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Abstract This paper investigates the visual and iner-

tial sensor fusion problem in the cooperative case and

provides new theoretical and basic results. Specifically,

the case of two agents is investigated. Each agent is

equipped with inertial sensors (accelerometer and gy-

roscope) and with a monocular camera. By using the

monocular camera, each agent can observe the other

agent. No additional camera observations (e.g., of exter-

nal point features in the environment) are considered.

First, the entire observable state is analytically derived.

This state contains the relative position between the

two agents (which includes the absolute scale), the rela-

tive velocity, the three Euler angles that express the ro-

tation between the two local frames and all the accelero-

meter and gyroscope biases. Then, the basic equations

that describe this system are analytically obtained. The

last part of the paper describes the use of these equa-

tions to obtain a closed-form solution that provides the

observable state in terms of the visual and inertial mea-

surements provided in a short time interval. This last

contribution is the extension of the results presented in

[18,31,32] to the cooperative case. The impact of the

presence of the bias on the performance of this closed-

form solution is also investigated and a simple and effec-

tive method to obtain the gyroscope bias is proposed.

Extensive simulations clearly show that the proposed

method is successful. It is worth noting that it is pos-

sible to automatically retrieve the absolute scale and

simultaneously calibrate the gyroscopes not only with-
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Lyon CITI Lab, France, E-mail: alessandro.renzaglia@inria.fr
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out any prior knowledge (as in [18]), but also without

external point features in the environment.

Keywords Visual-Inertial Sensor Fusion · Observ-

ability · Cooperative Sensor Fusion · Closed-Form

Solution

1 Introduction

When a team of mobile robots cooperates to fulfill a

task, an optimal localization strategy must take advan-

tage of relative observations (detection of other robots).

This problem has been considered in the past by fol-

lowing different approaches and it is often referred as

Cooperative Localization. In Cooperative Localization

(CL), several communicating robots use relative mea-

surements (such as distance, bearing and orientation

between the robots) to jointly estimate their poses. This

problem has been investigated for a long time and sev-

eral approaches have been introduced in earlier works

[6,10,19,29,40–42]. Then, a great effort has been de-

voted to decentralize the computation among the team

members and, simultaneously, to minimize the commu-

nication among the robots without deteriorating the lo-

calization performance [3,14,20–22,25,27,43]. Specific

cases of cooperative localization have been considered

both in 2D and in 3D.

For instance, in the framework of Micro Aerial Ve-

hicles (MAV), a critical issue is to limit the number of

on-board sensors to reduce weight and power consump-

tion. Several methods consider the use of bearing-only

sensors [35,39,44,45] or only range measurements [46].

A common setup is otherwise to combine a monocu-

lar camera with an Inertial Measurements Unit (IMU).

On top of being cheap, these sensors have very interest-

ing complementarities. Additionally, they can operate
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in indoor environments, where Global Positioning Sys-

tem (GPS) signals are shadowed.

The problem of fusing visual and inertial data for

single robots has been extensively investigated in the

past [2,4,11,17,24]. Recently, this sensor fusion prob-

lem has been successfully addressed by enforcing ob-

servability constraints [9,13], and by using optimization-

based approaches [5,12,16,23,28,36,37]. These optimi-

zation methods outperform filter-based algorithms in

terms of accuracy due to their capability of relineariz-

ing past states. On the other hand, the optimization

process can be affected by the presence of local min-

ima. For this reason, a closed-form solution able to au-

tomatically determine the state without initialization

has been introduced [18,31,32].

Visual and inertial sensors have also been used in

a cooperative scenario to estimate the relative state [1]

and for cooperative mapping [7]. However, in the coop-

erative case, a solution able to automatically determine

the state without initialization (as in [18,31,32]) is still

missing.

Any estimation approach, either filter based or op-

timization based, is built upon the fundamental equa-

tions that fully characterize the considered sensor fusion

problem. These equations are the differential equations

that describe the dynamics of the observable state to-

gether with the equations that express the observations

in terms of this observable state. Hence, to success-

fully solve a given estimation problem, the first step to

be accomplished is the determination of the observable

state. Regarding the single-agent visual-inertial sensor

fusion problem, this state has been analytically derived

by many authors and it consists of the absolute scale,

the speed expressed in the local frame and the absolute

roll and pitch angles. This result even holds if only a

single point feature is available in the environment.

In this paper we study the visual-inertial sensor fu-

sion problem in the cooperative case. We investigate

the extreme case where no point features are available.

Additionally, we consider the critical case of only two

agents. In other words, we are interested in investigat-

ing the minimal case. If we prove that the absolute scale

is observable, we can conclude that it is observable in

all the other cases. Each agent is equipped with an Iner-

tial Measurement Unit (IMU) and a monocular camera.

By using the monocular camera, each agent can observe

the other agent. Note that, we do not assume that these

camera observations contain metric information (due

for instance to the known size of the observed agent).

The two agents can operate far from each other and a

single camera observation only consists of the bearing

of the observed agent in the frame of the observer. In

other words, each agent acts as a moving point feature

with respect to the other agent.

The first questions we wish to answer are: Is it pos-

sible to retrieve the absolute scale in these conditions?

And the absolute roll and pitch angles? More generally,

we want to determine the entire observable state, i.e.,

all the physical quantities that it is possible to deter-

mine by only using the information contained in the

sensor data (from the two cameras and the two IMUs)

during a short time interval. In [33] we provided the

answers to these questions in the case when the inertial

measurements are unbiased. These results are provided

in section 3. Then, in section 5, we provide a full an-

swer even in presence of biased measurements (both the

ones from the accelerometers and the ones from the gy-

roscopes) and we also obtain that it suffices that only

one agent is equipped with a camera. In addition, it

suffices that this camera is a linear camera, i.e., which

only provides the azimuth of the other agent in its local

frame.

Note that part of these questions have already been

answered in [1]. However, the results here provided in

sections 3-5 are more general for the following reasons:

– They account for the bias on all the inertial mea-

surements (both on the accelerometers and the gy-

roscopes);

– As mentioned above, we also prove that the same

observability properties hold when only one of the

agents is equipped with a camera and that this sin-

gle camera can even be a linear camera;

– In [1] it is proved that the relative state is observable

while here it is also proved that no other states are

observable (e.g., the absolute roll and pitch of each

agent is unobservable);

– In [1] it is assumed that the camera directly provides

the relative position (up to a scale) and the relative

orientation. In our derivation we do not require the

latter assumption. In other words, it suffices that

the camera detects one single point on the observed

agent (which represents the origin of its local frame).

This does not require more restrictive assumptions

(e.g., the two agents can operate very far from each

other).

In section 4 we provide the basic equations that de-

scribe the cooperative visual-inertial sensor fusion prob-

lem. These equations are:

– The differential equations that describe the dynam-

ics of the observable state expressed only in terms

of the components of the observable state and the

accelerations and the angular speeds (i.e., the quan-

tities measured by the two IMUs);
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– The equations that provide the analytic expression

of the two camera observations in terms of the com-

ponents of the observable state.

These are the fundamental equations that fully charac-

terize the problem of fusing visual and inertial data in

the cooperative case. These equations can then be used

to build any method (e.g., filter-based or optimization-

based) to carry out the state estimation. In [33] we used

them to introduce an EKF-based estimation method.

Note that an EKF-based estimation method was also

introduced in [1]. In that work, the authors did not

need the equations derived in section 4 because, as

mentioned above, they used a more restrictive camera

model, which assumes that the camera also provides

the relative orientation (we relax this assumption). In

this paper we use these fundamental equations to ob-

tain a closed-form determination of the observable state

in terms of the measurements delivered during a short

time interval by the cameras and the IMUs that belong

to the two agents. This solution is provided in section 6.

This is precisely the extension of the closed-form solu-

tion in [31,32] to the cooperative case. For clarity sake,

in section 6 we directly provide the solution by address-

ing the reader to the appendix B for its analytic deriva-

tion (and to [34] for further technical details). Then, the

paper demonstrates the efficiency of this solution. A

closed-form solution directly returns the state in terms

of the measurements collected during a short time in-

terval and, thus, does not require any initialization. We

perform simulations with plausible MAV motions and

synthetic noisy sensor data (section 7). This allows us

to identify limitations of the solution and bring mod-

ifications to overcome them. In practice, we perform

exactly the same investigation done in [18] for the case

of a single agent. Specifically, we investigate the im-

pact of biased inertial measurements. We show that a

large bias on the accelerometer does not significantly

worsen the performance (section 7.5). One major limi-

tation is the impact of biased gyroscope measurements

(section 7.6). In other words, the performance becomes

very poor in presence of a bias on the gyroscopes of

the two agents and, in practice, the overall method can

only be successfully used with very precise - and expen-

sive - gyroscopes. In section 8, we introduce a simple

method that automatically estimates both these biases.

By adding this new method for the bias estimation to

the solution presented in section 6, we obtain results

that are equivalent to the ones in absence of bias (sec-

tion 8.1).

Note that the implementation of the closed-form so-

lution requires that two MAVs observe one each other.

This could seem restrictive since most MAVs do not

have omni-directional cameras, but rather a front fac-

ing camera with a limited field of view. However, the

big advantage of a closed form solution is that, if at a

given time it fails (loss of visual contact or any other

unmodeled event), this does not have any impact on its

performance at successive times. In addition, it suffices

that the two MAVs observe one each other not more

than 10 times during a time period of not more than 4

seconds.

Finally, it is important to note that, even though in

this paper we particularly focus on multi-MAV systems,

this method is suitable for any kind of robots moving

in 3D that operate in extreme conditions (e.g., GPS-

denied environments, absence of point features, etc.)

and need to recover the absolute scale in few seconds.

The solution does not need initialization. Additionally,

it is robust to the bias and automatically calibrates the

gyroscopes.

2 The system

We consider two vehicles that move in a 3D environ-

ment. Each vehicle is equipped with an Inertial Mea-

surement Unit (IMU), which consists of three orthog-

onal accelerometers and three orthogonal gyroscopes.

Additionally, each vehicle is equipped with a monocular

camera. We assume that, for each vehicle, all the sensors

share the same frame. Without loss of generality, we de-

fine the vehicle local frame as this common frame. The

accelerometer sensors perceive both the gravity and the

inertial acceleration in the local frame. The gyroscopes

provide the angular speed in the local frame. Finally,

the monocular camera of each vehicle provides the bear-

ing of the other vehicle in its local frame (see Fig. 1 for

an illustration). Additionally, we assume that the z-axis

of the global frame is aligned with the direction of the

gravity.

We adopt the following notations:

– r1 = [r1x, r
1
y, r

1
z ] and r2 = [r2x, r

2
y, r

2
z ] are the

positions of the two vehicles in the global frame;

– v1 = [v1x, v
1
y, v

1
z ] and v2 = [v2x, v

2
y, v

2
z ] are the

velocities of the two vehicles in the global frame;

– q1 = q1t + q1xi + q1yj + q1zk and q2 = q2t + q2xi +

q2yj+q2zk are the two unit quaternions that describe

the rotations between the global and the two local

frames, respectively1.

In the following, for each vector defined in the 3D space,

the subscript q will be adopted to denote the corre-

sponding imaginary quaternion. For instance, regarding

1 A quaternion q = qt+qxi+qyj+qzk is a unit quaternion if
the product with its conjugate is 1, i.e.: qq∗ = q∗q = (qt+qxi+
qyj+qzk)(qt−qxi−qyj−qzk) = (qt)2+(qx)2+(qy)2+(qz)2 = 1
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Fig. 1 The global frame and the two local frames (attached
to the first and the second aerial vehicle, respectively). r1 and
r2 are their position, expressed in the global frame. R is the
relative position of the second vehicle with respect to the first
vehicle, expressed in the local frame of the first vehicle.

the position of the first vehicle, we have: r1q = 0+r1x i+

r1y j+ r1z k. Additionally, we denote by A1, A2, Ω1 and

Ω2 the following physical quantities:

– Arob = [Arobx , Aroby , Arobz ], (rob = 1, 2), is the vehi-

cle acceleration perceived by the IMU mounted on

the first and the second vehicle (this includes both

the inertial acceleration and gravity);

– Ωrob =
[
Ωrobx Ωroby Ωrobz

]
, (rob = 1, 2), is the an-

gular speed of the first and the second vehicle ex-

pressed in the respective local frame (and Ωrobq =

0 +Ωrobx i+Ωroby j +Ωrobz k).

The dynamics of the first/second vehicle are:
ṙrobq = vrobq

v̇robq = qrobArobq (qrob)∗ − gk

q̇rob =
1

2
qrobΩrobq

(1)

where g is the magnitude of the gravity, rob = 1, 2,

and k is the fourth fundamental quaternion unit (k =

0 + 0 i+ 0 j + 1 k).

The monocular camera on the first vehicle provides

the position of the second vehicle in the local frame

of the first vehicle, up to a scale. The position of the

second vehicle in the local frame of the first vehicle is

given by the three components of the following imagi-

nary quaternion:

p1q = (q1)∗(r2q − r1q) q1 . (2)

Hence, the first camera provides the quaternion p1q up

to a scale. For the observability analysis, it is convenient

to use the ratios of its components:

h1 , [h1u, h
1
v]
T =

[
[p1q]x

[p1q]z
,

[p1q]y

[p1q]z

]T
(3)

where the subscripts x, y and z indicate respectively the

i, j and k component of the corresponding quaternion.

Similarly, the second camera provides:

h2 , [h2u, h
2
v]
T =

[
[p2q]x

[p2q]z
,

[p2q]y

[p2q]z

]T
(4)

where p2q is the imaginary quaternion whose three com-

ponents are the position of the first vehicle in the local

frame of the second, namely:

p2q = (q2)∗(r1q − r2q) q2 . (5)

Note that, using the ratios in (3) and (4) as observa-

tions can generate problems due to singularities and,

when the camera measurements are used to estimate

a state, it is more preferable to adopt different quanti-

ties (e.g., the two bearing angles, i.e., the azimuth and

the zenith). For the observability analysis, this problem

does not arise.

3 Observable state

The goal of this subsection is to obtain the entire ob-

servable state for the system defined in section 2. First

of all, we characterize this system by the following state:

X = [(r1)T , (v1)T , q1, (r2)T , (v2)T , q2]T . (6)

The dimension of this state is equal to 20. Actually, the

components of this state are not independent. Both q1

and q2 are unit quaternions. In other words, we have:

(q1t )2 + (q1x)2 + (q1y)2 + (q1z)2 =

(q2t )2 + (q2x)2 + (q2y)2 + (q2z)2 = 1 . (7)

The dynamics of the state defined in (6) are given by

(1). The observation functions are the four scalar func-

tions h1u h
1
v h

2
u h

2
v given by equations (2-5). Addition-

ally, we need to add the two observation functions that

express the constraint that the two quaternions, q1 and

q2, are unit quaternions. The two additional observa-

tions are:

hrobconst(X) , (qrobt )2 +(qrobx )2 +(qroby )2 +(qrobz )2 = 1 (8)

with rob = 1, 2. We investigate the observability prop-

erties of this system. Since both the dynamics and the

six observations are nonlinear with respect to the state,

we use the observability rank condition in [8]. The dy-

namics are affine in the inputs, i.e., they have the ex-

pression

Ẋ = f0(X) +

12∑
i=1

fi(X)ui (9)

where ui are the system inputs, which are the quantities

measured by the two IMUs. Specifically, we set:
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– u1, u2, u3 the three components of A1;

– u4, u5, u6 the three components of Ω1;

– u7, u8, u9 the three components of A2;

– u10, u11, u12 the three components of Ω2.

Then, by comparing (1) with (9) it is immediate to

obtain the analytic expression of all the vector fields

f0, f1, · · · f12; for instance, we have:

f0 = [v1x, v
1
y, v

1
z , 0, 0,−g, 04, v2x, v2y, v2z , 0, 0,−g, 04]T

f1 = [03, (q
1
t )2 + (q1x)2 − (q1y)2 − (q1z)2, 2(q1t q

1
z + q1xq

1
y),

2(q1xq
1
z − q1t q1y), 014]T

f4 =
1

2
[06,−q1x, q1t , q1z ,−q1y, 010]T

where 0n is the n-line zero vector.

For systems with the dynamics given in (9) the ap-

plication of the observability rank condition can be au-

tomatically done by a recursive algorithm. In particu-

lar, this algorithm automatically returns the observable

codistribution2 by computing the Lie derivatives of all

the system outputs along all the vector fields that char-

acterize the dynamics. In the following, we provide a

very simple description of the observability rank con-

dition for systems with the dynamics given in (9), i.e.,

dynamics nonlinear in the state and affine in the inputs

(for a detailed description the reader is addressed to the

first chapter of [15]). In accordance with the observabil-

ity rank condition, the observable codistribution pro-

vides all the observability properties. The dimension of

this vector space (the observable coditribution) cannot

exceed the dimension of the state X. If this dimension

is equal to the dimension of the state X, this means

that the entire state is observable (actually, weakly lo-

cally observable [8]). If this dimension is smaller than

the dimension of the state X, the entire state is not ob-

servable and it is possible to detect the observable states

by computing its Killing vectors in order to obtain the

system symmetries [30]. The recursive algorithm that

returns the observable codistribution, for systems with

the dynamics given in (9), is the following:

Algorithm 1 Observable codistribution Λ

Set Λ0 = span{∇h1u,∇h1v,∇h2u,∇h2v,∇h1const,∇h2const}
2 The reader unfamiliar with the concept of codistribution,

as it is used in [15], should not be afraid by the term dis-

tribution and the term codistribution. Very simply speaking
(and this is enough to understand the theory of nonlinear
observability) they are both vector spaces. Specifically, a dis-
tribution is the span of a set of column-vector functions. A
codistribution is the span of a set of line-vector functions.
Hence, both a distribution and a codistribution can be re-
garded as vector spaces that change by moving on the space
of the states (X), namely, vector spaces that depend on X.

while Λm 6= Λm−1 do
Λm = Λm−1 + Lf0Λm−1 +

∑12
i=1 LfiΛm−1

end while

where Λm, with m ≥ 1, is the codistribution at the m-

th step and the symbol ∇ denotes the gradient with

respect to the state X.

We remind the reader that the Lie derivative of a scalar

function h(X) along the vector field f(X) is defined as

follows:

Lfh , ∇h · f

which is the product of the row vector ∇h with the

column vector f . Hence, it is a scalar function. Addi-

tionally, by definition of Lie derivative of covectors, we

have: Lf∇h = ∇Lfh. Finally, given two vector spaces

V1 and V2, we denoted by V1 + V2 their sum, i.e., the

span of all the generators of both V1 and V2.

In [15] it is proved that algorithm 1 converges. In

particular, it is proved that it has converged when Λm =

Λm−1. An interesting consequence of this result is that

the convergence is achieved in at most n−1 steps, where

n is the dimension of the state (see lemmas 1.9.1, 1.9.2

and 1.9.6 in [15]).

We provide few insights to figure out how Algorithm

1 works and in particular how it can be implemented in

practice. As we mentioned above, the observable codis-

tribution is the span of line vectors. In practice, Al-

gorithm 1 builds a matrix whose lines are these vec-

tors (e.g., at the first step we include the six lines:

∇h1u,∇h1v,∇h2u,∇h2v,∇h1const,∇h2const). At each subse-

quent step, we include a new set of lines and we compute

the rank of the matrix (the new set of lines is obtained

by computing the Lie derivatives of all the lines of the

matrix along all the directions allowed by the dynam-

ics, i.e., along all the vector fields f0, f1, · · · f12). The

algorithm has converged when the rank of the matrix

remains equal to the rank of the matrix at the previous

step. Note that each line will be a symbolic function

of the state. To compute the rank we use the symbolic

tool of MATLAB. In particular, we use the functions

”rank” and ”null”. The latter provide the killing vec-

tors of the matrix which are precisely the symmetries

of the system, once the algorithm has converged [30]. If

the set of the killing vectors of the matrix only consists

of the null vector, this means that the systems does not

have any symmetry and the entire state is observable.

For the specific case, we obtain that the algorithm

converges at the third step, i.e., the observable codistri-

bution is the span of the differentials of the previous Lie

derivatives up to the second order. In particular, its di-

mension is 11 and, a choice of eleven Lie derivatives is:
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L0h1u, L0h1v, L0h2u, L0h2v, L0h1const, L0h2const, L1
f0
h1u,

L1
f0
h1v, L1

f0
h2u, L2

f0f0
h1u, L2

f0f1
h1u

3.

Once we have obtained the observable codistribu-

tion, the next step is to obtain the observable state.

This state has eleven components. Obviously, a possi-

ble choice would be the state that contains the pre-

vious eleven Lie derivatives. On the other hand, their

expression is too complex and it is much more prefer-

able to find an easier state, whose components have a

clear physical meaning. By analytically computing the

continuous symmetries of our system (i.e., the Killing

vectors of the previous observable codistribution, [30]),

we detect the following independent observable modes:

– The position of the second vehicle in the local frame

of the first vehicle (three observable modes);

– The velocity of the second vehicle in the local frame

of the first vehicle (three observable modes);

– The three Euler angles that characterize the rota-

tion between the two local frames (three observable

modes);

– Trivially, the norm of the two quaternions (two ob-

servable modes).

Therefore, we can fully characterize our system by a

state whose components are the previous observable

modes. It must be possible to express the dynamics

of this state only in terms of its components and the

twelve system inputs. Additionally, also the camera ob-

servations must be expressed only in terms of these nine

components. This is actually trivial, since the first cam-

era provides the first three components of this state, up

to a scale. The second camera, provides the same unit

vector rotated according to the previous three Euler

angles. Regarding the dynamics, its derivation is a bit

more complex. We provide all these analytic expressions

in the next section.

We conclude this section with the following three im-

portant remarks.

– The absolute roll and pitch angles of each vehicle are

not observable. This is a consequence of the fact that

no feature in the environment has been considered.

The observation consists only of the bearing angles

of each vehicle in the local frame of the other vehicle.

The presence of the gravity, which determines the

observability of the absolute roll and pitch in the

case of a single vehicle, acts in the same way on the

two IMUs and its effect on the system observability

vanishes, since it cannot be distinguished from the

inertial acceleration.

3 Higher order Lie derivatives are recursively computed. For
instance, for the second order Lie derivative L2

f0f1
h we have

L2
f0f1

h = ∇(Lf0h) · f1 = [∇(∇h · f0)] · f1

– The choice of the above 11 independent Lie deriva-

tives is not unique. In particular, it is possible to

avoid the Lie derivatives of the functions that cor-

respond to one of the two cameras (e.g., h2u and

h2v). This means that we obtain the same observ-

ability properties when only one of the MAVs is

equipped with a camera. In addition, it is also pos-

sible to avoid the Lie derivatives of the function h1v.

This means that we obtain the same observability

properties when only one MAV is equipped with a

camera and this camera is a linear camera able to

only provide the azimuth of the other MAV in its

local frame. In section 5 we obtain that the same re-

sult holds even in presence of a bias on the inertial

measurements (see also appendix A for computation

details).

– In order to have 11 eleven independent Lie deriva-

tives, at least one of them must be computed along

a direction that corresponds to one of the axes of

at least one of the two accelerometers (i.e., one di-

rection among f1, f2, f3, f7, f8 and f9). Any selec-

tion that does not include at least one of them pro-

vides a codistribution whose dimension is smaller

than 11. In particular, there will be a symmetry for

this codistribution that corresponds to a scale in-

variance. This means that a necessary condition for

the observability of the absolute scale is that the rel-

ative acceleration between the two MAVs does not

vanish. Note that this same condition was found in

[1] (the fact that in [1] the camera is assumed to di-

rectly provide the relative orientation does not im-

pact the observability of the scale).

4 Fundamental Equations

In accordance with the observability analysis carried

out in the previous section, we characterize our system

by the following state:

S = [RT , V T , q]T (10)

where:

– R is the position of the second vehicle in the local

frame of the first vehicle;

– V is the velocity of the second vehicle in the frame of

the first vehicle (note that this velocity is not simply

the time derivative of R because of the rotations

accomplished by the first local frame);

– q is the unit quaternion that describes the relative

rotation between the two local frames.

In other words, the imaginary quaternions associated

to R and V are:

Rq = (q1)∗(r2q − r1q)q1 (11)
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Vq = (q1)∗(v2q − v1q )q1 (12)

and

q = (q1)∗q2 (13)

The fundamental equations of the cooperative visual-

inertial sensor fusion problem are obtained by differ-

entiating the previous three quantities with respect to

time and by using (1) in order to express the dynam-

ics in terms of the components of the state in (10) and

the components of A1, A2, Ω1, Ω2. After some analytic

computation, we obtain:
Ṙq =

1

2
(Ω1

q )∗Rq +
1

2
RqΩ

1
q + Vq

V̇q =
1

2
(Ω1

q )∗Vq +
1

2
VqΩ

1
q + qA2

qq
∗ −A1

q

q̇ =
1

2
(Ω1

q )∗q +
1

2
qΩ2

q

(14)

As desired, the dynamics of the state is expressed only

in terms of the components of the state and the sys-

tem inputs (the angular speeds and the accelerations of

both the vehicles). Finally, the camera observations can

be immediately expressed in terms of the state in (10).

The first camera provides the vector R up to a scale.

Regarding the second camera, we first need the posi-

tion of the first vehicle in the second local frame. The

components of this position are the components of the

following imaginary quaternion: −q∗Rqq. The second

camera provides this position up to a scale.

In the last part of this section we provide the same

equations, without using quaternions. We characterize

our system by the two 3D vectors R and V , as before.

Instead of the quaternion q, we use the matrix O that
characterizes the rotation between the two local frames.

From (14) it is immediate to obtain the dynamics of this

state. They are:
Ṙ =

[
Ω1
]
×R+ V

V̇ =
[
Ω1
]
× V +OA2 −A1

Ȯ =
[
Ω1
]T
×O +O

[
Ω2
]
×

(15)

where
[
Ωrob

]
×, rob = 1, 2, are the skew-symmetric ma-

trices associated to the vectors Ωrob:

[
Ωrob

]
× =

 0 Ωrobz −Ωroby

−Ωrobz 0 −Ωrobx

Ωroby −Ωrobx 0

 (16)

Finally, the two cameras provide the two vectors, R and

−OTR, up to a scale.

The cooperative visual-inertial sensor fusion problem is

fully characterized by the dynamics equations given in

(15) and the two observations given by R and −OTR,

up to a scale. These equations allow us to build any

estimation strategy: filter-based, optimization-based or

a closed-form solution, i.e. a solution that extends the

solution given in [32] to the cooperative case.

5 Observable state in presence of bias

The goal of this section is to obtain the observable state

when the inertial measurements are corrupted by the

biases. Specifically, we introduce the following four vec-

tors: B1
A, B

2
A, B

1
Ω and B2

Ω . B1
A and B2

A are the biases

on the accelerometers of the first and the second vehicle

and B1
Ω and B2

Ω are the biases on the gyroscopes. Since

the presence of the bias cannot improve the observabil-

ity properties, we characterize our system by including

in the observable state that holds in absence of bias

(i.e., the state mentioned in the previous subsection),

all the 12 components of the 4 bias vectors. If we prove

that this state is observable, we can conclude that it

is the entire observable state, i.e., any other physical

quantity independent from its components is unobserv-

able. Additionally, we will consider the case when only

the first agent is equipped with a camera. Again, by

proving that in these conditions the previous state is

observable, we can conclude that the same observable

state characterizes the case of two cameras.

Both the biases on the gyroscopes and on the ac-

celerometers are time dependent. However, they change

very slowly with time. In particular, they are modelled

as random-walk processes driven by the zero-mean, white

Gaussian noise n1BΩ , n2BΩ , n1BA , n2BA , respectively.

To characterize our system we define the extended

state SE by including the bias in the state (10):

SE = [RT , V T , q, (B1
Ω)T , (B1

A)T , (B2
Ω)T , (B2

A)T ]T .

(17)

The dimension of this state is equal to 22. Actually, the

components of this state are not independent, since q

is a unit quaternion. In other words, we have:

(qt)
2 + (qx)2 + (qy)2 + (qz)

2 = 1 . (18)

The dynamics of the state defined in (17) are given by

the following equations:
Ṙ =

[
Ω′1
]
×R+ V

V̇ =
[
Ω′1
]
× V +OA′2 −A′1

q̇ = −1

2
Ω′1q q +

1

2
qΩ′2q

Ḃ1
Ω = n1BΩ , Ḃ

1
A = n1BA , Ḃ

2
Ω = n2BΩ , Ḃ

2
A = n2BA

(19)
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where:

– Ω′1 = Ω1 + B1
Ω , A′1 = A1 + B1

A, Ω′2 = Ω2 + B2
Ω ,

A′2 = A2 +B2
A.

– The matrix O, can be uniquely expressed in terms

of the components of the quaternion q.

– Ω′1q is the imaginary quaternion associated with Ω′1,

i.e.,: Ω′1q = 0 +Ω′1x i+Ω′1y j +Ω′1z k. The same holds

for Ω′2q

Note that, in the interval of few seconds, the time deriva-

tives of the biases (last equation in (19)) can be set to

zero. Since we will consider time intervals no longer

than 4 seconds (and, as it will be shown, this will allow

us to auto calibrate the inertial sensors with very high

accuracy), we can assume that the biases are constant

during the considered time interval (the same assump-

tion is made in [18]).

The observation functions are the two scalar func-

tions hu hv:

h , [hu, hv]
T =

[
Rx
Rz

,
Ry
Rz

]T
. (20)

Additionally, we need to add the observation function

that expresses the constraint that q is a unit quaternion.

The additional observation is:

hconst(X) , (qt)
2 + (qx)2 + (qy)2 + (qz)

2 (21)

The analytic derivation of this system observability is

provided in appendix A. We summarize its result:

The system defined above is observable (i.e.,

the state in (17) is observable). This holds both

in the case when both the MAVs are equipped

with a camera and in the case when only one

MAV is equipped with a camera. Additionally,

the observable state remains the same even in

the case when the camera is a linear camera, i.e.,

it only provides the azimuth of the other MAV

in its local frame. Finally, as in the case without

bias, a necessary condition for the observability

of the absolute scale is that the relative acceler-

ation between the two MAVs does not vanish.

6 Closed-form solution

In this section we provide a closed-form solution that

allows us to determine R, V and O by only using the

measurements provided by the visual and the inertial

sensors during a short time interval. In this section,

we only provide the solution. The analytic derivation

is provided in appendix B and more details about this

derivation are available in [34]. Additionally, for brevity

sake, we only deal with the case when only the first

MAV is equipped with a camera. The case when both

the MAVs are equipped with a camera is very simi-

lar (both for the analytic derivation and the solution)

and can be found in [34]. Note that this solution is

obtained by assuming noiseless and unbiased measure-

ments. Hence, it is exact only in the noiseless and unbi-

ased case. On the other hand, the impact of the bias on

its performance will be evaluated in the next section.

As we will see, it is precisely the strong sensitivity on

the bias that will allow us to determine the bias itself

(as in [18]).

Let us consider a given time interval (tA, tB). Let

us denote by RA, VA and OA, the values of R, V and

O at time tA. Our goal is to obtain RA, VA and OA
in closed-form, only in terms of the measurements pro-

vided during the considered time interval. Note that,

the length of the considered time interval (i.e., tB− tA)

is very small (4 seconds). We assume that, during our

time interval, the camera performs n observations at

the times tj , (j = 1, · · · , n), with t1 = tA and tn = tB .

Let us denote by M1(t) and M2(t) the orthonormal

matrices that characterize the rotations made by the

first and the second MAV, respectively, between tA and

t ∈ (tA, tB). M1(t) and M2(t) can be computed by in-

tegrating the following first order differential equations:

Ṁ1 =
[
Ω1
]T
×M1 Ṁ2 =

[
Ω2
]T
×M2 (22)

with initial conditions: M1(tA) = M2(tA) = I3, (I3 is

the 3 × 3 identity matrix) and
[
Ω1
]
× and

[
Ω2
]
× are

the matrices defined in (16). Note that, since tB − tA
does not exceed 4 seconds, these two matrices can be

obtained with very high accuracy by using the measure-

ments from the gyroscopes delivered in the considered

time interval. In particular, the drift due to the noise

in the gyroscope measurements is negligible. Regard-

ing the bias, in Section 8 we will show that it can be

removed.

Let us introduce the following two vector quantities:

β1(t) =

∫ t

tA

∫ τ

tA

M1(τ ′)A1(τ ′)dτ ′dτ (23)

β2(t) =

∫ t

tA

∫ τ

tA

M2(τ ′)A2(τ ′)dτ ′dτ

Note that these vectors are computed by only using the

IMU measurements delivered in the interval (tA, t). In

particular, the matrices M1,2(τ ′) are obtained by inte-

grating the differential equations in (22) in the interval

(tA, τ
′), and this only requires the gyroscope measure-

ments in this interval.

Now we are ready to provide the extension of the

closed-form solution in [32] to the cooperative case. We
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obtain the components of RA, VA and OA by simply

solving the linear system:

Ξx = b (24)

where:

– Ξ is a matrix with dimension 3n× (15 +n) given in

(27) (top of next page), with:

– 033 the 3×3 zero matrix, 03 the zero 3×1 vector.

– µ1, · · · , µn the unit vectors provided by the cam-

era (i.e., the directions of the second MAV in

the frame of the first MAV at times t1, · · · , tn)

rotated by pre-multiplying them by the matrix

M1(tj)
T .

– ∆j ≡ tj − t1 = tj − tA (j = 2, · · · , n).

– β2
xj , β

2
yj and β2

zj (j = 2, · · · , n) the three com-

ponents of the vector β2(tj).

– x is the vector that contains all the unknowns, i.e.:

x ≡ [RTA, V
T
A , OA11

, OA21
, OA31

, OA12
, OA22

, OA32
,

OA13
, OA23

, OA33
, λ1, · · · , λn]T (25)

where λ1, · · · , λn, are the distances between the two

MAVs at the times t1, · · · , tn.

– b is a vector with dimension 3n:

b ≡ [β1 T
1 , β1 T

2 , · · · , β1 T
j , · · · , β1 T

n ]T (26)

where β1
j = β1(tj), with j = 1, · · · , n.

In the case when both the MAVs are equipped with

a camera and the observations are synchronized (i.e.,

both the cameras return the direction of the other MAV

at the same times t1, · · · , tn), the solution is given al-

ways by solving the linear system in (24). The new ex-

pressions of Ξ, x and b are available in [34].

We conclude this section by remarking that all the

components of the matrix Ξ and the vector b depend

only on the measurements from the IMUs and the cam-

era delivered during the time interval (tA, tB). As a re-

sult, the solution is able to obtain the entire observable

state without any prior knowledge (e.g., initialization).

In particular, it provides the state as a simple expres-

sion of the measurements delivered during the time in-

terval (tA, tB).

It is also worth remarking that the communication

needed between the two MAVs is very limited. Specif-

ically, if MAV 2 performs the implementation, MAV 1

must provide the quantities β1 in (23) and the unit vec-

tors µ previously defined. The crucial advantage of this

solution is that such data exchange is not required at

the high frequency of the inertial sensors: only the β1

and µ at the times of the camera images used are neces-

sary (over a period of 3-4 seconds less than ten images

are sufficient).

Finally, note that we include in x all the entries of

the matrix OA. This means that, by obtaining the state

through the inversion of the linear system in (24), we

are considering independent the entries of OA. The fact

that the matrix OA is orthonormal, means that we are

ignoring 6 quadratic equations, i.e., the equations that

express the fact that each column of the matrix is a unit

vector (3 equations) and that the three columns are or-

thogonal one each other (3 equations). We are currently

working on this important issue. We need to define a

new state that only includes independent components.

Then, by using the results obtained in this section (and

in appendix B) it is possible to obtain a new equations

system, which will be different from the one in (24). In

particular, we already found that, by a suitable choice of

the new state and some analytic compuation, instead

of a linear system, the new equations system will in-

clude three polynomial equations of second degree and

several linear equations.

7 Limitations of the Closed-Form Solution

The goal of this section is to find out the limitations of

the solution provided in section 6 when it is adopted in

a real scenario. In particular, special attention will be

devoted to the case of a MAV equipped with low-cost

camera and IMU sensors. For this reason, this section

evaluates the impact of the following sources of error

on the performance:

1. Varying noise on the camera and inertial measure-

ments (section 7.2);

2. Erroneous camera extrinsic calibration, i.e., imper-
fect knowledge of the transformation between the

camera and the IMU frame (section 7.3);

3. Erroneous synchronization between the two cameras

(section 7.4);

4. Bias on the accelerometers (section 7.5);

5. Bias on the gyroscopes (section 7.6).

7.1 Simulation setup

We simulate two MAVs that execute random trajecto-

ries. Specifically, the trajectories are simulated as fol-

lows. Each trial lasts 4 s. The first MAV starts at the

origin and the second MAV starts at a random posi-

tion, normally distributed, centered at the origin, and

with covariance matrix 1 m2I3. The initial velocities

are randomly generated. Specifically, their values are

normally distributed, with zero mean, and covariance

matrix 1 (m/s)2I3. Finally, the initial orientations are

characterized by the roll, pitch and yaw angles. These
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Ξ =



I3 033 033 033 033 −µ1 03 · · · · · · · · · · · · 03

I3 ∆2I3 β2
x2I3 β2

y2I3 β2
z2I3 03 −µ2 03 · · · · · · · · · 03

I3 ∆3I3 β2
x3I3 β2

y3I3 β2
z3I3 03 03 −µ3 03 · · · · · · 03

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
I3 ∆jI3 β2

xjI3 β2
yjI3 β2

zjI3 03 · · · 03 −µj 03 · · · 03

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
I3 ∆n−1I3 β2

x n−1I3 β
2
y n−1I3 β

2
z n−1I3 03 · · · · · · · · · 03 −µn−1 03

I3 ∆nI3 β2
xnI3 β2

ynI3 β2
znI3 03 · · · · · · · · · · · · 03 −µn


(27)

are also randomly generated, with zero mean and co-

variance matrix (50 deg)2I3.

The angular speeds, i.e. Ω1 and Ω2, are Gaussian.

Specifically, their values at each step of 0.1s follow a

zero-mean Gaussian distribution with covariance ma-

trix equal to (30deg)2I3, where I3 is the identity 3× 3

matrix. At each time step, the two MAV inertial acceler-

ations are generated as random vectors with zero-mean

Gaussian distribution. In particular, the covariance ma-

trix of this distribution is set equal to (1ms−2)2I3.

The MAVs are equipped with inertial sensors able

to measure at the frequency of 0.5kHz the acceleration

(the sum of the gravity and the inertial acceleration)

and the angular speed. These measurements are af-

fected by errors. Specifically, each measurement is gen-

erated by adding to the true value a random error that

follows a Gaussian distribution. The mean value of this

error is zero. The standard deviation will be denoted by

σAccel for the accelerometer and σGyro for the gyroscope

(these values will be specified for each result). Regard-

ing the camera measurements, they are generated at a

lower frequency. Specifically, the measurements are gen-

erated at 5Hz. Also these measurements are affected by

errors. Specifically, each measurement is generated by

adding to the true value a random error that follows a

zero-mean Gaussian distribution, with standard devia-

tion σCam.

To evaluate the performance, we define the metrics

as follows. The error on the absolute scale is defined

as the relative error averaged over all the estimated

distances between the MAVs at the times of the camera

measurements (t1, · · · , tn), i.e.:

Errscale ,
1

n

n∑
i=1

|λesti − λtruei |
λtruei

For the speed, the error is defined as

ErrV ,
‖V estA − V trueA ‖
‖V trueA ‖

Finally, for the relative orientation, the error is com-

puted by averaging on the roll pitch and yaw, that de-

fine the relative rotation between the two local frames.

Fig. 2 Relative error of the closed-form solution in determin-
ing the absolute scale (solid blue), the relative speed (dot-
ted red) and the relative orientation (dashed black). The two
agents observe one each other over a variable duration of in-
tegration. σAccel = 0.03 ms−2 and σGyro = 0.1 deg s−1. All
the values are averaged on 1000 trials.

In the next subsections, we will present the results

obtained with the closed-form solution provided in Sec-

tion 6 on the simulated data. In section 8, we introduce

a simple method to autocalibrate the bias.

7.2 Performance with varying sensor noise

In Fig. 2, we show the performance of the Closed-Form

solution in estimating absolute scale, relative speed and

relative orientation. The performance is given as a func-

tion of the duration of the time interval (tB − tA). In

this case, the sensor noise is set as follows: σAccel =

0.03 ms−2, σGyro = 0.1 deg s−1 and σCam = 1 deg.

All the values are averaged over 1000 trials. From the

results, it is clear how the evaluations improve as we

increase the duration of the integration time.

Fig. 3 displays the relative error for the same quantities

showed in Fig. 2 but for a variable noise on the inertial

measurements. Specifically, σAccel = (s · 0.03) ms−2,

σGyro = (s · 0.1) deg s−1 and σCam = (s · 0.5) deg. In

this case, the two agents observe one each other over 3

seconds. The general behavior remains the same. Note

that the noise is very large (standard sensors are charac-
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Fig. 3 As in Fig. 2 but for a variable noise on the inertial mea-
surements (σAccel = (s · 0.03) ms−2, σGyro = (s · 0.1) deg s−1

and σCam = (s · .5) deg). The two agents observe one each
other over 3 seconds.

terized by s ' 1). The performance remains very good

also for very large noise.

7.3 Performance with imperfect camera extrinsic

calibration

Figures 4 and 5 display the relative error for the same

quantities showed in Fig. 3 but for a variable error in the

camera extrinsic calibration. Specifically, Fig. 4 displays

the results when the camera and the IMU frames are

not perfectly aligned (this holds for both MAVs). The

x-y planes of the two frames make a variable angle and

the performance is provided when this angle is in the

range (0, 15) deg. We remark that this source of error

has the same effect on the scale, on the speed and on the
relative orientation. A misalignment of 6 deg produces

a 10% relative error.

Fig. 5 displays the results when the origin of the

camera frame does not coincide with the origin of the

IMU frame. In particular, the origin of the former has

coordinates ρ[1, 1, 1]/
√

3 and the performance is pro-

vided when ρ is in the range (0, 0.1) m. We remark that

this source of error does not impact the performance on

the relative speed and the relative orientation.

7.4 Performance with imperfect synchronization

between the two cameras

Fig. 6 displays the relative error for the same quanti-

ties showed in Fig. 3 but for a variable synchronization

error between the two cameras. Specifically, the mea-

surements of the second camera are generated with a

delay of ∆t seconds. The performance remains good

(relative error smaller than 8%) for ∆t ≤ 0.02 s.

Fig. 4 As in Fig. 2 but for a variable angle between the cam-
era and the IMU frame (of both MAVs). The two agents ob-
serve one each other over 3 seconds.

Fig. 5 As in Fig. 2 but for a variable position of the origin
of the camera frame in the IMU frame (of both MAVs). The
two agents observe one each other over 3 seconds.

Fig. 6 As in Fig. 2 but for a variable synchronization error
(∆t, in seconds). The two agents observe one each other over
3 seconds.
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7.5 Impact of accelerometer bias on the performance

In order to visualize the impact of the accelerometer

bias on the performance, we corrupt the accelerometer

measurements by a bias (Fig. 7). Despite a high acce-

lerometer bias, the closed-form solution still provides

good results. Note that, even in the case of a bias with

magnitude 0.1ms−1 (black dashed line in Fig. 7), the

error attains its minimum after 1.5s and it is less than

3% for the scale and less than 10% for the relative speed

(note that, the larger error on the speed is due to its

smaller absolute value).

7.6 Impact of gyroscope bias on the performance

To visualize the impact of the gyroscope bias on the

performance, we corrupt the gyroscope measurements

by an artificial bias (Fig. 8). As seen in Fig. 8, the

performance becomes very poor in presence of a bias

on the gyroscope and, in practice, the overall method

could only be successfully used with a very precise -

and expensive - gyroscope.

8 Estimating the Gyroscope Bias (B1
Ω and B2

Ω)

In this section, we propose an optimization approach

to estimate the gyroscope bias using the closed-form

solution.

Let us consider a given experiment, i.e., a set of iner-

tial and camera measurements obtained during a given

time interval (tA, tB). As shown in section 6 (and in

the appendix B), these measurements provide all the

ingredients to compute the matrix Ξ and the vector b.

By solving the linear system in (24) we compute the

vector x. Finally, we compute the residual ‖Ξx − b‖2.

We can repeat this procedure by changing the mea-

surements provided by the two gyroscopes and by leav-

ing all the other measurements unaltered. In particular,

we subtract from the gyroscope measurements a fixed

quantity (i.e., which is constant on the considered time

interval). In other words, for each t ∈ (tA, tB), we re-

place Ω1(t) and Ω2(t) with Ω̃1(t) , Ω1(t) − B1
Ω and

Ω̃2(t) , Ω2(t)−B2
Ω , respectively. Then we compute the

new matrix Ξ and the new vector b. We solve the new

linear system in (24) and we compute the new vector

x. Finally, we compute the residual ‖Ξx− b‖2.

In accordance with the above procedure, for a given

experiment, we can regard ‖Ξx − b‖2 as a function of

the two vectors:B1
Ω andB2

Ω . We introduce the following

function:

Cost(B) = ‖Ξx− b‖2 (28)

with:

– B is a vector with six components, which are the

components of the bias of the first and the second

gyroscope, i.e.,: B = [B1
Ω , B

2
Ω ].

– Ξ and b are computed by removing from the mea-

surements provided by the two gyroscopes, the cor-

responding components of B.

By minimizing this cost function, we recover the gy-

roscope bias B and the vector x. Note that the mini-

mization is carried out over the six components of B,

i.e., the bias of the two gyroscopes. Since this minimiza-

tion requires an initialization and the cost function is

non-convex, the optimization process can be stuck in

local minima. However, by running extensive simula-

tions we found that the cost function is convex around

the true value of the bias. In addition, even if it is true

that the bias can significantly increase with time, it

increases quite slowly. By continuously estimating its

value, and by initializing the minimization of the cost

function with the last estimate of the bias, we always

remain in the region where the cost function is convex.

8.1 Performance Overall Evaluation

This section analyzes the performance of the closed-

form solution completed with the bias estimator intro-

duced in section 8. The setup is the one described in

section 7.1. Also in this case, the results are averaged

on 1000 trials. We consider the same five values of the

bias of the gyroscopes considered in Fig. 8. Finally, we

set the magnitude of the accelerometer bias equal to
zero (Fig. 9) and equal to 0.1ms−2 (Fig. 10). Fig. 9

shows a performance comparable to the one exhibited

in Fig. 2. Fig. 10 shows a performance even better than

the one exhibited in Fig. 7. This demonstrates that the

effect of the bias has been fully compensated.

9 Conclusion

In this paper, we studied the problem of cooperative vi-

sual inertial sensor fusion. Specifically, the case of two

agents was investigated. Each agent was equipped with

inertial sensors (accelerometer and gyroscope) and with

a monocular camera. By using the monocular camera,

each agent can observe the other agent. Specifically, the

camera only returns the position (up to a scale) of the

observed agent in its local frame. No additional camera

observations (e.g., of external point features in the en-

vironment or of known pattern on the observed agent

able to directly provide the relative orientation between
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Legend Absolute Scale

Relative Speed Relative Orientation

Fig. 7 Impact of the accelerometer bias on the performance of the closed-form solution. The two MAVs observe one each other
over a variable duration of integration.

the agents, as in [1]) were considered. All the inertial

sensors were assumed to be affected by a bias. First,

the entire observable state was analytically derived. To

this regard, we proved that the entire observable state

consists of the following independent physical quanti-

ties:

– The position of one of the agents in the local frame

of the other agent (this means that the absolute

scale is observable).

– The relative speed between the two agents expressed

in the local frame of one of them.

– The three Euler angles that characterize the rota-

tion between the two local frames attached to the

two agents.

– All the bias that affect the inertial measurements

(both the accelerometers and the gyroscopes).

It is interesting to remark that this result holds even

in the case when only one of the two agents is equip-

ped with a camera and, very surprisingly, even when

this camera is a linear camera, i.e., it only provides the

azimuth of the other agent in its local frame.

Then, the paper provided a closed-form solution,

able to determine the observable state by only using vi-

sual and inertial measurements delivered in a short time

interval (4 seconds). This solution extended the solution

in [31,32] to the cooperative case. It is remarkable that

it is possible to retrieve the absolute scale even when
no point features are available in the environment.

Following the analysis conducted in [18], the paper

focused on investigating all the limitations that charac-

terize this solution when used in a real scenario. Specif-

ically, the impact of the presence of the bias on the per-

formance of this closed-form solution was investigated.

As in the case of a single agent, this performance is

significantly sensitive to the presence of a bias on the

gyroscope, while the presence of a bias on the accelero-

meter is less important. A simple and effective method

to obtain the gyroscope bias was proposed. Extensive

simulations clearly showed that the proposed method

is successful. It is fascinating that it is possible to au-

tomatically retrieve the absolute scale and simultane-

ously calibrate the gyroscopes not only without any

prior knowledge (as in [18] for a single agent), but also

without external point features in the environment.

Future works will be focused on additional theoreti-

cal investigation. This will include the study of the case

of more than two agents. This study requires to address
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Legend Absolute Scale

Relative Speed Relative Orientation

Fig. 8 Impact of the gyroscope bias on the performance of the closed-form solution. The two MAVs observe one each other
over a variable duration of integration.

several important issues. In the case of two agents, to

obtain the linear system, we had to consider a state

whose components are not independent (e.g., all the

nine entries of the rotation matrix are included in the

state). In the case of more than two agents, obtaining

a linear system by minimizing the redundancy in the

state, is a first issue to be investigated. Note that, as

mentioned at the end of section 6, our objective to be

achieved firstly in the case of two agents, is to consider

a state whose components are independent and obtain-

ing the equation system that characterizes the problem.

This equation system will be a Polynomial Equation

System (PES), instead of a linear system. So far, we

already found a partial solution to this problem. The

PES consists of three polynomial equations in three un-

knowns and several linear equations (this provides up

to eight solutions in the minimal case). The analysis of

this PES, that fully characterizes the problem, provides

all the theoretical features of the problem. This analy-

sis is currently under our investigation and will be the

extension of the analysis provided in [32] for the case of

a single agent (in that case the PES consists of a single

polynomial equation of second degree and several lin-

ear equations). In the case of more than two agents, we

expect that the PES becomes much more complex and

this issue certainly deserves to be investigated. From a

practical point view, there are many issues to be con-

sidered in the case of more than two agents. The vi-
sual constraint due to the limited camera field of view

becomes more important. In particular, the new issue

to be investigated is how the performance changes by

varying the number of agents that can be seen from

each agent. In addition, the cameras synchronization is

harder to be realized in the case of many agents. Fi-

nally, the problem of communication delays and how

robust is the solution vs communication troubles be-

comes certainly more relevant.

A Observability with bias

We analytically obtain the observability properties of the sys-
tem defined by the state in (17), the dynamics in (19) (where
the last equation has been replaced by Ḃ1

Ω = Ḃ1
A = Ḃ2

Ω =

Ḃ2
A = 0) and the three observations in (20) and (21). Since

both the dynamics and the observations are nonlinear with
respect to the state, we use the observability rank condition
in [8]. The dynamics are affine in the inputs, i.e., they have
the expression given in (9). Specifically, we set:

– u1, u2, u3 the three components of A1;
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Legend Absolute Scale
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Fig. 9 Impact of the gyroscope bias on the performance of the closed-form solution completed with the bias estimator. The
accelerometers are unbiased. The two MAVs observe one each other over a variable duration of integration.

– u4, u5, u6 the three components of Ω1;

– u7, u8, u9 the three components of A2;

– u10, u11, u12 the three components of Ω2.

Then, by comparing (19) with (9) it is immediate to obtain
the analytic expression of all the vector fields f0, f1, · · · , f12;
for instance, we have:

f4 = [0,−Rz , Ry , 0,−Vz , Vy , qx/2,−qt/2, qz/2,

− qy/2, 012]T

f7 = [0, 0, 0, q2t + q2x − q2y − q2z , 2qtqz + 2qxqy ,

2qxqz − 2qtqy , 0, 0, 0, 0, 012]T

For systems with the dynamics given in (9) the application of
the observability rank condition can be automatically done
by a recursive algorithm (Algorithm 1). In particular, this
algorithm automatically returns the observable codistribution
by computing the Lie derivatives of all the system outputs
along all the vector fields that characterize the dynamics (see
Chapter 1 of [15]). For the specific case, we obtain that the
algorithm converges at the fourth step, i.e., the observable
codistribution is the span of the differentials of the previous
Lie derivatives up to third order. In particular, its dimension
is 22 meaning that all the state components are observable.

A choice of 22 Lie derivatives is:

L0hu, L0hconst, L1
f0
hu, L1

f4
hu, L2

f0f0
hu, L2

f0f1
hu,

L2
f0f7

hu, L2
f0f8

hu, L2
f0f4

hu, L2
f0f5

, L2
f0f6

hu, L3
f0f0f0

hu,

L3
f0f0f1

hu, L3
f0f0f2

hu, L3
f0f0f7

hu, L3
f0f0f4

hu, L3
f0f0f5

hu,

L3
f0f0f10

hu, L3
f0f7f0

hu, L3
f0f8f0

hu, L3
f0f0f0

hv , L3
f0f0f5

hv .

Note that the choice of these 22 independent Lie derivatives
is not unique. In particular, it is possible to avoid the Lie
derivatives of the functions hv. Specifically, in the previous
choice, only the last two Lie derivatives are Lie derivatives of
the function hv. It is possible to avoid these two functions. On
the other hand, in this case we need to include fourth order
Lie derivatives of hu. For instance, we can replace the last
two functions with L4

f0f0f0f0
hu, L4

f0f0f0f5
hu. This means that

we obtain the same observability properties when the first
agent is equipped with a linear camera able to only provide
the azimuth of the second agent in its local frame. Finally,
as in the unbiased case, a necessary condition to have 22
independent Lie derivatives is that at least one of them must
be computed along a direction that corresponds to one of the
axes of at least one of the two accelerometers (note that in
the above selection we have Lie derivatives computed along
f1, f2, f7 and f8). This means that a necessary condition
for the observability of the absolute scale is that the relative
acceleration between the two MAVs does not vanish.
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Fig. 10 As in Fig. 9 but the magnitude of the accelerometer bias is set to 0.1ms−2 for both the MAVs.

B Analytic derivation of the closed-form

solution

In this appendix we provide the analytic steps to obtain
the linear system given in section 6 (equation (24)). For the
brevity sake, we only consider the case of a single camera.
Specifically, we assume that only the first vehicle is equipped
with a camera. The derivation in the case of two synchronized
cameras follows the same schema and is available in [34].

We start our derivation by introducing a new local frame
for each vehicle. Each new frame is defined as follows. It shares
the same origin with the original local frame. Additionally, it
does not rotate and its orientation coincides with the one of
the original frame at the time tA. From now on, we will refer
to this frame as to the new frame. Additionally, we will refer
to the original local frame, namely the one defined at the
beginning of section 2, as to the original frame.
Let us introduce the following notation:

– V1 and V2 denote the first and the second vehicle;
– ξ is the position of V2 in the new local frame of V1;
– η is the relative velocity of V2 with respect to V1, ex-

pressed in the new local frame of V1;

By construction we have:

ξA ≡ ξ(tA) = RA ηA ≡ η(tA) = VA (29)

From (15) we have the following dynamics in the new coor-
dinates:

 ξ̇ = η

η̇ = OAA2 −A1

ȮA = 0

(30)

where:

– A1 is the acceleration (gravitational and inertial) of V1
expressed in the first new local frame (i.e., A1 = M1A1);

– similarly, A2 = M2A2 .

Let us introduce the following notation:

– w1, w2 and w3 are the three columns of the matrix OA,
i.e., OA =

[
w1 w2 w3

]
;

– α1(t) = [α1
x(t), α1

y(t), α1
z(t)]T =

∫ t
tA
A1(τ)dτ ;

– α2(t) = [α2
x(t), α2

y(t), α2
z(t)]T =

∫ t
tA
A2(τ)dτ .

Note that the quantities β1(t) and β2(t) defined in section 6

are β1(t) =
∫ t
tA
α1(τ)dτ and β2(t) =

∫ t
tA
α2(τ)dτ .

Let us integrate the second equation in (30) between tA
and a given t ∈ [tA, tB ]. We obtain:

η(t) = ηA + w1α2
x(t) + w2α2

y(t) + w3α2
z(t)− α1(t) (31)

and by substituting in the first equation in (30) and integrat-
ing again, we obtain:

ξ(t) = ξA+ηA(t−tA)+w1β2
x(t)+w2β2

y (t)+w3β2
z (t)−β1(t) (32)
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Note that this equation provides ξ(t) as a linear expression of
15 unknowns, which are the components of the 5 vectors: ξA,
ηA, w1, w2 and w3. In the following, we build a linear system
in these unknowns together with the unknown distances when
the camera performs the measurements.

The camera (on V1) provides the vector R(t) = M1(t)ξ(t),
up to a scale. We denote by λ(t) this scale (this is the dis-
tance between V1 and V2 at the time t). We have ξ(t) =
λ(t)µ(t), where µ(t) is the unit vector with the same direc-
tion of ξ(t). Note that our sensors (specifically, the camera
together with the gyroscope on V1) provide precisely the unit
vector µ(t): the camera provides the unit vector along R(t);
then, to obtain µ(t) it suffices to pre multiply this unit vector
by [M1(t)]T .

We remind the reader that the camera performs n ob-
servations at the times tj , (j = 1, · · · , n), with t1 = tA and
tn = tB . For notation brevity, for a given time dependent
quantity (e.g., λ(t)), we will denote its value a the time tj by
the subscript j (e.g., λj = λ(tj)). In this notation, equation
(32) becomes:

λjµj = ξA + ηA(tj − tA) + w1β2
xj + w2β2

yj + w3β2
zj − β1

j (33)

This is a linear equation in 15 + n unknowns. The unknowns
are:

– The distances λ1, · · · , λn.
– The three components of ξA.
– The three components of ηA.
– The components of the vectors w1, w2 and w3, i.e., the

nine entries of the matrix OA.

Note that equation (33) is a vector equations, providing 3
scalar equations. Since this holds for each j = 1, · · · , n, we
obtain a linear system of 3n equations in 15 + n unknowns.
This is precisely the linear system given in (24) with the vec-
tor x given in (25), the matrix A given in (27) and the vector
b given in (26).
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