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Abstract
Automated task planning for robots faces great challenges in that the sequences of events needed for a particular task are
mostly required to be hard-coded. This can be a cumbersome process, especially, when the user wants a robot to learn a large
number of similar tasks with different objects that are semantically related. We propose a novel approach of user preference-
based integrated multi-memory model (pMM-ART). This approach focuses on exploiting a semantic hierarchy of objects
alongside an episodic memory for enhancing the behavior of an autonomous agent. We analyze the functioning principle of
the proposed model by teaching it a few distinct domestic tasks and observe that it is able to carry out a large number of
similar tasks based on the semantic similarities between learned objects. We also demonstrate, via experiments using Mybot,
our ability to reach those goals that are not possible without the integration of semantic knowledge with episodic memory.

Keywords Adaptive resonance theory · Task planning · Cognition · Semantic memory · Episodic memory · User preference

1 Introduction

As the research output in autonomous robotics is increas-
ing, we have seen considerable amounts of efforts being
put into improving various functions that are expected from
a fully independent robot. Technologies are continuously
being developed for autonomous agents to improve their
abilities to perceive the environment, to navigate through it,
to manipulate objects, and to make appropriate decisions.
For being able to perceive and infer its environment, an
autonomous agent needs cognitive skills. These skills define
the ability to acquire, learn and comprehend knowledge; rea-
son and solve problems; and make decisions (Kim et al.
2013).
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The two types of declarative memories, episodic memory
and semantic memory, are considered to play a significant
role in cognition related problems (Irish et al. 2013; McRae
and Jones 2013; Nuxoll and Laird 2007; Tulving 1972, 1983,
2002). The memory of personal experiences and specific
events in time in a serial form is referred to as episodic mem-
ory whereas semantic memory is a structural record of facts,
meanings and concepts that have been acquired over time
(Tulving 1972, 1983, 2002). Episodicmemory does not only
allow us to learn spatio-temporal sequences of events but also
allows us to extract regularities in the original experience and
combine it with current knowledge (Nuxoll and Laird 2007).
Similarly, concepts that form a part of semantic memory are
also regarded as fundamental elements of almost all aspects
of human cognition (McRae and Jones 2013). This knowl-
edge is used by us to understand and recognize entities in our
environment and use them to perform functions (McRae and
Jones 2013).

The latest research has pointed out an overlap between the
two types of memory systems demonstrating the interdepen-
dence of episodic memory and semantic memory on each
other (Greenberg et al. 2015; Irish et al. 2013; Levine et al.
2004). The degree to which both memory systems depend
on each other varies across theorists but there is a wider
agreement upon the existence of interdependence. Episodic
memory facilitates the formation of new semantic memories
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over time, while semantic memory can help in acquiring new
episodic memories (Greenberg et al. 2015).

Having highlighted the important role episodic memory
can play in task planning, it is necessary to mention that for
teaching a robot various tasks using episodic memory, a user
would have to either hard-code or teach, via learning from
demonstration, the sequences of events for each predefined
scenario. For example, for carrying out the task of Move
Apples from Counter to Fridge, the robot will have to learn
a sequence of events such as Move to Counter, Pick up an
Apple,Move to Fridge with the Apple, etc. This method itself
is not very flexible because each time it is required for the
robot to perform a new task, manual amendments of source
code would be needed even for a new task with only differ-
ences in the information about the objects involved. In this
case, a semantic representation of objects can play a role to
extend the learned experiences in order to perform similar
tasks (Move Oranges from Counter to Cupboard) instead of
learning them from scratch. In other words, there is a need
for a mechanism that can develop relations between the con-
cepts robots learn from their experiences and categories of
semantically-related objects according to how the user wants
to define the categories. Also, the relation between various
semantically related categories is useful knowledge that can
be used as leverage to help robots improve their reasoning
capability. To the best of our knowledge, not much work
(more on this in the next section) has been done to integrate
the two types of memories to improve the decision-making
abilities of agents in task planning scenarios.

Following this, we propose an adaptive resonance the-
ory (ART) (Carpenter and Grossberg 1987) based integrated
multi-memory neural model (pMM-ART) whose contribu-
tions, briefly, include: (1) introduction of an object fact map
(OFM), (2) integration of OFM with an existing episodic
memory, namely, pDM-ART (Nasir et al. 2018), and (3)
an inference mechanism based on this integration. In more
detail, the proposed model makes the following contribu-
tions:

1. Introduces a semantic knowledge base (OFM) that has
the ability to interact with an episodic memory without
an independent control module.

2. Introduces a mechanism for the integration of OFM
with an episodicmemory. TheOFMand this integration
give us the knowledge about how far in space the object
categories are to each other with respect to attributes and
the concepts they share, respectively. This knowledge is
in terms of weighted connections.

3. Introduces an inference mechanism that makes use of
the weighted connections to extend past experiences to
plan for new similar tasks.
– The model is able to extend its knowledge of plan-
ning a task to an entire category of objects by

learning to plan for only one object from the cat-
egory. For example, if through episodic memory,
the model has learned the sequence of events for
the task Move Apple from Counter to Fridge, then
through integration of episodic memory and OFM,
themodel can predict the sequence of events forMove
Orange from Table to Cupboard since apple, orange;
table, counter; and cupboard, fridge are semantically
related to each other.

– Not only is the extension possible to the category the
object belongs to but also to other similar categories.

– The model is able to recognize an erroneous category
of objects that arrives in a retrieval cue.

Section 2 presents related work, while OFM is discussed
in Sect. 3. Section 4 discusses encoding and learning of
tasks/episodes, while Sect. 5 demonstrates retrieval, mem-
ory consolidation process, and the formation of weights (1)
between semantic concepts and object categories and (2)
among object categories. Section 7 demonstrates the func-
tioning principle of our approach in a simulation test-bed
while Sect. 8 includes experimental results onMybot. Lastly,
concluding remarks follow in Sect. 9.

2 Related work

For enhancing the autonomous abilities of robots, various
cognitive architectures have been proposed over the years
(Benjamin et al. 2004; Carpenter et al. 1991; Carpenter and
Grossberg 1987; Laird et al. 1987; Nuxoll and Laird 2007,
2012; Shapiro andBona 2009; Stachowicz andKruijff 2012).
In Nuxoll and Laird (2007), Nuxoll and Laird defined the
design space for episodic memory and provided its imple-
mentation in the Soar cognitive architecture (Laird et al.
1987) to extend the case-based reasoning paradigm. In ELM
(Stachowicz and Kruijff 2012), an R-Tree is used to improve
the retrieval accuracy for events that are defined and catego-
rized on the basis of their type. This framework also allows
the events to be overlapped, nested, and to form partonomic
hierarchies.

In contrast to symbolic models for episodic memory,
bio-inspired models try to categorize the events in a more
efficientmanner in that they allow the robots to encode, learn,
and recall directly from the situations experienced by them
(Hawkins et al. 2009; Hochreiter and Schmidhuber 1997;
Starzyk andHe2007, 2009;Wang andArbib 1990;Wang and
Yuwono 1995; Wang 1999). Carpenter and Grossberg pro-
posed ART Networks (Carpenter and Grossberg 1987) for
the purpose of solving the constraint of stability–plasticity
dilemma (Mermillod et al. 2013) for artificial neural net-
works. Among others (Taylor et al. 2009; Tscherepanow
2010; Tscherepanow et al. 2012), an episodic memory adap-
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tive resonance theory model (EM-ART) (Wang et al. 2012a)
seems promising due to its ability to store the spatio-temporal
relations between events and then retrieve them at a higher
tolerance towards noise in contrast to prior models. EM-ART
has been extended to cater for repetition and user prefer-
ence by Nasir et al. Nasir et al. (2018), which helps improve
retrieval accuracy.

A considerable number of models with various archi-
tectures and designs to represent semantic knowledge have
also been proposed to improve the reasoning and inferring
abilities of autonomous agents (Al-Moadhen et al. 2013;
Dayoub et al. 2010; Galindo et al. 2008; Ji et al. 2012;
Rogers and Christensen 2013; Veiga et al. 2016; Wu et al.
2014). Galindo et al. (2008) introduced semantic maps that
integrate semantic knowledge with hierarchical spatial infor-
mation to assist in task planning by enriching the planning
domain and reach those goals that are otherwise not achiev-
able without including semantic knowledge.Wu et al. (2014)
designed a model 10 based on a conditional random field
that labels a segmentation tree with hierarchical semantic
labels to improve reasoning skills of robots while planning
tasks. Also, Veiga et al. (2016) provided a unified framework
consisting of object perception, semantic map, and decision-
making for an efficient search for objects in a domestic
environment.

Amongbio-inspiredmodels, a fewof themhave integrated
semantic memory and/or memory consolidation processes
along with the episodic memory models (Gao and Tan 2014;
Wang et al. 2012b, 2017). Gao and Tan provided a method to
encode the daily activity patterns in episodic memory EM-
ART. The regularities in these activity patterns are extracted
to consolidate patterns into semantic memory (Gao and Tan
2014). Wang et al. (2012b) integrated EM-ART employing
Fusion ARTs with semantic and procedural memory mod-
ules. The semantic knowledge is built through a memory
consolidation process in which episodes from the episodic
memory are played-back to gradually extract and learn gen-
eral facts by using a lower templatematching threshold.More
recent work by Wang et al. (2017) aims at building a frame-
work that allows for interaction between episodic, semantic,
and procedural memories without having an explicit control
module and a generalized representation scheme for vari-
ous forms of semantic knowledge. The last two approaches
are similar to our work in the sense that they too integrate
multiple memory modules to enhance autonomy. However,
some of the ways in which our architecture differs are:
(1) the definition of the semantic memory that forms by
the consolidation process, (2) the consolidation process
itself, and (3) the interaction between episodic and semantic
memory.

Tan et al. (2010) incorporated reinforcement learningwith
the features of belief, desire, and intention in their fusionART
architecture that is able to refine plans without depending on

the rigid user-defined paths enabling a robust performance. In
Subagdja and Tan (2012), the authors proposed iFALCON,
an architecture based on ART that is able to plan on the fly in
situationswhen the required knowledge is insufficient. It does
this by using a new representation technique called ’gradient
encoding’. These approaches are similar to ourwork in regard
to that they aim to generate novel plans online; however, they
differ in terms of architecture, methodology, and outcome. In
addition, the definition of novel plans varies across the three
models.

Following is a summary of the proposed approach:

– It utilizes pDM-ART (Nasir et al. 2018), an extension
of EM-ART (Wang et al. 2012a), as the episodic mem-
ory. Proposed by Nasir et al. this episodic memory
“helps frequent and significant episodes in undergoing
consolidation-like process to form more stable mem-
ories which represent a concept of doing a particular
task”. The motivation to use pDM-ART in our proposed
model is based on the fact that it caters for repetition
and user preference at encoding. This leads to the devel-
opment of semantic-like concepts during the retrieval
process. These semantic-like concepts constitute consoli-
dated memory. However, pDM-ART on its own, without
integrating with a semantic knowledge base, can only
recall sequence of events for those tasks that have been
explicitly taught to the system.

– In pMM-ART, an OFM is constructed by encoding each
unique object using a Fusion ART (Tan et al. 2007)
and then grouping together the semantically related
objects into object categories by making use of another
Fusion ART. Weighted connections develop among
object categories. These connections define the relation-
ship between the categories based on the attributes they
share.

– During the retrieval of learned episodic memories from
the episodic or consolidatedmemory, top-downweighted
connections develop between the semantic-like concepts
and the activated object categories. These connections
define the relationship between the object categories
based on the concepts they share.

– These two types of weights can then be utilized to
recall a sequence of events for those tasks that have not
been explicitly taught to the system. These tasks dif-
fer in the information related to the objects involved
in the tasks. An inference module makes use of the
weighted connections to decide the most suitable plan in
a given situation. Figure 1 highlights pMM-ART’s basic
architecture.

The approach presented in this paper seems to have some
conceptual similarity with the widely known case-based rea-
soning (CBR) approach (Riesbeck and Schank 1989). Both
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Fig. 1 Basic architecture of the proposed pMM-ART

methods solve new problems by adapting solutions that were
used to solve old problems. While CBR may need human
intervention for adaptation (Cunningham 1998), the pro-
posedmethod tries tominimize this by integrating a semantic
knowledge base. However, it has its limitations, which are
discussed in the last section. For our simulations, we assume
that the sensory data at the input of our system and the
motor commands at the output are sufficient enough for
our purpose. For the purpose of a proof of concept, we
also demonstrate our model using a hardware architecture in
Sect. 9.

3 Encoding, learning and retrieval of object
categories

In this section, encoding, learning and retrieval of object cat-
egories is presented. As our entire architecture is based on
hierarchicalmulti-channel FusionARTneural networks (Tan
et al. 2007), we begin by describing the dynamics of Fusion
ART briefly. Fusion ART is a self-organizing neural network
that is an extended model of ART (Mermillod et al. 2013).

3.1 Fusion ART

The following procedures are involved in a Fusion ART.

3.1.1 Complement coding

Each field Fk
1 receives an input vector Ik = (I k1 , I k2 , . . . , I kn )

where I ki ∈ [0, 1], i = 1, 2, . . . , n, denotes the i-th input
or attribute to channel k and k = 1, 2, . . . , l is the num-
ber of input attribute channels. Each of the input vector Ik is
converted into an activity vector xk by the process of comple-
ment coding in which the input vector is concatenated with
its complement, Īk = (1 − Ik).

3.1.2 Parameters

Each field’s dynamics are determined by various parameters.
These include choice parametersαk , learning rate parameters
βk , contribution parameters γ k , and vigilance parameters ρk .

3.1.3 Code activation

F2 has one channel that is represented by an activity vector
y = (y1, y2, . . . , yd) where d is the number of nodes in F2.
The following choice function activates a node j in F2:

T j =
l∑

k=1

γ k

∣∣∣xk ∧ wk
j

∣∣∣

αk +
∣∣∣wk

j

∣∣∣
(1)

where xk is the activity vector of Fk
1 receiving the input Ik

(including the complement), wk
j denotes the weight vector

associated with the j-th node in F2 for learning the input pat-
tern in Fk

1 , αk is the choice parameter, and γ k ∈ [0, 1] is the
contribution parameter. Also, k = 1, 2, . . . , l is the number
of input channels, ∧ represents a fuzzy AND operator where
∧ : a ∧ b = (min(a1, b1),min(a2, b2), . . . ,min(aD, bD))

for the D-dimensional vectors, a and b, and norm operator is
defined by |a| = ∑D

i=1 |ai |.

3.1.4 Code competition

The node with the highest activation value in F2 is selected
as the winner node by the process of code competition where
the winner node is indexed at J as

TJ = max{T j : for all F2 node j}. (2)

Making use of the winner-take-all strategy, the output of
the winner node is set to 1 and all the other outputs are set to
0.

3.1.5 Template matching

This process is used to check the similarity between the activ-
ity vector xk and the weight vector wk

J , which is associated
with the selected node in F2. This similarity is defined by the
value given by the following match function:

mk
J =

∣∣∣xk ∧ wk
j

∣∣∣
∣∣xk

∣∣ (3)

and the vigilance criterion is as follows:

mk
J ≥ ρk . (4)

   



                                  2167

In order for resonance to occur (4) should be true. In other
words, the match value of the selected node J should be
greater than the vigilance parameter ρk . Vigilance parameter
ρk sets a threshold for the template matching step. For OFM,
we have modified (4) to

mk
J ≥ ρkγ k (5)

like in Leconte et al. (2015)where γ k ∈ [0, 1]. This is done to
control the vigilance parameter for each channel based on the
contribution factor associated with that channel. It could be
useful if one wants to either give relative significance to cer-
tain attributes at the input or ignore some of them. Assigning
γ k equals to zero specifies that no importance is currently
being given to the attribute coming from channel k in the
match process. If (4) and (5) are not true for episodic mem-
ory and OFM, respectively, a reset occurs setting the value of
TJ to 0. Until resonance is achieved, a new index j is chosen
by (2). In the case when no node meets vigilance criterion, a
new category node is created in F2.

3.1.6 Template learning

After resonance occurs in F2, theweight vectors aremodified
for each channel using the following learning rule:

wk(new)
J = (1 − βk)wk(old)

J + βk(xk ∧ wk(old)
J ). (6)

3.1.7 Readout

Once a node J is chosen in F2, it can readout its weight
vectors by a top-down process to an input field Fk

1 such that
xk(new) = wk

J .
Notation In the remainder of the paper, the leading super-
script o is used to identify the notation for the OFM to
differentiate it from the notation of the episodic memory and
consolidated memory.

Figure 2 shows the architecture of OFM made by hierar-
chically joining two Fusion ARTs. An object has the general

Fig. 2 OFM architecture

representation asObject:
{
oI1, oI2, . . . , oIq

}
, where oIk rep-

resents an attribute vector to channel k and q is the number of
attribute channels for oF1. Each attribute channel represents
information that is required to encode an object. For exam-
ple, ObjectLabel,Color,Characteristics,Location, etc. can
be used to encode an object where ObjectLabel refers to the
label given to the object for identification and learning.

Following the dynamics of Fusion ART, an activity vector
of the attribute layer oF1 undergoes code activation, code
competition, template matching, and template learning to
learn every u-th object ou in the object layer oF2. Hence,
by updating the weights in the connections between oF1 and
oF2, an incoming object is said to be learned using the learn-
ing rate βofm. The same dynamics are used to learn a pattern
of activations in layer oF2 as the v-th object category Ov in
oF3. Themost recent activated node in layer oF2 gets the value
of 1 and the previously selected nodes also keep the value of
1 without any decay. This ensures that the object categories
learned in oF3 are independent of any temporal sequence.
Note that a the term category is used to define a set of objects
while the term node is used to refer to a point in the network
that could either be an object, a category, an episode, etc.
Once the OFM is constructed, an attribute-based semantic
relation (ASR) value V att

A can be calculated by

V att
A =

∑q
k=1 φk

∣∣wk
1∧wk

2 ...∧wk
c

∣∣
αk+∣∣wk

1∨wk
2 ...∨wk

c

∣∣
∑q

k=1 φk
(7)

where V att
A ∈ [0, 1] is the attribute semantic relation

value between any number of categories defined by a
subset A ⊆ Ũ = {1, 2, . . . , c} such that the cardinal-
ity of A is at least 1 and c is the maximum number of
categories. wk

O is the weight vector for an object from cat-
egory O between oF2 and oF1 where O = 1, 2, . . . , c;
∨ represents a fuzzy OR operator with ∨ : a ∨ b =
(max(a1, b1),max(a2, b2), . . . ,max(aD, bD)) for the D-
dimensional vectors, a and b. Finally, φk ∈ [0, 1] is the
relevance parameter. The value of the relevance parameter
for each of the channels k describes how relevant that chan-
nel is for calculating the ASR value. The ASR value defines
associations between any number of categories, the strength
of which depends on the number of attributes shared by the
particular categories. This value of a category with itself is
maximum. Using such relations between any number of cat-
egories, we can define tensors of rank c′ ∈ [1, c] defining the
scalar (self), vector (one categorywith each of the other c cat-
egories), pair-wise (all c categories with each of the other c
categories), triple-wise, quadruple-wise,…, etc. ASR values.
The general attribute semantic relation tensor (T att

SRT ) would
then be

T att
SRT = (V att

λ1,λ2,λ3,...,λc′ ) (8)
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Algorithm 1 pMM-ART: OFM Learning
1: BEGIN
2: FOR every subsequent object ou in object category Ov

3: Based on input o Ik in oF1, select a resonant node U in oF2
4: Let node activation yU be 1 or any predefined maximum value
5: After a subsequent presentation of Ov , given an activation vector y

formed in oF2
6: Select a resonant node V in oF3 on the basis of the activation vector

y
7: if Ov is a novel object category then
8: learn its associated weight vector w

(new)
V = y

9: end if
10: Construct T att

SRT using (9)
11: END

whereλ is used for indexing purpose.When c′ = 2, it reduces
to a rank-2 tensor which is essentially a c×cmatrix as shown
below. It defines the relationship between each of the O-th
category with itself and the remaining c − 1 categories.

T att
SRT

∣∣
c′=2 =

⎛

⎜⎜⎜⎜⎜⎜⎝

V att
λ1=1,λ2=1 V att

λ1=1,λ2=2 · · · V att
λ1=1,λ2=c

V att
λ1=2,λ2=1 V att

λ1=2,λ2=2 · · · V att
λ1=2,λ2=c

...
...

. . .
...

V att
λ1=c,λ2=1 V att

λ1=c,λ2=2 · · · V att
λ1=c,λ2=c

⎞

⎟⎟⎟⎟⎟⎟⎠
.

(9)

We will later see in Sect. 7 that the inference model makes
use of the attribute semantic relation tensor when there is a
need to search for the category with which the currently acti-
vated category shares the maximum ASR value. It is also
used to search for multiple categories with which the acti-
vated category shares high ASR values. The learning process
of objects and object categories is highlighted in Algorithm
1.

An object category can be retrieved by a top-down readout
procedure using a retrieval cue. The retrieval cue activates an
object node in oF2, and it is selected as the incoming object
if the match is high enough to pass the vigilance criterion
ρobj. The activated objects in oF2 are then recognized as
the objects in the retrieval cue. A similar process then takes
place between oF2 and oF3 to recognize the object category.
Once the object category is recognized, it is selected and the
weights are readout by a top-down process: first from oF3 to
oF2 and then from oF2 to oF1. In this manner, the entire list
of objects in the chosen object category is retrieved. In order
to facilitate a flexible retrieval of object categories, a low
vigilance threshold ρcatg is used between layers oF2 and oF3.
However, to reduce erroneous retrievals of object categories,
a high vigilance criterion is used between layers oF1 and oF2
to set a strict matching criterion for the individual objects.

4 Encoding and learning of episodes in
pMM-ART

The encoding and learning of episodes in pMM-ART is the
same as that for pDM-ART in Nasir et al. (2018). We present
the relevant content from Nasir et al. (2018) in condensed
form in this section which is sufficient for the purpose of
this paper to understand the integration between the episodic
memory and OFM. An overall architecture of pMM-ART
is shown in Fig. 3 in which F1, F2, and Fepi

3 represent
the episodic memory while F sem

3 represents the consoli-
dated experiences/semantic concepts as defined inNasir et al.
(2018).

While the basic encoding, learning, and retrieval proce-
dure for the episodes in pDM-ART is the same as that for
object categories described in the previous section, there are
certain differences that give episodic memory (1) its spatio-
temporal characteristic [adapted from Wang et al. (2012a)]
and (2) various learning rates based on a user-preference
known as Importance factor I [introduced in Nasir et al.
(2018)]. The higher the importance associated with an event,
the stronger the encoding is compared with other events at
the time of encoding (Nasir et al. 2018). Note that the number
of input channels for F1 and attribute channels for oF1 are
independent of each other. We use l and q number of input
and attribute channels for F1 and oF1, respectively, for the
purpose of clarity.

An event including an action input I1 and object input I2

and an importance I is represented as Event: {Action(I1),
Object(I2)| Importance I}. Events are learned as weights
between the layers F1 and F2 using various learning rates
represented by βe j where βe j is the learning rate for j-th
event and is given by:

βe j = βmin + (1 − βmin)(Ie j − 0.5). (10)

Here Ie j ∈ [0, 1] is the importance of the event e j defined
by the user at the input layer. and βmin ∈ [0.5, 1] is the initial
setting of the minimum learning rate of the memory model.
Just as a pattern of activations in oF2 is used to represent an
object category in oF3, the activation patterns in F2 repre-
sent an episode in F3. These episodes are learned as weights
between F2 and F3 based on βEr defined in a similar manner
as (9). βEr is controlled by IEr ∈ [0, 1], that is, the impor-
tance factor for the r -th episode. IEr is given by

IEr =
∑p

j=1 Ie j
p

(11)

where p is the total number of events in the r -th episode and
Ie j is the importance of the j-th event in the r -th episode.

In contrast to the activation values being either 1 or 0 in
oF2, in episodic memory a decaying pattern of activations
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Fig. 3 pMM-ART architecture

represents the sequence of events in the episode (Wang et al.
2012a). The most recently activated event node is assigned a
value of 1 while the activation values of the event nodes that
were selected previously are decayed over time by a decaying
factor given by τ ∈ (0, 1) such that ynewj = yoldj (1−τ)where
y is the activity vector of F2. Hence, an episode is learned as
a decaying pattern of activations representing the sequence
of events in time.

In order to read out the events in correct sequence from F2
to F1 during the retrieval procedure, a vector is used that first
complements the values in F2 such that ȳ j = 1− y j . Making
use of this complement vector, the weights of the event node
associated with the highest value are read out first from F2 to
F1 to retrieve the sequence of the events in the correct order
as they were learned.

5 Retrieval, memory consolidation and
integration

This section describes how in the presence of the OFM, the
retrieval of episodic memory from Fepi

3 and the following
memory consolidation procedure described in pDM-ART
(Nasir et al. 2018) can be utilized to form top-down weights
in pMM-ART. These weights are formed (1) between the
consolidated episodes/semantic concepts and the object
categories in the OFM and (2) between the object cat-
egories based on the concepts they share. In effect, this
leads to the integration of episodic memory and semantic
memory.

A cue for retrieving an episode with an action input
I1 and object input I2 is represented as Retrieval cue:
{Action(I1),Object(I2)}. The input cues for an episode are

first received by the working memory that acts as a buffer
until all cues for a single episode are received. It passes these
cues onto the inferencemodule to infer the type of objects that
are in the cue. For this purpose, the inference module queries
information through working memory about the objects in
episodicmemory and those that are in theOFM. In our imple-
mentation, it is assumed that the OFM has also learned some
objects that are not a part of the episodic memory. We refer
to these kind of objects as objects without context. Similarly,
a category in OFM with all such objects would be referred
to as a category without context.

5.1 Retrieval via Fepi3 and Fsem3

If all the objects in the retrieval cue are associated with a
context then the inferencemodule directs the cues to episodic
memory to retrieve an episode using either of the two routes
to Fepi

3 and F sem
3 in the same way as in pDM-ART. The two

routes, from F2 to episodic memory Fepi
3 and F2 to semantic

memory F sem
3 , have different vigilance values, ρepi and ρsem,

respectively. ρsem is always lower than ρepi to facilitate easier

retrieval. Before the formation of F sem
3 , only Fepi

3 is used
(Nasir et al. 2018).

In addition to this, in pMM-ART, the information about
the objects in the retrieval cue is also sent to the attribute
layer oF1 to activate the relevant object categories. In the
current implementation, the retrieval cues include informa-
tion about objects and actions but not the object attributes.
Therefore, we set the contribution factor, γ k , equal to zero
for all attribute channels except label channel oF1

1 during the
retrieval process for pMM-ART. Alternatively, attributes can
also be used at the input layer.
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At the time of encoding of events and episodes, pDM-
ART (Nasir et al. 2018) assigns a memory strength value to
each event and episode according to their importance factor
I . This ensures that the more important episodes are encoded
strongly compared to less significant ones. Every time an
event or episode is reactivated, the memory strength value is
strengthened proportional to a reinforcement rate rs and the
memory strengths for other events and episodes decay by a
decay factor δs .

If the memory strength of an event or episode falls below
a certain threshold, it is forgotten. That is, it is removed
from the episodic memory. On the other hand, if the memory
strength of an episode exceeds the semantic-like memory
threshold value ssemt ∈ [0, 1], the episode is moved to the
semantic-like memory F sem

3 . This episode is then called a
consolidated episode/semantic concept and has the memory
strength value atwhich it got consolidated. Each episode con-
solidates at a rate directly proportional to (1) the importance
I assigned to the episode at the time of encoding and (2) the
frequency of retrieval of that episode.

For the purpose of facilitating integration between pDM-
ART and OFM, we introduce top-down weights that are
formed between the consolidated episode and the currently
activated set of object categories in oF3. The weight values
are equal to the memory strength value of the consolidated
episode. For the resonant node R in Fepi

3 that gets consoli-
dated and copied in F sem

3 , the values of the weights in the

weight vector w(catg)
R associated with the categories in oF3

would be:
{

sER (t), ∀ currently activated O (12a)

0, ∀ currently non-activated O . (12b)

In the case when an object category has weighted connec-
tions with more than one consolidated episode, the weight
values will be the highest for the one with the highest mem-
ory strength value sER (t). The object categories that share
concepts form an association with each other which we term
as a concept-based semantic relation (CSR). This relation
V con
A between any number of categories defined by a subset

A ⊆ Ũ = {1, 2, . . . , c}, is determined as follows:

V con
A = No. of concepts shared between A categories

No. of categories sharing the concepts
(13)

This value is updated whenever a new concept is shared
between the same set of object categories. The value can
range between [0,max] where max can be any real val-
ued number, and, just like V att

A , V con
A can be used to define

associations between any number of categories from one to
maximum c. For example, V con

λ1=1,λ2=3 = 1.5 means that cat-
egories 1 and 3 share three concepts. A cardinality of one
for A defines the CSR value of a category with itself, which

is simply equal to the number of concepts with which it is
associated. Similarly, using relationships between any num-
ber of categories, we can define a tensor of rank c′ ∈ [1, c]
(T con

SRT ) (known as Concept Semantic Relation Tensor) sim-
ilar to (9). As we indicate in Sect. 7, this tensor is used
by the inference module to search for categories that share
the highest CSR value with the currently activated category/
categories.

5.2 Retrieval via Fsem3 and OFM via inference

In the case when the inference module receives retrieval cues
with an object that is not associatedwith any learned episode,
it directs the cues to OFM only. Each object in the retrieval
cues is used to activate the relevant categories in the oF3 layer.
In order tomake a prediction for a plan that ismost relevant to
the incoming retrieval cues, the inference model makes use
of the weighted connections between (1) object categories
and semantic concepts/consolidated episodes (V con

A ) and (2)
object categories (V att

A ).
First, an activation value for each consolidated episode in

F sem
3 at the incoming pattern of object categories is calcu-

lated (more on this in Sect. 7). It is given by a sum of weights
between the consolidated episode and each of the activated
object categories. The activation values undergo the follow-
ing vigilance criterion:

ρsem−rel = ζ

ssemt
(14)

where ζ ∈ (0, 1] is a constant of proportionality. The lower
the value of ssemt , the stricter the vigilance criterion is. The
inverse relation in (14) between ρsem−rel and ssemt is intuitive.
The value of ρsem−rel should be higher when the semantic-
like memory threshold has a low value and vice versa. This
is because more episodic memories will get consolidated
quickly if ssemt is lower. Hence, a stricter criterion must be
applied between oF3 and F sem

3 opposed to when the consoli-
dation itself undergoes a strict ssemt criterion.All consolidated
episodes with activation values fulfilling the vigilance cri-
terion ρsem−rel are retrieved in the order of priority. The
consolidated episode with the highest activation value has
the highest priority. The weights are read out from F sem

3 and
F2.

In the case when the vigilance criterion ρsem−rel is not
fulfilled for each consolidated episode, then T con

SRT helps to
predict a sequence of events closest to the retrieval cue.
Apart from the categories that are activated due to the incom-
ing retrieval cue, a few more categories are additionally
activated. These are the categories that respectively have
the highest V con

A values with each of the already activated
categories.
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The categories having the highest V con
A values with each

of the activated categories (due to the incoming retrieval cue)
are activated. Together these categories are used to meet the
vigilance criterion and retrieve a consolidated episode.

The retrieved semantic concept is the closest plan to the
task at hand; however, it contains information about differ-
ent, though semantically related, objects that were originally
learned in the episodicmemory. The inferencemodulemakes
appropriate replacements based on the similarity between the
objects in the retrieved sequence of events and those in the
retrieval cue. Objects from the same categories can replace
each other in a retrieved sequence of events. For example,
after having learned Move Apple from Counter to Fridge,
pMM-ART is expected to be able to predict the sequence of
events forMoveOrange from Table to Cupboard since apple,
orange; table, counter; and cupboard, fridge are semantically
related to each other in our representation of the OFM (more
on this in 7). Another possible case of object replacement
is when the two objects belong to different categories but
the value of V att

A between the two is high enough to meet
a vigilance criterion ρatt ∈ [0, 1]. For example, coffee and
pepsi may be able to replace each other even though they
belong to different categories of hot and cold drinks in our
simulation test bed. This allows for planning in cases when
one of the objects in the retrieval cue belongs to a category
that has no context. T att

SRT can be used to identify if enough
attributes are shared between this category and the category
in the retrieved sequence of events. If the criterion ρatt is
met, the plan would be considered feasible for the incoming
category without context.

The procedure for retrieval, memory consolidation, and
formation of weights (V att

A , V con
A ) is written in the form of

psuedocode in Algorithm 2 for easier understanding.

6 Complexity analysis

We analyze the space complexity and time complexity of
pMM-ART for encoding and retrieving events, episodes,
objects, and object categories. Let us consider the task of
encoding E episodes, e unique events, O object categories,
and o unique objects. The basis for defining the complexity
is the same for OFM, PDM-ART, and EM-ART (Tan et al.
2007), since they are constructed using Fusion ART.We sup-
pose that for each event and each object there are fixed set of
attributes a and oa. In one category, there can be a maximum
of G objects and on average g objects. Similarly, there can
be a maximum of M events and an average of m events in
an episode. Lastly, in F sem

3 , we can have a maximum of E
episodes and a minimum of 0 episodes. Table 1 shows the
space and time complexity for OFM, pDM-ART, and EM-
ART, since we used it as a benchmark for pDM-ART inNasir
et al. (2018), and pMM-ART.

Algorithm 2 pMM-ART- Retrieval, Consolidation and for-
mation of 1) T con

SRT 2) T att
SRT

1: BEGIN
2: FOR the incoming retrieval cues of one episode/task
3: if all objects are associated with context then
4: Send to episodic memory to retrieve from Fepi

3 ∪ F sem
3

5: Also, activate relevant object categories in oF3
6: Select a resonant node R in Fepi

3 ∪ F sem
3

7: if R is found in Fepi
3 then

8: Increase sER (t) for R by
9: sER (t) = sER (t − 1) + (1 − sER (t − 1))rs
10: end if
11: for every other node do
12: Decrease sER (t) by
13: sER (t) = sER (t − 1)(1 − δs)

14: end for
15: if sER for R is ≥ ssemt and R is not in F sem

3 then
16: Copy R to semantic memory component F sem

3

17: Learn the associated weight vector w(sem)
R = w(epi)

R
18: Form weights between R in F sem

3 and currently active Ov in
oF3

19: Update relevant values in T con
SRT

20: end if
21: Readout weights from Fepi

3 and F2 or F sem
3 and F2

22: end if
23: if one or more objects are not associated with any context then
24: Send to OFM to retrieve from F sem

3 and oF3 via inference
25: Activate relevant object categories in oF3
26: Sum the weight values between each consolidated episode in

F sem
3 and currently active O in oF3 to get the activation values

for each concept
27: if one or more activation values ≥ ρsem−rel then
28: Retrieve the relevant concepts in order of priority
29: if at least one O has no context then
30: Use T att

SRT to validate ρatt criterion if possible for O without
context

31: end if
32: end if
33: if all activation values < ρsem−rel then
34: Use T con

SRT to activate category/categories closest to the already
active categories

35: Repeat steps 26–29 again
36: end if
37: Reorganize the retrieved sequence of events using appropriate

object replacements
38: end if
39: Exit Loop
40: END

6.1 Space complexity

OFM would require a total of o nodes to encode o objects
in the oF2 layer and a total of O nodes to encode O object
categories in the oF3 layer. Since an object o is stored in the
2(oa)weighted connections to the oF1 layer, there are a total
of 2o(oa) connections between oF1 and oF2 layers. Similarly,
as each O node is connected to all the o nodes, there are a
total of 2Oo between layers oF2 and oF3. In the same way,
we get a total of 2ea and 2Ee weighted connections between
F1 and F2 layers and F2 and F3 layers, respectively. Also,

   



2172                                   

Table 1 Comparison of space and time complexity

OFM pDM-ART EM-ART pMM-ART

Space complexity (nodes) O(o + O) O(e + E) O(e + E) O(e + E + o + O)

Space complexity (weights) O(o(oa) + Oo) O(ea + Ee) O(ea + Ee) O(ea + Ee + o(oa) + Oo + EO)

Time complexity (Encoding) O(go(oa) + Oo2) O(mea + Ee2) O(mea + Ee2) O(go(oa) + Oo2 + mea + Ee2 + EO + (c − 1)!)
Time complexity (Retrieving) O(go(oa) + Oo2) O(mea + Ee2) O(mea + Ee2) O(go(oa) + Oo2 + mea + Ee2 + EO + (c − 1)!)

in F sem
3 there can be a maximum of E nodes if all episodes

are consolidated or a minimum of 0 if none are consolidated.
Lastly, the maximum number of weights between F sem

3 and
oF3 can be EO and a minimum of 0. Hence, the minimum
number of nodes required in pMM-ART is e+E+o+O and
a maximum of e + 2E + o + O nodes. In the same manner,
a minimum of 2(ea + Ee+ o(oa)+ Oo) and a maximum of
2(ea + 2Ee + o(oa) + Oo) + EO connections are required
in pMM-ART. Although it seems that the addition of OFM
increases the space complexity, in effect, if there was to be no
use of OFM and instead the memory model was to learn all
kinds of similar interactions through episodic memory, the
number of nodeswould bemuch higher. Using V con

A , and V att
A

reduce the number of events, episodes and weights required
to “know” a particular amount of events and episodes/tasks.

6.2 Time complexity

In OFM, for the resonance search operation between oF1
and oF2, a total of o(oa) comparisons are required. For an
average of g objects in one object category, the process-
ing steps required to produce activations in oF2 are go(oa).
To compare the activation pattern in oF2 with O number
of object categories in oF3, it will require Oo2 amount of
processing time. This makes the time associated with encod-
ing an object category equal to go(oa) + Oo2. In a similar
manner, we can see that if there are no nodes in F sem

3 ,
the time required to encode an episode is mea + Ee2 and
mea + 2Ee2 in the case when there are E number of nodes
in F sem

3 (Nasir et al. 2018). Also, the time required to pro-
cess connections between E number of concepts in F sem

3
and O number of object categories in oF3 is EO . To cal-
culate T con

SRT and T att
SRT , a total of 2(c − 1)! calculations are

required. This makes the time complexity of pMM-ART
equal to go(oa) + Oo2 + mea + Ee2 + EO + (c − 1)!
as shown in Table 1.

7 Functioning principle and discussion

In this paper,we focus on exploiting the semantic hierarchyof
objects for enhancing the behavior of an autonomous agent
in three ways. For example, if it learns to plan for “Move

apples from counter to fridge”, it should also be able to plan
for “Move oranges from table to shelf ” if we assume apples,
orange, counter, table, and fridge, shelf to be in semanti-
cally similar categories. Also, if pMM-ART receives cues
for “Move oranges from counter to Not-Kitchen-Cabinet”, it
should be able to deduce: (1) it learned moving objects of
the type orange (belonging to the category fruits) to objects
belonging to category kitchenstorage and (2) Not-Kitchen-
Cabinet does not belong to the category kitchenstorage.
Hence, it will retrieve the plan for the task by correcting
the possible furniture type needed to store oranges.

This section demonstrates the functioning principle of the
preliminary version of our model in a simplistic test bed
in a MATLAB environment to examine the potential of a
system that looks to exploit relationships between episodic
memory and semantically related categories of objects. The
test bed consists of plans for five tasks/episodes, as shown
in Table 2, and 10 categories consisting of 29 objects. We
examined the model with various kinds of cues to observe
the number of different tasks/plans that it could execute
using the knowledge of 5 tasks and 10 object categories.
The first step was learning of episodes and object cate-
gories. Two inputs were used to learn the events: a total
of 6 actions {Grasp, Move, Putdown, Open, Close, Wash}
and 9 objects {Apple, Fridge, Counter, Cola, User, Circu-
larToy, NotKitchenTable, NotKitchenCupboard}. The tasks
were learned using the episodic memory module and OFM
was used to learn a set of 10 object categories {Fruit = Apple,
Banana, Orange, ColdDrink =Cola, Pepsi, Cider; HotDrink
= Milk, Tea, Coffee, KitchenStorage = Fridge, Cupboard,
Shelf, KitchenSurface = Counter, Table, Slab, HumanSub-
ject = User, Friend, StorageFurniture = NotKitchenCup-
board, NotKitchenShelf, ToyWithoutEdges = CircularToy,
OvalToy, SphericalToy, SharpEdgedToy = SquareToy, Rect-
angularToy, PentagonToy, Surface = NotKitchenCounter,
NotKitchenTable, NotKitchenSlab}. At the attribute layer
oF1, we used 4 channels to define 29 objects. The first chan-
nel was the label channel which includes labels for each
object like Apple, Shelf, etc. The second channel was for
defining 9 colors {Red, Green, Blue, Yellow, Orange, Black,
White, Pink, Brown}. The third channel defined 8 charac-
teristics {Sustenance, Eatable, Drinkable, CanStore, Sharp,
Rounded, Playable, Flat}. Finally, the last channel defined
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Table 2 A detailed list of the
scenarios along with their
respective sequence of events

Scenario Sequence of events

Move apples from counter to fridge Move to the counter

Pick an apple

Move with the apple to the fridge

Open the fridge

Putdown the apple

Close the fridge

Bring Cola for a user Move to the fridge

Open the fridge

Pick a Cola

Close the fridge

Move to the user

Move apples from counter to fridge after washing Move to the counter

Pick an apple

Wash the apple

Move with the apple to the fridge

Open the fridge

Putdown the apple

Close the fridge

Arrange circular toys Move towards a circular toy

Grasp a circular toy

Move with the circular toy to a table that is

NOT in kitchen

Put the toy on the table

Arrange rectangular toys Move towards a rectangular toy

Grasp a rectangular toy

Move with the rectangular toy to a cupboard

that is NOT in kitchen

Put the toy in the cupboard

locations of the objects {Kitchen, NotKitchen}. The tasks
were designed in a way to test the aforementioned abilities
of pMM-ART in a typical domestic environment. Some of
the most common tasks in such an environment may be to
arrange fruit with or without washing them, to provide a bev-
erage to the user, and to arrange random toys in the house
differentiating safe toys (with circular edges) from less safe
toys (with pointed corners). The test bed is designed to ana-
lyze the functioning principle and to understand the abilities
and limitations of the currently defined pMM-ART.

For setting the importance factor I at the time of the encod-
ing of events, a feedbackfunction() is used that mapped user
feedback to a pre-defined function where the user feedback
can be recorded in various ways including verbal or facial
expressions (Nasir et al. 2018). Once the system learned
the episodes/tasks and the object categories, it is tested with
various kinds of cues in a number of cases. We set a high
importance factor of 1 with all the events except the event of
washing apples. It is given a value of 0.5 to signify that the

user does not preferwashing the apples.Various retrieval cues
are used. Case one defines a situation in which the retrieval
cues include a sequence of events for a task with objects
that the system was taught planning with initially. In other
words, all objects have a context meaning that are known
to episodic memory. The second case defines the situation
in which one or more objects in the cues are unknown to
the episodic memory. The last case is when one or more
objects or object categories and an event/sequence of events
is unknown to episodic memory.

Parameters for pMM-ART : Parameters for pMM-ART
were initialized as follows:

– ρe = 0.98, ρepi = 0.98, ρsem = 0.65, βmin = γmin =
smin = 0.5, δs = 0.0001, rs = 0.5 and ssemt = 0.75

– ρobj = 0.95, ρcatg = 0.87, βofm = 0.8 (for all channels
from layer oF1 to oF2, and from oF2 to oF3), γ = 1 (at
learning for all channels and layers), γ = 0 (at retrieval
for all channels in oF1 except for oF1

1 , ρsem−rel =
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Table 3 Summary of results for
a scenario of 5 learned tasks

Learning

Number of events learned 19

Number of episodes/task learned 5

Number of objects learned 29

Number of objects categories learned 10

Retrieval

With OFM Without OFM

Number of events retrieved 83 19

Number of tasks it can plan for 99 5

Number of times it used T con
SRT

and succeeded
11/11

Number of times it used T att
SRT

and succeeded
18/36

Number of times it was able to
identify erroneous object
category

9/9

Number of times it showed a
lack of plan

48

Successful retrieval including
all cases

5/5 + 107/107 + 27/93 = 139/205

1/ssemt = 1.333, ρatt = 0.75, and φk = 0 for k=0,1
and φk = 1 for k=2,3.

Parameters were chosen by a hit-and-trial method in away
that worked best in the current environment. It was found that
OFM was very sensitive to changes in the values for ρcatg.
According to our observation, intermediate values (between
0.8 and 0.9) were more suitable for forming discrete clusters
of objects when there were no categories with a single object.
Otherwise, higher values (above 0.95) of ρcatg produced best
results during training. In the latter case, the value ofρcatg can
be tuned during testing to increase flexibility. The summary
of the results in this section is shown in Table 3.

7.1 Case I: Cues with objects known to episodic
memory

In this case, we have different kinds of cues that can be used
to evaluate the performance of the episodic memory. Partial
cues from the beginning, partial cues from themiddle, partial
cues from the end, noisy cues in termsof event representation,
and noisy cues in terms of event sequencewere used. For each
kind of cue, the test was carried out with (1) multiple trials
with each trial having the same set of cues and (2) three cases
of importance parameter values to evaluate the effect of the
importance parameter on consolidation. For Case I, as OFM
is not needed, pMM-ART in effect reduces to pDM-ART
(Nasir et al. 2018) in its performance except that at consol-
idation weighted connections are formed with oF3. For the

sake of space constraints and keeping the paper focused on
the advantages of integrating anOFMwith episodicmemory,
these simulations have not been included in more detail. The
interested reader is requested to refer to Nasir et al. (2018)
for a better understanding. After the consolidation of all the
episodes andhence the formationof (1)T con

SRT and (2)T
att
SRT , the

partial structure of pMM-ART will look as shown in Fig. 4.
We will get to the Extended Concept shown in Fig. 4 in more
detail in 7.2.

7.2 Case II: Cues with one or more objects unknown
to episodic memory

In the second case, objects unseen by the episodic memory
were used in the retrieval cues. This means that these objects
were not learned by the episodic memory in any episode.
Rather, they are only known to the OFM as a part of a cat-
egory. Two types of cues were used: (1) complete cues and
(2) partial cues.

7.2.1 Retrieval with complete cues

A total of 81 cues were used with 76 of them being com-
plete cues with objects unknown to episodic memory while
the remaining five cues were cues for the five learned tasks.
These first five cues were needed for consolidation, and since
we set a high importance factor of 1 with each event, consol-
idation of a particular episode was achieved only after one
successful retrieval through Fepi

3 . The effect of I on the rate
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Fig. 4 a, b Highlight how the task Move Orange from Counter to Fridge is retrieved for a partial cue by making use of T con
SRT
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of consolidation has been evaluated in detail in Nasir et al.
(2018). Out of the 76 cues, 26 were constructed by making
all possible replacements for objects in episode 1 and associ-
ated object categories. Cues such asMove banana from slab
to shelf, Move apple from table to cupboard etc were used.
Similarly, cues 11, 26, 8, and 5 associated with episodes 2,
3, 4, and 5, respectively, were used.

As mentioned above, for each of these cues, relevant
objects were replaced to test if planning on one instance of
an object category enables pMM-ART to extend the planning
for the entire category. A few examples of cues used included
Bring cider from cupboard to the user, Arrange a spherical
toy on NotKitchenCounter, andMove orange from counter to
shelf after washing it. We observed that pMM-ARTwas able
to use the relationship between the consolidated episodes and
object categories to extend planning for object categories.
Hence, it retrieved sequences of events successfully for all
81 cues after learning only 5 tasks and planning for only 9
objects, instead of 29 objects.

Since the initially learned concept Move Apple from
Counter to Fridge is now extended to Move Fruit from
KitchenSurface to KitchenStorage, we call it an extended
concept as in Fig. 4. In the case of cues like Move Banana
from Table to Shelf, event sequences for two learned tasks
(Episode 1 and Episode 3) were retrieved but in descending
order of priority. Thus, the sequence for Move Banana from
Table to Shelf after washing was also retrieved but its prior-
ity was lower because of the low importance associated with
the event of washing the fruit. Hence, lower overall memory
strength of the task lead to a weaker activation value between
oF3 and F sem

3 . In cases when multiple concepts are retrieved,
a user can select whichever sequence of events the userwould
want the autonomous agent to follow.

7.2.2 Retrieval with partial cues

pMM-ART also has the ability to retrieve in the case where
there are partial cues with objects without a context (not in
Fepi
3 ). It may or may not exploit the information in T con

SRT
by making use of the strongest relationship each currently
active category has with other category/categories. In cases
when the information regarding objects in the retrieval cues
does not activate enough categories in oF3 to activate a con-
solidated episode in F sem

3 , the vigilance criterion ρsem−rel is
not met. In such situations, a category/categories having the
highest concept semantic relation value with each of the cur-
rently active category is/are activated. Together, they may or
may not be able to activate a semantic concept. We used a
total of 36 cues with the first 5 cues being complete cues
for the learned tasks and the remaining 31 being partial cues
with information about a maximum of two objects. 11 out
of 31 times, pMM-ART used T con

SRT to aid in retrieval of a
possible sequence of events. For the remaining 20 cues, the

activated categories were able to meet the vigilance criterion
ρsem−rel and so T con

SRT was not used. An example of retrieval
with partial cue using T con

SRT is shown in Fig. 5a, b. The partial
cue Pick an Orange is unable to activate any node in F sem

3
as shown in Fig. 5a. Hence, using T con

SRT , KitchenStorage and
KitchenSurface, having the highest V con

A value, are activated,
which together are able to activate concept no. 1 (Fig. 5b).
Suitable replacement of apple with orange is also done.

7.3 Case III: Other types of Cues

In this subsection, we tested the ability of pMM-ART with a
more diverse range of cue types.

7.3.1 Cues with one or more objects and an event/sequence
of events unknown to episodic memory

These types of cues included either (1) one or more objects
and an event unknown to episodic memory or (2) one or
more objects and the entire sequence of events unknown to
episodic memory. This would then include cues for tasks
like Bring Cola from a NotKitchenCupboard, Arrange Rect-
angular toys on Counter, and Move Apple from Fridge to
Counter. We used 30 cues that were a combination of Move
Apple from KitchenStorage/HumanSubject to KitchenStor-
age/KitchenSurface/HumanSubject. Even though at least one
instance from the object categories involved in each of these
30 cues is known to episodic memory, to plan all of these
tasks, a sequence of events is required that is not similar to
the one that was used forMove Fruit from KitchenSurface to
KitchenStorage. In such cases, when the sequence of events
needs to be changed, pMM-ART is not able to plan the exact
new sequence of events. Nevertheless, it still predicts the
closest sequence of events to the asked task. For example,
for Move Apple from Cupboard to Counter it predicted the
sequence of events for Move Apple from Counter to Cup-
board. The new task can be taught to the memory model
if needed. We also used 18 cues for Move Square Toys from
KitchenSurface to Surface. Since no relation existed between
these three categories, both in terms of shared concepts and
attributes, there was a failure to retrieve any semantic con-
cept from F sem

3 . In such a situation, T con
SRT was used to activate

additional relevant categories with the strongest relation with
respective categories. It led to retrieval of more than one con-
cept in descending order of priority.

The property of predicting the closest known sequence of
events helped in reducing errors in caseswhen a cue had erro-
neous information regarding any one of the objects. Any cue
(9 possible cues) of the form Bring ColdDrink from Storage-
Furniture led to a retrieval of a sequence of events for Bring
ColdDrink from KitchenStorage that is actually correct.
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Fig. 5 a, b Highlight how the task is retrieved for a retrieval cue Bring Coffee from Fridge for User by making use of T att
SRT even when {HotDrink}

has no weighted connections with F sem
3
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Fig. 6 Control architecture used for experiments on Mybot

7.3.2 Cues with an object category and an event/sequence
of events unknown to episodic memory

We also tested a few cues consisting of an entire object cat-
egory unknown to the episodic memory. This was done to
evaluate how pMM-ART would make use of T att

SRT . For this,
we used two sets of cues (18 cues for each set) defining the
tasks Bring HotDrink fromKitchenStorage to HumanSubject
andMove HotDrink from KitchenSurface to KitchenStorage.
Although there were no weighted connections between the
category HotDrink and F sem

3 , information about other cat-
egories in both sets of cues was able to predict the closest
sequence of events to the task in question, i.e., Bring Cold-
Drink fromKitchenStorage toHumanSubject andMove Fruit
from KitchenSurface to KitchenStorage. Now the V att

λ1=2,λ2=3
value between categories ColdDrink, HotDrink turned out
to be close to 1 as they shared the properties Sustenance,
Drinkable, Kitchen satisfying the vigilance criterion ρatt .
Hence, pMM-ARTwas able to plan for Bring HotDrink from
KitchenStorage to HumanSubject as shown in Fig. 5a, b. In
the case ofMove HotDrink from KitchenSurface to Kitchen-
Storage, V att

λ1=1,λ2=3 = 0.667 was less than ρatt . Therefore, it
simply retrieved cues for the closest task it knew (Move Fruit
from KitchenSurface to KitchenStorage) showing the lack of
a plan available for this scenario. In summary, the need for
learning a possible sequence of events defining a relation-
ship between {coffee, milk, tea}, {Counter, Slab, Table} and

{Fridge, Cupboard, Shelf } was observed since T att
SRT failed

to retrieve the plan. Of course, if ρatt was set lower, the result
would have been different.

In addition to the above mentioned scenarios, if a particu-
lar object is not found at the expected location, the inference
system can be used to choose another object from the same
category present at the expected location. Using OFM, this
would be possible without the need for hierarchical seman-
tic labeling for objects in an RGB-D image like in Wu et al.
(2014) and instead flat labeling can be used.

8 Experiment onMybot

The model was also validated on Mybot, a robot developed
in the Robot Intelligence Technology (RIT) Lab at KAIST.
Mybot makes use of Odroid XU board, Ubuntu 14.04 and
ROS.

The head, which has 17 degrees of freedom (DOF), con-
sists of an RGB-D Camera and a thermographic sensor that
are used together to detect and recognize the objects in the
environment. If the robot is not able to see the required object
in the present view, itmoves its head left and right in search of
those objectsmakinguse of its neck,whichhas 3DOF.Mybot
has a total of 22 DOF in its upper body (10 DOF in each arm
and 2DOF in the torso). The lower body ofMybot is amobile
base that has differential wheels with wheel speed of about
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Fig. 7 a–d Mybot performing two tasks of arranging Cola and Coffee in CabinetA and CabinetB, respectively. The sequence of events for these
two tasks were already taught to Mybot

Fig. 8 a–h Mybot performing four tasks of arranging Cider, Milk, Tea, Pepsi in correct cabinets. The sequence of events for these tasks were not
taught to Mybot

2.0m/s.Moveit! package (Sucan andChitta 2011) alongwith
a laser range sensor URG-04LX-UG01 is used for genera-
tion of the 3D map of the environment. The mobile base
Mybot-KSR2 uses the ROS open-source package GMap-
ping1 for simultaneous-localization and mapping (SLAM)
with its laser range sensor. For trajectory generation of the
arms, Q-RRT* (Jeong et al. 2015) is used which provides
faster real time planning as compared to RRT*.

Figure 6 highlights the control architecture used to carry
out the experiments. We made Mybot learn a total of
six episodes which included: Arrange Cola in CabinetA,
Arrange Coffee in CabinetB, Bring Cola from Counter to
Table and pour it in a Cup,Arrange RedCircularToy in BoxA,
Arrange RedSquareToy in BoxF, and Arrange RedRect-
angularToy in BoxC. Similarly, a total of 12 categories
were learned by the robot including {ColdDrink = Cola,
Pepsi, Cider, HotDrink = Milk, Tea, Coffee, Surfaces =
Table, Counter, DrinkingContainers = Cup, Mug, Cold-
DrinkStorage = CabinetA, HotDrinkStorage = CabinetB,
CircularToys = RedCircularToy, GreenCircularToy, Blue-
CircularToy, SquareToys = RedSquareToy, GreenSquare-
Toy, BlueSquareToy, RectangularToys = RedRectangular-
Toy, GreenRectangularToy, BlueRectangularToy, Circular-

1 http://wiki.ros.org/gmapping.

ToysStorage = BoxA, SquareToysStorage = BoxF, Rectan-
gularToysStorage = BoxC}.

Once the episodes and categories are learned, the user
sends in a command by voice/text interface that, after
being analyzed, is sent from the perception module to the
decision-making module. Here the inference module makes
a decision about passing the command to episodic or seman-
tic memory based on the type of object information it
found in the user command. pMM-ART then predicts a task
(sequence of events) required for fulfilling this user com-
mand. The sequence of events are sent one by one to the
motion controller. Other sensory data, i.e., information about
the environment, calculated arm trajectories etc., are also
received by the motion controller, which executes an event
and returns success if the event has been executed success-
fully. In this way, the entire task is executed.

We sent commands asking for exactly the same tasks
that it learned. Mybot was able to perform each of those
six tasks (task one and two can be seen in Fig. 7). Then,
we validated pMM-ART by sending in commands including
Arrange Pepsi, Arrange Milk, Arrange Cider, and Arrange
Tea to see if it could extend a learned plan for an object to
an entire category of objects. Note that these retrieval cues
only included partial information. The cues did not include
the information about which cabinet a particular drink needs
to be arranged in. That was calculated by pMM-ARTmaking
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use of T con
SRT and all the tasks were executed successfully as

shown in Fig. 8. A video is also available (Online Resource
(1). Due to space constraints, we summarized the results of
one of the experiments, which included two tasks of putting
Cola and Cider in CabinetA and CabinetB respectively, and
then extending this knowledge to other drinks. More details
on the experimental setup can be found in Nasir and Kim
(2016).

9 Conclusion

Keeping in consideration the advantages of having inter-
actions between episodic and semantic memories, this
paper proposed a mechanism to enhance the capabilities of
autonomous agents by making use of a semantic hierarchy
and its relationship with learned episodic memories that get
consolidated over time. This allows for category-based plan-
ning rather than object based planning. Also, using T con

SRT and
T att
SRT , it extends a learned plan for similar categories and cat-

egories without any context, which allows for inter-category
object replacements.

Even though pMM-ART looks to be a promising model,
it has its limitations in the current form. For example, when
the same group of objects is associated with more than one
concept, all of those concepts are retrieved in order of prior-
ity regardless of what the incoming retrieval cue is. Hence,
there is a need to understand the “conceptual meaning” of
a retrieval cue. For example, both the retrieval cues Move
Apple from Counter to Fridge and Move Apple from Fridge
to Counter include the same objects but the sequence of tasks
required for both is different. In addition, if the semantic sim-
ilarity is very high between two categories, all the previously
learned concepts associated with a category may be adapted
for objects in the second category. This generalization may
not always be correct.We look towork on these limitations in
the future versions of the proposed model. Lastly, we would
like to automate the process of setting the pMM-ART param-
eters for making the system robust so that it is easier to adapt
it in various contexts. We also plan to evaluate it on a com-
prehensive dataset and adjust the parameters by means of
cross-validation.
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