithm 3 requires each robot to
find all Voronoi cells that overlap with its sensor FoV. We
implement this in a naïve way that requires each robot to
intersect its FoV polygon with the Voronoi cell polygon of
each other robot. This processing requires R2 comparisons

across the team. However, this would not be an issue in a
distributed implementation since each robot would operate
in parallel and this type of naïve comparison would not be
possible. Additionally, the difference between robots using
the PHD versus constant importance weighting function is
negligible, since the only difference between the two cases is
in the values of theweights used to calculate the goal position
in (8).

Additionally, these results confirm that our proposed esti-
mation and control algorithms could be run in real time. The
average computational cost per time step (i.e., 1 s of simulated
time) is 10 ms for each robot, which is approximately 1% of
the total time. A more efficient implementation in another
language, such as Python or C++, would further decrease the
computational costs, leaving the robots plenty of computa-
tional resources to run the sensor processing and localization
processes necessary to detect objects and provide accurate
pose estimates, respectively.

5 3D search and tracking

We next conduct a second set of simulated experiments in
order to demonstrate howour proposeddistributed estimation
and control algorithm can generalize to other search settings.

123

684 Autonomous Robots (2020) 44:673–689

0 20 40 60 80 100

0 20 40 60 80 100

of robots

0

5

10

15

20

m
s

pe
r T

im
e

S
te

p
P

er
 R

ob
ot

T = 10
T = 30
T = 50

(a) Static Targets

of robots

0

5

10

15

20

m
s

pe
r T

im
e

S
te

p
P

er
 R

ob
ot

T = 10
T = 20
T = 30

(b) Dynamic Targets

Fig. 8 Figure showing average run time of the simulation (in ms) per
time step per robot as a function of the number of robots and targets

The targets move about in the same open, 2D environment as
before.However, now the robots are capable ofmoving in 3D.
The robots are equippedwith a downward-facing sensor with
a circular footprint. As the robots move up in elevation, the
sensor footprint increases in size and the noise also increases.
This is qualitatively similar to a camera, which has a fixed
field of view and a finite number of pixels. The further the
camera is from the target, the more area each pixel covers
and thus the larger the uncertainty in the target position. The
detection model for this downward-facing sensor is:

p f n(x) = max

(
min

(
0.2

√
xe
5

, 0.99

)
, 0.01

)
(15)

pd(x | q) =
{
1 − p f n(x) ‖q2D − x‖ ≤ qe
0 else

(16)

where x is the 2D position of a target, q is the 3D position of
the robot, q2D is the position in the plane of the robot, and qe
is the elevation of the robot. Here, p f n(x) is the probability
of a false negative detection, which increases as the square
root of the elevation of the robot. This is due to the fact that
the number of pixels taken up by a target, which affects the
ability of computer vision algorithms to detect the target, will
increase quadratically with the elevation. Note that at qe = 5,

the sensor footprint and probability of detection are identical
to the 2D scenario.

The measurement model is

g(z | x, q) = N (z | q2D, 0.01q2e I2). (17)

The standard deviation of the sensor noise also increases
linearly with the elevation of the robot to account for the
linear increase in the size of the footprint. Again, the model
is identical to the 2D model at qe = 5.

Lastly, the clutter model is

p0(q) = max (1 − 0.05qe, 0.01) (18)

c(z | q) = − ln p0(q)

πq2e
, (19)

where p0(q) is the probability of having 0 clutter detections.
Recall that the number of clutter detections is modeled by a
Poisson distribution in the PHD filter framework, so p0 =
e−μ, where μ is the parameter of the Poisson distribution.
Finally, we want the integral of the clutter PHD, c(z | q),
over all possible measurements (meaning all measurements
in the sensor footprint, which has a radius equal to qe) to be
equal to this parameter μ. This gives us the final expression
(19). Setting qe = 5 yields the same values as in the 2D case,
which is that the probability of having 0 clutter detections in
a sensor footprint with a 5 m radius is 0.75.

To move the robots, we break down the motion into two
components, one in the plane andonevertically.Motion in the
plane is exactly the same as before, using Lloyd’s algorithm
with the weighted centroid of each Voronoi cell, denoted
q2D,c. Vertical motion is dictated by the size of the sensor
footprint, the size of the robot’s Voronoi cell, and the spread
of the target uncertainty.Recall thatwhen the robots are lower
in elevation than qe = 5, the sensor footprint is smaller than
the 2D scenario but the sensor is less noisy. Conversely, when
the robots are above qe = 5 then the footprint is larger but
the sensor is noisier.

More specifically, to set the desired elevation of the robot
above the goal point (above q2D,c), we first find a desired
radius of the sensor footprint. The desired sensor radius is
set by considering two factors: rcell, the average of the radii
of the circles centered at q2D,c that are inscribed in and cir-
cumscribe the Voronoi cell, and rtargets, computed from the
second moment of the target distribution within the cell:

rtargets = 3

√∫
V (x − q2D,c)2w(x) dx∫

V w(x) dx
. (20)

The cell radius, rcell, uses the average of the two radii in order
to strike a balance between sensor coverage and accuracy for
long and narrow cells.

123

Autonomous Robots (2020) 44:673–689 685

10 20 30 40 50 60 70 80 90 100

of robots

0

2

4

6

8

10

M
ed

ia
n

O
S

P
A

 E
rr

or

10 20 30 40 50 60 70 80 90 100

of robots

0

2

4

6

8

10

M
ed

ia
n

O
S

P
A

 E
rr

or

10 20 30 40 50 60 70 80 90 100

of robots

0

2

4

6

8

10

M
ed

ia
n

O
S

P
A

 E
rr

or

10 20 30 40 50 60 70 80 90 100

of robots

0

2

4

6

8

10

M
ed

ia
n

O
S

P
A

 E
rr

or

10 20 30 40 50 60 70 80 90 100

of robots

0

2

4

6

8

10

M
ed

ia
n

O
S

P
A

 E
rr

or

10 20 30 40 50 60 70 80 90 100

of robots

0

2

4

6

8

10

M
ed

ia
n

O
S

P
A

 E
rr

or

(a) 10 Targets - PHD (b) 30 Targets - PHD (c)

(d)

50 Targets - PHD

10 Targets - Constant (e) 30 Targets - Constant (f) 50 Targets - Constant

Fig. 9 Boxplots showing the final OSPA error statistics over 10 runs
for teams of 10–100 moving in 3D searching for 10, 30, or 50 static
targets in the plane. The final value is measured as the median over the

last 5% of the run. The robots used either the PHD as the weighting
function (a–c) or a constant weighting function (d–f)

10 20 30 40 50 60 70 80 90 100

of robots

0

50

100

150

200

250

300

R
is

e
Ti

m
e

fo
r O

S
P

A
 E

rr
or

10 20 30 40 50 60 70 80 90 100

of robots

0

50

100

150

200

250

300

R
is

e
Ti

m
e

fo
r O

S
P

A
 E

rr
or

10 20 30 40 50 60 70 80 90 100

of robots

0

50

100

150

200

250

300

R
is

e
Ti

m
e

fo
r O

S
P

A
 E

rr
or

10 20 30 40 50 60 70 80 90 100

of robots

0

50

100

150

200

250

300

R
is

e
Ti

m
e

fo
r O

S
P

A
 E

rr
or

10 20 30 40 50 60 70 80 90 100

of robots

0

50

100

150

200

250

300

R
is

e
Ti

m
e

fo
r O

S
P

A
 E

rr
or

10 20 30 40 50 60 70 80 90 100

of robots

0

50

100

150

200

250

300

R
is

e
Ti

m
e

fo
r O

S
P

A
 E

rr
or

(a) 10 Targets - PHD (b) 30 Targets - PHD (c) 50 Targets - PHD

(d) 10 Targets - Constant (e) 30 Targets - Constant (f) 50 Targets - Constant

Fig. 10 Boxplots showing the 95% rise time of the OSPA error statistics over 10 runs for teams of 10–100 robots moving in 3D searching for 10,
30, or 50 static targets in the plane. The robots used either the PHD as the weighting function (a–c) or a constant weighting function (d–f)

123

686 Autonomous Robots (2020) 44:673–689

10 20 30 40 50 60 70 80 90 100

of robots

0

2

4

6

8

10

M
ed

ia
n

O
S

P
A

 E
rr

or

10 20 30 40 50 60 70 80 90 100

of robots

0

2

4

6

8

10

M
ed

ia
n

O
S

P
A

 E
rr

or

10 20 30 40 50 60 70 80 90 100

of robots

0

2

4

6

8

10

M
ed

ia
n

O
S

P
A

 E
rr

or

10 20 30 40 50 60 70 80 90 100

of robots

0

2

4

6

8

10

M
ed

ia
n

O
S

P
A

 E
rr

or

10 20 30 40 50 60 70 80 90 100

of robots

0

2

4

6

8

10

M
ed

ia
n

O
S

P
A

 E
rr

or

10 20 30 40 50 60 70 80 90 100

of robots

0

2

4

6

8

10

M
ed

ia
n

O
S

P
A

 E
rr

or

(a) 10 Targets - PHD (b) 20 Targets - PHD (c) 30 Targets - PHD

(d) 10 Targets - Constant (e) 20 Targets - Constant (f) 30 Targets - Constant

Fig. 11 Boxplots showing the median OSPA error statistics over 10 runs for teams of 10–100 robots and 10, 20, or 30 dynamic targets. The robots
used either the PHD as the weighting function (a–c) or a constant weighting function (d–f)

10 20 30 40 50 60 70 80 90 100

of robots

0

100

200

300

400

R
is

e
Ti

m
e

fo
r O

S
P

A
 E

rr
or

10 20 30 40 50 60 70 80 90 100

of robots

0

100

200

300

400

R
is

e
Ti

m
e

fo
r O

S
P

A
 E

rr
or

10 20 30 40 50 60 70 80 90 100

of robots

0

100

200

300

400

R
is

e
Ti

m
e

fo
r O

S
P

A
 E

rr
or

10 20 30 40 50 60 70 80 90 100

of robots

0

100

200

300

400

R
is

e
Ti

m
e

fo
r O

S
P

A
 E

rr
or

10 20 30 40 50 60 70 80 90 100

of robots

0

100

200

300

400

R
is

e
Ti

m
e

fo
r O

S
P

A
 E

rr
or

10 20 30 40 50 60 70 80 90 100

of robots

0

100

200

300

400

R
is

e
Ti

m
e

fo
r O

S
P

A
 E

rr
or

(a) 10 Targets - PHD (b) 20 Targets - PHD (c) 30 Targets - PHD

(d) 10 Targets - Constant (e) 20 Targets - Constant (f) 30 Targets - Constant

Fig. 12 Boxplots showing the 95% rise time of the OSPA error statistics over 10 runs for teams of 10–100 robots and 10, 20, or 30 dynamic targets.
The robots used either the PHD as the weighting function (a–c) or a constant weighting function (d–f)

123

Autonomous Robots (2020) 44:673–689 687

Then the desired radius of the sensor footprint is given by
the weighted sum

rdes = wcellrcell + wtargetsrtargets
wcell + wtargets

, (21)

where wcell = 1 is a constant indicating the importance of the
cell geometry and wtargets = ∫

V w(x) dx is the total weight
of the PHD in the cell. Setting wcell = 0 causes the robots to
move down to aminimumelevation to track targetswithmax-
imum accuracy. However, we found this to be sub-optimal
since a string of false negative or false positive detections can
cause the robot tomove away from the target location and lose
tracking. Setting wcell = ∞ (or when wtargets = 0) causes
the robot to focus on coverage instead of tracking. Overall,
this formula makes a trade-off between covering the cell at
the expense of having increased sensor noise, and focusing
in on existing targets at the expense of missing new targets
that may enter the cell.

Using this modified controller, we conduct a series of
simulated experiments comparable to those in Sect. 4. The
simulation parameters used here are identical unless other-
wise noted. Specifically, the target locations and tracks are
identical to those used in the previous set of simulations in
order to specifically isolate the difference between the 2D
and 3D motion of the robots.

5.1 Stationary targets

The robots moving in 3D are able to successfully locate the
static targets. Figure 9 shows that small teams perform better
than they did in the 2D case, in Fig. 3. This is due to the
fact that the robots are able to move upwards to increase
the size of their sensor footprint, ensuring that all targets are
discovered. This is also true of the teams using the constant
importance weighting function, where the final OSPA error
in Fig. 9d–f is only slightly worse than those in Fig. 9a–c.

The shape of the rise time in Fig. 10 is also similar to those
in Fig. 4. The main difference is that both the values and the
spread of the rise times are higher than the 2D case. The
increase in the rise time is due to the extra vertical distance
that the robots must travel despite having the samemaximum
total velocity. The increase in the spread of the times is also
due to the need for extra motion, in this case when false
positive or false negative detections cause the robots to move
vertically.

5.2 Moving targets

As Figs. 11 and 12 show, the team is able to successfully
track a set of moving targets. Comparing the performance to
Figs. 6 and 7, we can see that when the robots can move in
3D, smaller teams perform significantly better than they did

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Standard Deviation

0

2

4

6

8

10

M
ed

ia
n

O
S

P
A

 E
rr

or

(a) Static Targets - OSPA

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Standard Deviation

0

2

4

6

8

10

M
ed

ia
n

O
S

P
A

 E
rr

or

(b) Dynamic Targets - OSPA

Fig. 13 Boxplots showing the OSPA error statistics over 10 runs for
teams of 40 robots searching for 30 static (a) or dynamic (b) targets.
We vary the standard deviation in the robot pose uncertainty from 0 to
2 units, in steps of 0.2

in the 2D case. Again, this is due to the ability of robots to
increase the size of their footprint in order to covermore area.
The performance for larger team sizes is essentially equiv-
alent to the 2D scenario since the team has “saturated” the
environment. The rise times are lower than the 2D scenario,
in general. Again, this is due to the additional distance the
robots travel vertically.

Overall, the teams of robots that can move in 3D perform
comparably to those that only move in the plane. The key
difference is with small teams, where the ability to increase
the sensor footprint allows a smaller number of robots to
cover a larger area. This comes at the expense of taking longer
to find the targets and tracking the targets with slightly more
uncertainty.

5.3 Uncertain robot pose

As we state in Sect. 2.4, we assume that robots have per-
fect pose information and that this is, in practice, unrealistic.
To investigate the effects of this assumption on the perfor-

123

688 Autonomous Robots (2020) 44:673–689

mance of our algorithms, we conduct a series of experiments
where the true pose of each robot, which is used to generate
measurements, is corrupted with Gaussian noise of varying
magnitude. This noisy pose estimate is used to compute the
Voronoi partition and to update the PHD filter. All trials are
conductedwith 40 robots searching for 30 (static or dynamic)
targets, a configuration that performedwell in our prior trials.

Figure 13 shows the results of these trials. As we can
see, the performance of the team degrades gracefully as the
uncertainty in the robots’ poses increases. For a standard
deviation of 0.4 or below, the results are nearly identical to
the case with no noise. Additionally, it is not until a standard
deviation of 1 that the difference between the median value
of the noisy and noise-free OSPA error exceeds the value of
the standard deviation. In other words, the system is fairly
robust to pose errors below 1 unit (1% of the environment
size).

6 Conclusion

In this paper we proposed a distributed algorithm to search
for and track an unknown number of targets in a search
area. There are two main components: (1) a novel, dis-
tributed PHD filter implementation and (2) a Voronoi-based
control strategy. This combination of the PHD filter with
Voronoi-based control is another contribution of our work.
Our distributed PHD filter yields identical results to a cen-
tralized filter while only requiring communication between
nearby agents. This offers a significant advantage for large
teams and for teams exploring large environments in which
centralized solutions are not possible. The robots use the
output of the distributed PHD filter to weight the relative
importance of the area within their Voronoi cell. The robots
drive toward the weighted centroid of their Voronoi cell,
updating the goal locationwhenever thePHD is updated. This
causes robots to move towards areas where targets have been
detected or may enter the environment and to move away
from areas that are believed to be empty. We demonstrate
through extensive simulated experiments that our distributed
estimation and control algorithm scales to teams of 10–100
robots, and that these teams are able to accurately detect and
track 10–50 static or dynamic targets. Furthermore, the track-
ing performance of the team is significantly more accurate
using our proposed approach than using the standard cover-
age controllerwith a uniform importanceweighting function.

The search and tracking algorithm is very generalizable.
To demonstrate this, we ran a second series of simulated
experiments with robots that can move in 3D. We kept the
sensor and target models as similar as possible same to better
compare the performance of the system across robot models.
For large teams, the team performed equally well compared
to the 2D scenario since there were enough robots to cover

all of the targets. However, the 3D motion had a large effect
on small teams as the individual robots were able to increase
the size of their sensor footprint in order to ensure all targets
were visible to at least one robot.

Future work will continue to explore how the PHD filter
formulation can work with other sensor types, robot motion
models, and targetmotionmodels.Wewill also look at devel-
oping distributed versions ofmoremodern RFS-based filters,
such as the cardinality-balancedmulti-target multi-Bernoulli
(CBMeMBer) filter (Vo et al. 2009). The CBMeMBer filter
has a better “memory” of targets that are repeatedly mis-
detected over a short time span compared to the PHD filter.
Another direction of future work is hardware experimenta-
tion, which will require addressing the issues of imperfect
communication and robot localization.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

Arslan, O., Koditschek, D. E. (2016). Voronoi-based coverage control
of heterogeneous disk-shaped robots. In IEEE international con-
ference on robotics and automation, IEEE (pp. 4259–4266).

Bhattacharya, S., Ghrist, R., & Kumar, V. (2014). Multi-robot coverage
and exploration on Riemannian manifolds with boundaries. The
International Journal of Robotics Research, 33(1), 113–137.

Blackman, S. S. (2004). Multiple hypothesis tracking for multiple tar-
get tracking. IEEE Aerospace and Electronics Systems Magazine,
19(1), 5–18.

Cortes, J.,Martinez, S.,Karatas, T.,&Bullo, F. (2004).Coverage control
for mobile sensing networks. IEEE Transactions on Automation
Science and Engineering, 20(2), 243–255.

Daley, D. J., & Vere-Jones, D. (2003). An introduction to the theory of
point processes (Vol. 1). Berlin: Springer.

Dames, P. (2017). Distributed multi-target search and tracking using
the PHD filter. In International symposium on multi-robot and
multi-agent systems (MRS) IEEE. https://doi.org/10.1109/mrs.
2017.8250924

Dames, P., Kumar, V. (2013). Cooperativemulti-target localizationwith
noisy sensors. In IEEE international conference on robotics and
automation (pp. 1877–1883).

Dames, P., & Kumar, V. (2015). Autonomous localization of an
unknown number of targets without data association using teams
of mobile sensors. IEEE Transactions on Automation Science and
Engineering, 12, 850–864.

Erdinc, O., Willett, P., & Bar-Shalom, Y. (2009). The bin-occupancy
filter and its connection to the PHD filters. IEEE Transactions on
Signal Processing, 57(11), 4232–4246.

Fortmann, T., Bar-Shalom, Y., & Scheffe, M. (1983). Sonar tracking
of multiple targets using joint probabilistic data association. IEEE
Journal of Oceanic Engineering, 8(3), 173–184.

Grisetti, G., Kummerle, R., Stachniss, C., &Burgard,W. (2010). A tuto-
rial on graph-based slam. IEEE Intelligent Transportation Systems
Magazine, 2(4), 31–43.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/mrs.2017.8250924
https://doi.org/10.1109/mrs.2017.8250924

Autonomous Robots (2020) 44:673–689 689

Hoffmann, G., & Tomlin, C. (2010). Mobile sensor network control
usingmutual informationmethods and particle filters. IEEETrans-
actions on Automatic Control, 55, 32–47.

Hollinger, G. A., Yerramalli, S., Singh, S., Mitra, U., & Sukhatme,
G. S. (2015). Distributed data fusion for multirobot search. IEEE
Transactions on Robotics, 31(1), 55–66.

Huang, H., Zhang,W., Ding, J., Stipanović, D.M., Tomlin, C. J. (2011).
Guaranteed decentralized pursuit-evasion in the plane with mul-
tiple pursuers. In IEEE conference on decision and control and
european control conference (CDC-ECC), IEEE (pp. 4835–4840).

Lee, S. G., & Egerstedt, M. (2013). Controlled coverage using time-
varying density functions. IFAC Proceedings Volumes, 46(27),
220–226.

Mahler, R. (2003). Multitarget Bayes filtering via first-order multitar-
get moments. IEEE Transactions on Aerospace and Electronic
Systems, 39(4), 1152–1178.

Mahler, R. (2007). Statistical multisource-multitarget information
fusion (Vol. 685). Boston: Artech House.

Mahler, R. (2009). The multisensor PHD filter: I. General solution via
multitarget calculus. SPIE Defense, Security, and Sensing, Inter-
national Society forOptics andPhotonics, 7336, 73360E–73360E.

Moratuwage, D., Vo B. N., Wang, D. (2013). Collaborative multi-
vehicle slam with moving object tracking. In IEEE international
conference on robotics and automation, IEEE (pp. 5702–5708).

Pan, S., Huang, H., Ding, J., Zhang, W., Tomlin, C. J., et al. (2012).
Pursuit, evasion and defense in the plane. In American control
conference (ACC), IEEE (pp. 4167–4173).

Parker, L. E. (2002). Distributed algorithms for multi-robot observation
of multiple moving targets. Autonomous Robots, 12(3), 231–255.

Pierson, A., Rus, D. (2017). Distributed target tracking in cluttered envi-
ronments with guaranteed collision avoidance. In International
symposium on multi-robot and multi-agent systems (MRS), IEEE
(pp. 83–89).

Pierson, A., Wang, Z., & Schwager, M. (2017). Intercepting rogue
robots: An algorithm for capturing multiple evaders with multiple
pursuers. IEEE Robotics and Automation Letters, 2(2), 530–537.

Pimenta, L. C., Kumar, V., Mesquita, R. C., Pereira, G. A. (2008).
Sensing and coverage for a network of heterogeneous robots. In
IEEE international conference on decision and control, IEEE (pp.
3947–3952).

Pimenta, L. C., Schwager, M., Lindsey, Q., Kumar, V., Rus, D.,
Mesquita, R. C., Pereira, G. A. (2009). Simultaneous coverage and
tracking (SCAT) of moving targets with robot networks. In Algo-
rithmic foundations of robotics VIII (pp. 85–99) Berlin: Springer.

Punithakumar, K., Kirubarajan, T., Sinha, A. (2006). A distributed
implementation of a sequential monte carlo probability hypothesis
density filter for sensor networks. In Defense and security sympo-
sium, international society for optics and photonics (p. 62350L).

Robin, C., & Lacroix, S. (2016). Multi-robot target detection and track-
ing: taxonomy and survey. Autonomous Robots, 40(4), 729–760.

Schuhmacher, D., Vo, B. T., & Vo, B. N. (2008). A consistent metric for
performance evaluation of multi-object filters. IEEE Transactions
on Signal Processing, 56(8), 3447–3457.

Stone, L. D., Streit, R. L., Corwin, T. L., & Bell, K. L. (2013). Bayesian
multiple target tracking. Norwood: Artech House.

Vo, B. N., Singh, S., & Doucet, A. (2005). Sequential monte carlo
methods for multi-target filtering with random finite sets. IEEE
Transactions on Aerospace and Electronic Systems, 41(4), 1224–
1245.

Vo, B. T., Vo, B. N., & Cantoni, A. (2009). The cardinality balanced
multi-target multi-bernoulli filter and its implementations. IEEE
Transactions on Signal Processing, 57(2), 409–423.

Zhou, Z., Zhang, W., Ding, J., Huang, H., Stipanović, D. M., & Tomlin,
C. J. (2016). Cooperative pursuit with voronoi partitions.Automat-
ica, 72, 64–72.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Philip M. Dames received his
B.S. and M.S. degrees in Mechan-
ical Engineering from Northwest-
ern University in 2010 and his
Ph.D. degree in Mechanical Engi-
neering and Applied Mechanics
from the University of Pennsyl-
vania in 2015. He is currently an
Assistant Professor of Mechani-
cal Engineering at Temple Uni-
versity. His current research inter-
ests include the intersection of
estimation, control, and commu-
nication in multiagent systems.

123

	Distributed multi-target search and tracking using the PHD filter
	Abstract
	1 Introduction
	2 Problem formulation
	2.1 Random finite sets
	2.2 PHD filter
	2.3 Lloyd's algorithm
	2.4 Assumptions

	3 Distributed estimation
	3.1 Particle exchange
	3.2 PHD prediction step
	3.3 PHD update step

	4 2D search and tracking
	4.1 Stationary targets
	4.2 Moving targets
	4.3 Computation time

	5 3D search and tracking
	5.1 Stationary targets
	5.2 Moving targets
	5.3 Uncertain robot pose

	6 Conclusion
	References

