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Abstract This paper presents a planning and execu-
tion architecture suited for the initial planning, the ex-
ecution and the on-board repair of a plan for a multi-
robot mission. The team as a whole must accomplish its
mission while dealing with online events such as robots
breaking down, new objectives for the team, late ac-
tions and intermittent communications. We have chosen
a “plan then repair” approach where an initial plan is
computed offline and updated online whenever disrup-
tive events happen. We have defined an hybrid plan-
ner that mixes Partial Order Planning (POP) with a
Hierarchical Task Network (HTN)-based modelling of
actions. This planner, called HiPOP for Hierarchical
Partial-Order Planner, computes plans with temporal
flexibility (thus easing its execution) and abstract ac-
tions (thus easing the repair process). It uses a sym-
bolic representation of the world and has been extended
with geometrical reasoning to adapt to multi-robots
missions. Plans are executed in a distributed way: each
robot is responsible of executing its own actions, and
to propagate delays in its local plan, taking benefit
from the temporal flexibility of the plan. When an in-
consistency or a failure arises, a distributed repair al-
gorithm based on HiPOP is used to repair the plan,
by iteratively removing actions in the plan in order to
amend the global plan. This repair is done onboard
one of the robot of the team, and takes care of par-
tial communication. The whole architecture has been
evaluated through several benchmarks, statistical sim-
ulations, and field experiments involving 8 robots.
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1 Introduction

1.1 Context

Multi-robot missions are a way to widen the type of mis-
sion that a robotic system can achieve with respect to
a single-robot mission. When the robots have different
and complementary capabilities, the team can achieve
together what individual robots cannot achieve on their
own [46]. Ground robots for instance can see under the
trees and carry heavy loads whereas aerial robots are
faster and can survey larger areas. A team of both types
of robots can thus survey large areas scattered with
trees, or aerial robots can send ground robots to lo-
cations where they have detected an anomaly. In this
work, we are interested in multi-robot missions that in-
volve heterogenous robots, that are deployed in outdoor
fields. Such missions have gained a high interest in the
past years, through several projects targeting search-
and-rescue missions after disasters [15] or in extreme
situations [39], or information gathering after disasters
(e.g., industrial disasters [52] or wreck leakage [13]).

To achieve this type of missions, the robots must
cooperate and we argue that this cooperation should be
autonomous. This autonomous cooperation is especially
useful to face and tackle the constraints that arise from
such missions:
– uncertainties related to the environment (presence

of obstacles, location of injured persons, …) or to the
realisation of the mission (time needed to perform
a task, imperfect observations);
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– failures that may reduce the robots’ capabilities
(some terrain may become impassable, some obser-
vation may become impossible), possibly leading to
a robot out-of-service;

– communication-specific failures or uncertainties,
that may make the robots unable to communicate
with each-other or with the operation center;

– operator interactions, first by taking operator
constraints into account before the mission to build
a satisfactory plan; and second by providing super-
vision and interaction means to the operator during
the mission execution (regular reports on robots’
status, capability for the operator to modify the
team objectives, …).

1.2 Case study

In this work, we consider a surveillance mission involv-
ing twelve (12) aerial and ground robots. This mission
has been defined in the ACTION project1. Its objec-
tive is to deploy the team of robots to patrol a given
zone and detect possible intruders. Upon detection, one
or several robots may follow the detected target while
the others carry on with the patrolling stage. This pa-
trolling is defined by the objective of observing a set of
points of interest, scattered in the zone. The objective
is then to allocate observation tasks to the robots, ac-
cording to their capability to observe a specific point
of interest. To perform these observations, movement
tasks have also to be computed and allocated. Finally,
communication tasks will also be planned to ensure reg-
ular reports from robots to the operator. Communica-
tion availability is based on the type of robots and the
distance between them.

In this mission, the following constraints hold:
– uncertainty about the presence and location of in-

truders; the robots have to adapt to possible detec-
tions;

– uncertainty about the duration of actions, especially
for movements, or when waiting for another robot
at a communication point;

– failure of a robot, making it unavailable for the rest
of the mission;

– unavailability of communications, during meetings
or when a plan repair is necessary;

– advised or forbidden zones on the area, depending
on the type of robot, based on the operator prior
knowledge and safety regulations;

1 ACTION was a project of ONERA and LAAS-CNRS,
funded by the French Procurement Agency. The work described
here was used for the final demonstration of the project. For
more information, see http://action.onera.fr/

– information from the operator, that can decide to
get a robot out of the patrolling stage in order to
follow a detected intruder, or to make a robot avail-
able again for the patrolling.
In our case study, the operator defines, before the

beginning of the mission, the set of points of interest,
the set of mandatory meeting between robots, the area
where each robot (or robot type) is allowed to go and a
set of patrol route for each robot. During the mission,
the operator is presented with the current plan of each
robot, updated in real time. He is also notified at each
target detection. During the mission, if a target is de-
tected for instance, the operator can decide to allocate
zero, one or two robots to its tracking. He can also re-
move robots from the plan (in case of a robot failure
for instance) or remove some goals (for instance remove
some point of interest or some mandatory communica-
tion).

2 Related works

2.1 Architecture for distributed execution of a plan

Several architectures have been proposed to execute of
a mission with multiple robots, with different meth-
ods to deal with the communication and the synchro-
nization between robots. Amigoni et al [2] distinguish
several types of connection requirements: none (robots
are not required to communicate), event-based (robots
must communicate on particular events), and continu-
ous (robots must always form a connected graph). Some
works have been done in case no connection is required,
hence providing architecture unaffected by communica-
tion mistakes. For instance Khadka et al [35] have stud-
ied how the experience of some robots can influence and
help other robots to perform tasks. It uses team-level
memory to develop multi-robot coordination strategies
off-line.

Most of the works are in the case of continuous con-
nectivity. Some works assume this connectivity will be
available by an external mean. This allows every robot
to send back data or videos and a central planner to up-
date the plan. Portugal and Rocha [51] have proposed
a distributed architecture with full communication and
use bayesian planning for more random patrols. Franchi
et al [25] developed a method for decentralized con-
trol of a swarm of robot for the entrapment of a target
while Dames [16] used a probabilistic filter to estimate
the number of targets and the areas more likely to com-
pute the best actions for each robot. Moarref and Kress-
Gazit [41] proposed an automatic process to synthesize

http://action.onera.fr/
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decentralized controllers from the desired collective be-
havior. Communication between robots is used for the
synchronization of those controllers. Garzón et al [26]
have worked on multi-robot missions for signal search-
ing while trying to minimize bandwidth. But during
the real life experiment, the communication graph is
complete. Other works use planning to ensure this net-
work connectivity. For instance Pei and Mutka [47] have
used some robots to explore while other are able to be a
communication relay. Abichandani et al [1] provided a
mathematical formulation to allow those global commu-
nication constraints to be integrated into a Mixed In-
teger Nonlinear Planning framework. Penumarthi et al
[49] described a method to construct a communication
map based during a first part of the mission with mul-
tiple robots, allowing communication aware planning
afterward. In a real-life setting, using a routing algo-
rithm can emulate this full communication graph if the
communication graph is connected.

Works in the case of event-based connectivity mostly
use distributed architectures, where each robot man-
ages its own local plan and must synchronize with oth-
ers. In practice, it usually requires the communication
graph to be connected, as there is no model of when the
events occur, and hence no robot or group of robot can
be isolated from the rest of the team. Robots can use
auction to distribute their actions at execution based on
the current situation, even including task with dead-
lines [38]. Barbulescu et al [6] specifically dealt with
adapting local plans to ensure future deadline constraints
between robots. Arrichiello et al [3] have studied the
fault detection inside a team of robots. They do not
assume a complete communication graph but a static
graph for its real-life experiments. Banfi et al [5] have
used the concept of recurrent connectivity where the
planing is centralized and the robots must connect back
to the central planner only when a new information is
available, without needing a full communication graph.

Finally, few works are built to be robust to more
stringent communication constraints, and can then man-
age temporary abscence of communication. Lesire et al
[37] describe a distributed execution algorithm for a hi-
erarchical plan able to repair it in case of failure or
unexpected events, even with intermittent communica-
tion. Otte et al [45] have studied an auction algorithm
when communication are lossy and Ponda et al [50] have
studied an auction algorithm with a dynamic topology
of the communication graph. Brinon-Arranz et al [13]
developed an architecture geared toward underwater
robots when robots adapt their actions to their neigh-
bors and are robust to communication delays.

In our case, missions require event-based connectiv-
ity, where communications are needed when disruptive
events occur, in order to repair the plan. We are then
interested in architectures that can deal with loss of
communication but where the operator can have an un-
derstanding of the current situation and provide specific
instruction when needed. To do that we decided to plan
before the mission and update the plan when needed as
in [37].

2.2 Planning

Automated Planning is a very active area of research,
with diverse algorithms and methods [42], due to the
complexity of most of the planning problems (usually
NP-hard [21]). Domain-independent planners have tried
to tackle this complexity issue by looking for smart
heuristics, while some problems have been solved by in-
tegrating expert knowledge into domain-dependent ap-
proaches.

2.2.1 Domain-independent planning

First approaches in domain-independent planning have
started with STRIPS planning [22] (for STanford Re-
search Institute Problem Solver), and are known as
state-space search approaches. The idea is to represent
the world as a set of boolean literals and a plan as
a succession of actions. For instance the presence of
a robot at a given point or the visibility between two
points can be represented as boolean literals. An ac-
tion will modify a set of literals representing a state of
the world to another set of literals. The search is then
defined as an A∗ algorithm [29] for which a heuristics
is needed to estimate the remaining cost between the
current plan and the goal. There is a lot of variety for
those heuristics, so we cannot describe all of them in
detail here but we will give some pointers to different
families. In state-space planning, heuristics are usually
based on the estimation of the cost to a given state, for
instance using landmarks-based heuristics [33, 53].

Graph-based search is another planning paradigm,
represented by the well-known GraphPlan [11] algo-
rithm. GraphPlan is a planner where a relaxation of the
planning problem is used as a heuristic for the general
planning problem. This work has lead to the definition
of the hadd heuristic that is used later in this paper (see
4.2.3 for the definition). This heuristic can be used in
state-space algorithms like YAHSP [57]. More recently,
other heuristics have been defined to improve the per-
formances of domain-independent algorithms, like hff

[32] and the hm family [31].
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The third paradigm of domain-independent plan-
ning is called plan-space search, or Partial-Order Plan-
ning (POP). Plans are represented as a set of actions
with constraints between them. This allows to represent
plans where all the actions are not sequentially ordered.
For instance, in a plan with several agents, this allows
each agent to have actions that are only loosely tighten
to the other agents. In addition, this also allows to pro-
duce temporally flexible plans: the plan can be easily
adapted to a longer or shorter action (or at least the
consistency of this change can be checked). Several im-
plementations of POP have been proposed such that
UCPOP (Universal quantification and Conditional ef-
fects Partial Order Planner) [48] or VHPOP (Versatile
Heuristic Partial Order Planner)[59]. Another benefit
of plan-space search is that the plan contains elements
of justification on why each action is part of the plan,
which helps to explain it to a human [9] and to mix two
plans computed independently [30]. A drawback of this
method is that until the plan is complete, there is no
full state available in the plan to compute a heuristic
on, leading to computationally heavy planners. Some
heuristics do not need a full state (such as hadd) and
can still be used but this usually means that the plan-
ning time is higher than with state-space search.

2.2.2 Domain-dependent planning

Among the most successful domain-dependent planning
are Hierarchical Task Networks (HTN) [43]. The idea is
to use user-defined abstract actions. Each abstract ac-
tion is associated with a set of methods, each method
being a set of actions which can replace the abstract
action in a plan. These actions can be sequential or con-
current. For instance a search action for an helicopter
could be described as a sequence of observations that
the helicopter should perform in a specific order accord-
ing to an existing procedure. These abstract actions are
described in the problem and the planner uses them to
improve the search process and to enforce constraints
on the solution (when the solution must be described
in term of abstract actions). An abstract action can be
composed of abstract actions and of elementary actions,
these latter being the low-level actions that the plan-
ner sends to the robot for its moves, its perceptions
or its communications. The first HTN planners were
state-based and they usually did not deal with time
constraints and concurrent actions. Some formalisms
deal with these conditions, such as [14, 28, 44]. The ef-
fectiveness of these planners is highly dependent on the
defined abstract actions but can be significantly better
than non-hierarchical planners in certain conditions.

2.2.3 Hybrid planning

Approaches that mixes POP and HTN, in a attempt
to have the benefits of both, have been studied under
the term of hybrid planning, for example by including
hierarchical planning in a more general framework in
UCP [34] or in a constraint satisfaction programming
(CSP) planner in CHIMP [56]. Using the PANDA sys-
tem, Schattenberg [55] conducted an empirical study of
several search strategies in hybrid planning. The FAPE
system [19] integrates closely planning and acting and
do temporal planning with resource constraints. This
system is able to repair the plan of a robot when its
action fails.

Planning family Pro Cons

State-space - Good heuristics
- Domain
independent

- All actions are
sequential

Graph-based - Good heuristics
- Domain
independent

- All actions are
sequential

POP - Temporal and
multi-agent
reasoning
- Domain
independent

- Slower than
other approaches

HTN - Fast - Domain
dependant

Hybrid planning - Temporal and
multi-agent
reasoning
- Fast

- Domain
dependant

Table 1 Summary of the strength and weaknesses of each plan-
ning family.

2.3 Repairing

We define the repair as solving a planning problem
starting with an imperfect plan (i.e. a plan that is not
executable or that do not achieve all the goals of the
problem). Unlike other approaches [27], we assume that
not only the initial conditions and the goals can change
but also the actions available to the planner. We want
the repairing function to find a solution plan that is
“close” to the given initial plan. This property is called
plan stability [24]. In this section, we specifically discuss
repair algorithms for POP and HTN planners.

Local search algorithms can add or remove elements
to the current plan. A heuristic is used to get closer to
a solution plan. GPG [27] tries first to modify a small
portion of the plan then increases the size of this por-
tion if no solution is found. This strategy can also be
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used to improve a given plan rather than just repair-
ing a broken plan, as demonstrated in [4]. A drawback
of local search is to prevent the algorithm of re-doing
something that has already been done: the algorithm
should not enter a loop where it adds an element it
already removed. To avoid this issue, some techniques
starts by removing some elements and after this step
they can only add some elements. This is what we call
the “unrefine-then-refine” approach. This second phase
is similar to a lot of planning techniques and the repair
consists then in figuring out what elements to remove.
As examples, POPR (Partial Order Plan Repair) [36]
is built on top of VHPOP whereas Replan [12] is built
on top of an HTN planner.

Another approach is to specify rules to apply (sim-
ilar to planning where HTN is a way to specify rules).
O-Plan [18] for instance has a list of all the events that
can happen and of what elements to add to the plan
when they happen. But this approach can only deal
with disruptive events that are expected and for which
there exists methods to solve them.

Instead of using specific rules, the repair algorithm
can also replay the reasoning that lead to the initial
plan. The same choice is made if the decision is still
valid, else the algorithm has to explore the different
choices. As examples, the HTN-based RepairSHOP [58]
and the PANDA hybrid planner [10] use this approach
to repair.

3 Contribution

To allow the achievement of multi-robot missions with
communication breakdowns and the occurrence of dis-
turbances, we have then decided to compute an ini-
tial deterministic plan offline and to update it when
needed during the execution. This update is done in a
distributed way: each robot is responsible of executing
its own actions, and to adapt the plan in case of delays.
When a repair is needed (because of a robot failure, a
robot leaving/entering the team, or an unmanageable
delay), the repair is made by one of the robots, that can
modify only the parts of the plan involving the robots
with which it can communicate. This architecture al-
lows to manage plan repairs in a distributed way even
with partial communication links.

For the planning approach, we wanted the POP ben-
efits (parallel task for the actions of different robots and
easy merging of plans) but we also need to take into
account operator interactions (for instance by taking
into account their constraints on the plan), explain the
plan to the operator and react to failures by repairing
the plan. All those constraints advocate for the use of

HTN. This is why we have chosen an approach that
mixes POP and HTN approaches: hybrid planning.

For the repairing approach, the use of pre-defined
rules seems to limit the types of events that can be
dealt with. Since we need to be able to react to quite big
changes (such as any robot having a complete failure at
any given time or a delay of any action that would make
the complete plan unfeasible), we also think the reason-
ing replay approach to be inappropriate because this
type of events can invalidate a lot of different choices
or choices that were made early in the reasoning pro-
cess. Our objective being to use as much as possible the
same algorithm for planning and repairing, we therefore
choose the “unrefine-then-refine” approach over the lo-
cal search.

Those choices were made to tackle the constraints
highlighted in the introduction. The uncertainties re-
lated to the environment and the failures are taken
into account by being able to repair the plan at any
time if needed. The uncertainties related to the time
needed to perform a task are mostly taken into account
by the temporal flexibility of the plan. If this is not
enough and an inconsistency is detected, a repair is trig-
gered. Intermittent communication are taken into
account by relying only on very few mandatory com-
munication. During the execution no communication
is mandatory except at some defined meeting points.
During a repair, even if some robots are not reachable,
the plan can be repaired (the worst case scenario is
that some goals will be temporarily dropped until the
communication can be re-established). Finally, the op-
erator interactions are taken into account with the
definition of abstract action during planning, by being
able to display hierarchical plan during the execution,
and by taking operator notification into accounts at re-
pair time.

To our knowledge, no existing algorithm satisfies
our requirements: repair processes such as POPR [36]
or Replan [12] are respectively used in POP and HTN
frameworks, but no repair process has been studied for
hybrid planners (excepted in PANDA [10], but the ap-
proach seems inappropriate to provide stable repaired
plans). Our main contribution is then an “unrefine-
then-refine” repair algorithm for hybrid planners. The
specificity of the repair algorithm is that it is suited to
situations where communications are intermittent, and
is then able to perform partial repairs. The contribu-
tion is emphasized by a sound evaluation on academic
benchmarks, and a demonstration on the field involving
ground and aerial robots.

This repair algorithm settles on the hybrid plan-
ner HiPOP (see section 4). HiPOP main algorithm is
a classical hybrid planner algorithm. We however made
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some enhancements first in the management of abstract
flaws, by introducing concepts such as conflicts; and sec-
ond on the adaptation and improvement of some stan-
dard POP heuristic for hybrid planners (see 4.2.3). We
moreover proposed a specific management of geomet-
rical reasoning (see 4.3) when such a reasoning can be
infered from the problem to solve.

In order to execute a plan computed by HiPOP in a
distributed multi-robot system, we have defined a dis-
tributed architecture that manages the adaptation of
every robot’ plan to time delays, possibly taking into
accoung other robots’ information when available (see
section 4.6). Moreover, during execution, several events
can happen: actions failures, discovery of new goals,
unmet deadlines. In addition, we also assume that the
communications can fail at any time. The repair algo-
rithm (see section 5) manages such failures and is suited
for partial communication among the team of robots.
Finally we have evaluated the whole architecture (exe-
cution and repair) in simulation and on a field experi-
ment. We conclude with a discussion of the result and
of the future work.

Parts of this work have already been published: the
planning algorithm HiPOP [7] and an extension to re-
pair plans [8]. This paper describes in addition the use
of geometrical reasoning, how to deal with intermittent
communications and evaluations of the whole architec-
ture, both in simulation and in field experiments.

4 Hybrid planning

The first part of this section presents some classical
definitions related to the concept of hybrid planning
and the generic algorithm of a hybrid planner. The sec-
ond part focuses on improvements made in HiPOP, re-
garding first the management of abstract flaws, and the
enhancement of existing heuristics. Then the modifica-
tions made to integrate geometrical reasoning into this
type of symbolic planner are described in a third part.
Finally, we present the evaluation of HiPOP on several
benchmarks, as well as its application to the surveil-
lance mission.

4.1 Background on hybrid planning

We selected a literal-based description of the world where
a state is represented as a set of positive literals. The
negation of literal l is noted ¬l.

Definition 1 (problem) A problem P is a tuple
(L,A, Init,Goal) where L is a set of literals, A is a

set of actions (each action being either elementary or
abstract), Init is the initial state and Goal is the goal
state.

The resulting state of the execution of an elementary
action is obtained from a starting state by removing the
set of its deletion effects and adding the additional ones.

Definition 2 (elementary action) An elementary ac-
tion is a tuple (name, Pre,Add,Del, dur) where name

is the unique name identifying the action, Pre is a set
of literals representing the preconditions, Add is a set
of literals representing the addition effects, Del is a set
of literals representing the deletion effects and dur is
the duration of the action (or a fixed estimation if the
duration is not known at the planning time).

For instance the action move r1 a b moves robot r1
from location a to b. It has for precondition { at r1 a},
for addition effect { at r1 b} and for deletion effect {
at r1 a}. Its duration depends on the distance between
a and b and on the speed of the robot. A graphical
representation of this action is found in Figure 1.

move ?r ?from ?to
at ?r ?from

at ?r ?to

not at ?r ?from

Fig. 1 Graphical representation of a move action. To instanci-
ate this action, each literal that starts with a question mark
should be replaced with a literal. This action could be in-
stancited as move r1 a b or move r1 a c

An abstract action cannot be executed directly and
has to be replaced by one of its methods, but can be
manipulated during the search as an elementary action.

Definition 3 (abstract action) An abstract action,
also called high-level or hierarchical action, is a tuple
(name, Pre,Add,Del, dur,M, C):
– the first five elements (name, Pre,Add,Del, dur) are

the same as in an elementary action (Definition 2),
– M is a set of partial plans (called methods, see Def-

inition 6 below) used to instantiate the action,
– C is a set of conflicts (see Definition 11 below).

For instance an action to move a parcel from one
location to the other has the same description than the
action move (Figure 1). The methods of this action de-
scribe how to actually perform it, for instance by having
a robot pick it up, moving the robot and then dropping
the parcel.

In a plan, the same action can be performed several
times at different dates. A step represents the instanti-
ation of an action in a plan. Several steps in the same
plan can instantiate the same action.
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Definition 4 (step) A step τ is a tuple τ = (a, ts, te)

where a is an elementary action (name, Pre, Add,Del,

dur) or an abstract action (name, Pre,Add,Del, dur,

M, C) and ts and te are the indexes of timepoints in a
STN (see next paragraph). These timepoints represent
the start and end times of τ . We denote act(τ) = a,
tstart(τ) = ts, tend(τ) = te, Pre(τ) = Pre, Add(τ) =

Add, Del(τ) = Del and dur(τ) = dur. For the elemen-
tary actions, te = ts + dur.

A Simple Temporal Network (STN) [17] is used to
check schedulability over the timepoints. If the set of
constraints allows at least one solution, the STN (or
equivalently the set of constraints) is said to be consis-
tent. Let τi, τj be steps. τi ≺ τj is the shorthand way of
tend(τi) ≤ tstart(τj) meaning that τi is scheduled before
τj .

For a plan to be valid, the preconditions of an action
must hold when its execution begins. To enforce this
constraint, we introduce causal links.

Definition 5 (causal link) A causal link (τi
l−→ τj) is

a tuple (τi, τj , l) where τi and τj are steps, l is a literal
such that l ∈ Pre(τj)∩Add(τi) and τi should be applied
before τj , i.e. τi ≺ τj .

If a causal link (τi
l−→ τj) is present in the solution,

the algorithm will ensure that no step will delete l be-
tween τi and τj and that τi ≺ τj .

We can then define a plan as a set of steps and
constraints between these steps.

Definition 6 (partial plan) A partial plan Π, also
called method, is a tuple (T , CL, TL,H, Init,Goal)

where:
– T is a set of steps (see Definition 4),
– CL is a set of causal links (see Definition 5),
– TL is a set of temporal links, each link (ts, te) mean-

ing ts ≺ te,
– H =

{
(τi,mi, τ

0
i , ..., τ

n
i )

}
is a set of hierarchical re-

lations where τi is a step associated to an abstract
action ai, mi is a method of ai and the τ ji are steps of
the plan. Each relation means that the steps τ0i ...τni
have been introduced when instantiating τi with mi,

– Init is the set of literals true in the initial state,
– Goal is the set of literals to achieve.

Each plan has two special steps: the initial step adds
effects corresponding to the initial state and the final
step has preconditions being the goal to achieve. When
this last step can be executed, the plan in question is a
solution to the problem: the goal is achieved at the end
of the plan. For the solution plan, Init and Goal are the
same as in the problem definition. For the methods of

abstract actions, Init is the precondition of the action
and Goal is the union of Add and of the negations of
literals of Del. Instantiating an abstract action means
selecting a method (i.e. a partial plan) and adding all
its elements (steps, causal links and temporal links) in
the plan.

An example of a partial plan is shown in Figure 2.
This plan contains three elementary actions, one instan-
tiated abstract action and one uninstantiated abstract
action. The abstract actions represent the fact of do-
ing a round-trip to explore a location : at the end of
the action the robot is in the same location than at the
beginning.

init

move r1 a b explore r1 b move r1 b a

observe_and_return r1 a b

observe_and_return r2 c d

goal

explored bat r1 a

explored d

at r2 c

Fig. 2 Example of an hybrid plan with flaws. Black rectangles
represent elementary actions. Red dashed rectangles represent
abstract actions. Black arrows represent causal links. Blue dot-
ted arrows represent temporal precedence links. Red dashed
arrows represent open links.

Given a plan, one can define its flaws. Each flaw is
an issue preventing the plan to be executed because a
precondition is not guaranteed or because an abstract
action is not instantiated.

Definition 7 (open link) An open link ( l−→ τj) is a
tuple (τj , l) where τj is a step and l a precondition that
is not supported by any causal link i.e. l ∈ Pre(τj) and
6 ∃τi : τi l−→ τj

In Figure 2, the uninstantiated abstract action has
a precondition (at r2 c) that is not supported by a
causal link. This open link is shown in dashed red.

Definition 8 (threat) A threat is a tuple (τk, τi l−→ τj)
where:
– τk is a (threatening) step,
– τi

l−→ τj is a (threatened) causal link,
– τi ≺ τk ≺ τj is consistent,
– l ∈ Del(τk).

A threat represents an issue that can limit the schedu-
lability of a set of steps by deleting a precondition of a
step before its execution. In Figure 2, without the blue
temporal link between explore r1 b and move r1 b
a, the action move r1 b a would be allowed to be ex-
ecuted in parallel with explore r1 b. In this case the



8 Patrick Bechon et al.

action move r1 b a would threaten the causal link on
the robot position between move r1 a b and explore
r1 b. Basically this means that the robot must be in
b to explore and cannot leave this position until the
explore action is done.

Definition 9 (abstract flaw) An abstract flaw is a
step τ such that no hierarchical relation of τ is present
in the plan.

Abstract flaws represent the fact that a non-instan-
tiated action is in the plan. In Figure 2, this action is
drawn in red.

Definition 10 (flaw) A flaw is an open link, a threat
or an abstract flaw.

Once the flaws are defined, the hybrid planning al-
gorithm is relatively straightforward (see Algorithm 1).
To solve problem P (see Definition 1), the algorithm
inputs are the actions A of the problem, and an initial
partial plan I containing the initial and goal states. The
algorithm keeps a set P of potential solution plans. At
each iteration of the algorithm, a first heuristic chooses
which plan Π to expand (function PopBestPlan in line 3).
A second heuristic chooses which flaw f to solve in this
plan (function PopBestFlaw in line 7) from the set of
flaws of a plan F(Π). For each way to solve this flaw, a
new plan is created (function Resolvers) and added to
the set of plans to explore (line 8). The algorithm stops
when a solution plan is found (i.e. no flaw in the plan,
line 5) or when no solution is found (i.e. no other plan
can be expanded, line 10).

Algorithm 1: Hybrid planner
Input : A (available actions), I (initial plan)

1 P = {I} ;
2 while P 6= ∅ do
3 Π = PopBestPlan(P) ;
4 if F(Π) = ∅ then
5 return Π ;
6 end
7 f = PopBestFlaw(F(Π)) ;
8 P = P ∪ Resolvers(A,Π, f) ;
9 end

10 return ∅

Each type of flaw is solved differently:
– Threat: two resolvers are available, one that sched-

ules the threatening step before the causal link and
one that schedules it after.

– Open link: a causal link must be added. The new
causal link can be from an already existing step or
a new step that is introduced in the plan.

– Abstract flaw: each method of the abstract action
can be used to instantiate this action. All the ele-
ments of the method are introduced into the plan as
children of the abstract step and with temporal con-
straints to schedule them during the abstract step.

4.2 HiPOP

For the requirements of our study, we created a new
hybrid planner called HiPOP. HiPOP relies on the de-
scription made above of hybrid planning (especially Al-
gorithm 1) with the following additions.

4.2.1 Conflicts in abstract actions

The first improvement is to modify the way the threats
of abstract actions are detected. The threats of elemen-
tary actions are detected when the action deletes the
literal of the causal link. With abstract actions, it is
not enough to check only the literals deleted by the
action. When the abstract action will be instantiated,
several elementary actions could be added in the plan.
Those actions may threaten causal links already in the
plan, thus making the plan invalid even if the plan with
the abstract action seemed valid.

To prevent this, we added in the description of the
abstract actions a set of conflicts. The conflicts of an
action are a set of literals given in the definition of the
action such that this action cannot be concurrent with
any causal link of one of its conflicts. We note this set
of conflicts C (as in Definition 3). We can then update
the definition 8 of a threat by adding a new condition
for the last item.

Definition 11 (threat with conflict) A threat is a
tuple (τk, τi

l−→ τj):
– τk is a (threatening) step,
– τi

l−→ τj is a (threatened) causal link,
– τi ≺ τk ≺ τj is consistent,
– l ∈ Del(τk) or l ∈ C(τk).

One way to define conflicts is to add all literals that
are deleted in all the methods of a given action. This
improvement allows the planner to compute plans with
abstract actions that will be valid once its abstract ac-
tions will be instantiated without having to solve new
threats at each instantiation.

For instance an abstract action can define a patrol
for a robot that start and end at the same point. On
a high level view, the position of the robot does not
change so the action can be scheduled concurrently with
a move action for this robot. But as soon as the abstract
action is instantiated, the plan will become invalid. By
defining the position of the robot as a conflict of the
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patrol, we inform the planner that even with the high
level view, the plan is invalid.

4.2.2 List of allowed actions

An issue that occurred in the earlier versions of our
hybrid planner is the fact that the planner can both
add the abstract action then instantiate it and add
all the elementary steps themselves. The planner can
thus develop several branches that will all lead to the
same plan (with or without abstract actions). More-
over, when adding directly the elementary steps, the
planner develops plans that do not conform to the op-
erators intent. Indeed, if the operators have described
an abstract action to achieve a goal, the priority is to
have a plan that includes this action.

To solve this issue, we decided to prevent the plan-
ner to add some actions to solve an open link: these
actions can only be inserted in the plan as part of the
instantiation of an abstract action. For instance if an
abstract action has a method containing the matching
load and unload actions, we would prevent the planner
to add a load or a unload action. The planner could
only add this abstract action and instantiate it.

We then define a set A ⊆ A of allowed actions. On
Algorithm 1, when the flaw f (line 7) is an open link,
the Resolvers method can either add a causal link to
an existing action or to a new inserted action that can
only be part of A. This set of allowed action is defined
with the initial problem by the operator.

This could prevent the planner to find some solu-
tions (for instance those that do not respect the op-
erators intent behind the description of the abstract
actions) but this is also critical to limit the number of
plans searched.

In our case study, we created patrols as abstract ac-
tions (a set of observe and move actions) and we forbade
the planner to add an observation action alone. But we
allow the planner to add move actions for each robot
to be able to move from the ending point of a patrol to
the starting point of the next one.

4.2.3 HiPOP heuristics

Two heuristic functions are used in the HiPOP algo-
rithm: PopBestPlan to choose which plan to expand
next and PopBestFlaw to choose which flaw to solve
next. The performance of the algorithm will be highly
dependent on these two heuristics. The heuristics we
use in HiPOP are POP heuristics [59] adapted and im-
proved in the case of hybrid planning.

Plan heuristic HiPOP uses the A∗ algorithm to sort the
set P of all plans generated but not yet explored. They
are stored in increasing order of f(Π) = g(Π) + h(Π)

where g(Π) is the cost of the current plan and h(Π)

is a heuristic estimation of the cost to reach a solution
plan from Π. In HiPOP g(Π) is the minimum tem-
poral makespan of the plan, computed from the STN.
The computation of h(Π) uses the hadd heuristic as
described by VHPOP [59]. It assumes a sub-goal in-
dependence (which is false, meaning that hadd is not
admissible) and computes the cost of a plan as the sum
of the costs of achieving each open link, where the cost
of each literal can be computed offline. To break ties be-
tween plans, we use an estimation of the remaining ef-
fort (as used in VHPOP). The definition of this effort is
roughly the approximate number of iterations the plan-
ner has to make to reach the solution. This tie-breaker
has been shown to improve performance by exploring
plans closer to the solution when the cost is similar [59].
If both the remaining cost and the remaining effort are
equal, then the plans can be selected randomly or us-
ing a LIFO (Last In First Out, to stay focused on the
current goal).

The hadd heuristic does not take into account the
action reuse, and VHPOP proposed a modification of
hadd to partially take care of it, called reuse. It assumes
a cost of 0 for an open link if a step producing the
required literal is present before the open link in the
plan.

We propose another version of this heuristic called
advance reuse where the cost of a literal is 0 only if a
step produces this literal before in the plan and if no
other step removes this literal after its creation. If Π is
a plan, OL(Π) the set of open link, then we have:

hadd
areuse(Π) =

∑
(t,f)∈OL(Π)


0 if ∃τ ∈ T (Π) | f ∈ Add(τ)∧

(τ ≺ t is possible)∧
∀τ1 ∈ T (Π) | f ∈ Del(τ1)

=⇒ (τ1 ≺ τ ∨ τ ≺ τ1)

hadd(l) else

(1)

Flaw heuristic Previous work on VHPOP showed that
solving threats before open links usually led to better
results. This could be because focusing on threats allow
to detect unfeasible plan early, whereas solving open
links is usually always possible in our problems. We
tried several suggestions to sort the open links: using
their cost (computed with hadd) or solving the more
recently introduced open links.

VHPOP does not deal with abstract flaws (as they
do not exist in POP planning). The idea of hybrid plan-
ning is to first compute a valid plan with abstract ac-
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tions in it and when such a plan is found to instantiate
its abstract actions. So we solve the abstract flaws at
the end.

Some abstract actions can “hide” the fact that their
methods create low-level literals. For instance an ab-
stract action can have preconditions and effects about
the position of a team of robots and have methods with
all the move actions for each robot of the team. This
means that the action itself will not have precondi-
tions and effects related to the individual position of
the robots but its methods will. When several abstract
actions are in the plan, this means that we need the in-
stantiation of the previous actions to be able to insert
causal links for instantiating an action. This is why we
are sorting abstract flaws in chronological order.

In summary, the threats are solved first, then the
open links and finally the abstract links. In the rest
of this paper, we will identify a flaw heuristic by the
method it uses to sort open links. The open links can
be solved in decreasing order of hadd (called sorted) or
by decreasing order of hadd among the open links of the
last added step that still has open links (called local).
This last heuristics allow the planner to focus on solving
one high level goal before considering the others.

4.2.4 Completeness

The completeness of HiPOP highly depends on the avail-
able description and hypothesis. For instance literals
can be masked by the hierarchical description if we as-
sume that the elementary actions are forbidden. The
proof is the same as the completeness of POP plan-
ning if we allow the algorithm to plan with abstract
and elementary actions without restriction (i.e. if the
set of allowed action A = A), but this does not rep-
resent the actual use of the algorithm. The search is
complete among the space of all plans that can be rep-
resented using only allowed actions at the higher level
and their instantiation, i.e. among the plans respecting
the user intend. In other words, all plans that respect
the user intent are searched but not all plan that can
be constructed from the elementary actions.

As stated in 2.2, the problem is NP-hard so the com-
plexity of the planner is NP-hard.

4.3 Geometrical reasoning in hybrid planning

The hybrid planner described up to here can solve dif-
ferent problems but is unable to solve a multi-robot ex-
ploration problem in a reasonable time. The issue is not
the completeness but the efficiency: by using symbolic
reasoning HiPOP can have to explore a lot of different
invalid plans before realizing that there are invalid.

To solve more efficiently the problems involving ge-
ometrical reasoning, we modified HiPOP in two ways.
The first one is to detect and use the fact that the po-
sition of a given robot is unique. The second one is to
detect and use move actions: actions whose only effect
is to move a robot without any other precondition.

4.3.1 Unicity of the position

The first characteristic of the robots position that is
not taken into account in our literal-based description
is that a position is unique: one and only one must exist
at any time. In some situations, the planner can have
open links for the robot to be in different places at the
same time and still cannot figure out that the plan is
invalid until later, when it will try to solve these open
links.

The first step to deal with this issue is to detect
the literals that represent a position. More formally we
need to detect sets of literals such that one and only one
is true at any given time (except during the execution
of an action where the position can be undefined, but
at the end of the action it has to be defined). From
the description of the domain using PDDL (Planning
Domain Definition Language) [40], a list of candidate
families is thus computed from the predicates. And for
each family, it is labelled as a position family if there
is one and only one literal of this family in the initial
state.

Definition 12 (position literals) Let P = (L,A,

Init,Goal) be a problem.
The set of literals G ⊂ L is a position family if and

only if:
1. Init ∩ G has a single element.
2. ∀a ∈ A, ∀f ∈ G, f ∈ Del(a) =⇒ f ∈ Pre(a)∧∃g ∈

G | g 6= f ∧ g ∈ Add(a).
3. ∀a ∈ A, ∀f ∈ G, f ∈ Add(a) =⇒ ∃g ∈ G | g 6=

f ∧ g ∈ Pre(a) ∧ g ∈ Del(a).

This definition ensures that there is a single position
at the beginning (Property 1) and that every action will
keep one and only one position after its execution. Each
action that deletes a position must ensure that this is
the current position and that it will set another position
(Property 2). Each action that creates a position must
delete the previous position (Property 3). The family
representing the position of robot r1 is defined for in-
stance as at r1 *, meaning all literals starting with at
r1 and another literal following. For instance, the lit-
eral at r1 pos1 is a position literal in the family at
r1 *.

Once the algorithm has detected families, HiPOP
can use them as a mutex. If an action produces a po-
sition literal, the algorithm knows that it cannot be
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concurrent with another position. So threats can be de-
tected earlier: if an action produces a position literal
then it will threaten any causal link on a different lit-
eral from the same family. We can then supplement the
definition 11 of a threat by adding a new condition for
the last item.

Definition 13 (threat with conflict and position)
A threat is a tuple (τk, τi

l−→ τj):
– τk is a (threatening) step,
– τi

l−→ τj is a (threatened) causal link,
– τi ≺ τk ≺ τj is consistent,
– l ∈ Del(τk) or l ∈ C(τk) or (∃G|l ∈ G and ∃p ∈

Add(τk)|p ∈ G and p 6= l).

As an example (see Figure 3), this modification al-
lows the planner to detect that the action move r1 d e
threatens the causal link move r1 a b at r1 b−→ move r1
b c. This threat would not have been detected without
this modification.

move r1 a b explore r1 b move r1 b c

move r1 d e

at r1 b

at r1 b

at r1 d not at r1 d
at r1 e

Fig. 3 Example of a flaw that is not detected without geo-
metrical reasoning. The action move r1 d e has no common
precondition or effects with the other actions but the unicity
of the robot position make it clear that this action could not
happen in parallel with the rest of the plan.

The position family can also be used when solving
open links. If the open link is towards a position, the
algorithm can only add a causal link towards the last
known position of the robot, and not a causal link with
a position that has already been changed. This mod-
ification prevents the planner to add a causal link to
the plan that will automatically be threatened with no
potential resolvers.

4.3.2 Move actions

Another feature of the majority of problems involving
position is the availability of some kind of “move” ac-
tions: moving a robot is always an option and does not
depend on anything else. In such problems, the planner
knows for sure that it does not have to guarantee as
soon as possible the precondition of position: it could
always add a move action later. This allows it to fo-
cus on other flaws first and to add the moving actions
between already scheduled actions.

Formally, we want for each position family to have
access to a set of move actions. A move action must be

available to go from any position to any other position
and this action must only depend on the initial position
and will modify this position. This action must also be
the shortest available action to go from one point to the
other. We can add these requirements on move actions
to the definition 12 of position literals so that a position
family is associated with a family of move action.

Definition 14 (position literals with move actions)
Let P = (L,A, Init,Goal) be a problem.

The set of literals G ⊂ L is a position family iif.:
1. Init ∩ G has a single element.
2. ∀a ∈ A, ∀f ∈ G, f ∈ Del(a) =⇒ f ∈ Pre(a)∧∃g ∈

G | g 6= f ∧ g ∈ Add(a).
3. ∀a ∈ A, ∀f ∈ G, f ∈ Add(a) =⇒ ∃g ∈ G | g 6=

f ∧ g ∈ Pre(a) ∧ g ∈ Del(a).
4. ∀from, to ∈ G2 | from 6= to,∃a ∈ A | Pre(a) =

{from} ∧ Add(a) = {to} ∧ Del(a) = {from}. Let
afrom→to be this action.

5. ∀a ∈ A,∃from, to ∈ G2 | from ∈ Pre(a) ∧ to ∈
Add(a) =⇒ dur(a) ≥ dur(afrom→to).

6. The duration of the actions afrom→to must respect
the triangle inequality: ∀f, g, h ∈ G3, dur(af→g) +

dur(ag→h) ≤ dur(af→h).

Property 4 states that a move action must exist
between each couple of positions: an action that only
changes the position without needing anything else. Prop-
erty 5 states that the move action is the shortest ac-
tion that moves from a position to another. Property 6
states that the move actions must respect the triangle
inequality to ensure that a succession of actions cannot
be faster than a single move action.

This definition could be quite restrictive since it as-
sumes that an action exists to go from any point to any
other point. In our application, this property holds. It
could also be implemented by computing all the miss-
ing actions and adding them as abstract actions. The
methods of those new actions can be computed as the
shortest path using the available elementary actions.

Those move actions can be used during the search
in different ways, described hereafter.

Taking the plan into account in hadd The first use of
the move actions is to improve the hadd heuristic. In
this heuristic, the cost of a given literal is computed in
the initial state. So the estimated cost of returning a
robot to its starting location will always be 0, even if
the robot has moved since.

Using the knowledge of move actions, the estima-
tion of the cost of reaching a position is the cost of
the move action that goes from the last known posi-
tion of the robot to the wanted position. By modifying
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the way hadd handles position literals, the heuristic be-
comes then more precise. We call this heuristic hadd

motion.
Let OL(Π) be the set of open links of a given plan and
Ω(Π, t,G) be the last know literal of G in Π at time t.
This is the last known position in the plan at time t.
We can define hadd

motion as:

hadd
motion(Π) =

∑
(t,f)∈OL(Π)

{
min

g∈Ω(Π,t,G)
dur(ag→f ) if ∃G | f ∈ G

hadd(f) else

(2)

Instead of using hadd for non-position literals in this
hadd
motion heuristic, we can also use hadd

reuse or hadd
areuse de-

fined in section 4.2.3.

Solving open links in a new order The availability of
move actions means that it is always possible to go from
one location to another of the same family. Then it is
not necessary to add as soon as possible a causal link
when an open link towards a position appears. Instead,
we decided to solve open links towards position literals
after all other open links of the plan. The main ad-
vantage of this modification is that it avoids premature
commitment: while there is no causal link between two
move actions, it is still possible to add actions between
them. The planner finds better plans than previously
because it can insert steps between two steps requiring
a given position. If there were a causal link, no other
move could be inserted during this causal link since it
would threaten it.

Adding temporal constraints Another feature of the mo-
ve actions is the fact that they represent the shortest
path to go from a position to another. So before even
adding these actions to the plan, it is known that there
must exist a minimum duration between different posi-
tions.

We propose to add a new temporal constraint in the
plan each time an open link to a position literal is cre-
ated, adding a minimum duration between the creation
and the open link in the STN. When the open link will
be solved, this constraint will become useless and will
not over-constrain the plan since it uses the minimum
duration of any chain of actions to go from one point
to the other. But until then, the duration of the plan
is more precise, and this improves the efficiency of the
search.

Using the new temporal constraints in the plan heuristic
The first modification (Taking the plan into account in
hadd) uses the current plan to compute the last known
position and estimate its hadd cost. The last modifica-
tion (Adding temporal constraints) uses this last known

position to add a new temporal constraint in the plan.
With this temporal constraint, the hadd estimation of
the cost of reaching a position seems redundant.

We then proposed another modification of hadd called
no cost motion (and noted hadd

ncm) which sets the hadd

cost of open links of position literal to 0:

hadd
ncm(Π) =

∑
(t,f)∈OL(Π)

{
0 if ∃G | f ∈ G

hadd(f) else

(3)

4.4 Evaluation

We want to evaluate our planning algorithm and the
proposed improvements regarding the gains of using ab-
stract and geometrical reasoning, and compare to other
planners.

4.4.1 Problems

To evaluate our planner, we show here some evalua-
tion on problems taken from 2 different domains. One
is from the International Planning Competitions (IPC)
and one was created to represent multi-robot missions
as considered in the introduction. In all the problems,
the language description used is PDDL2.1 [23] to rep-
resent temporal problems. In addition, since abstract
actions cannot be modelled in PDDL2.1, we extended
this language to represent abstract actions.

Satellite The satellite domain simulates the planning of
activities for a satellite. The satellite has a set of instru-
ments and a set of observations to perform. To perform
an observation, the instrument must first be calibrated
and the satellite must point in the correct direction.
Abstract actions are used to calibrate or to perform
an observation. Those 20 problems were directly taken
from the IPC.

Survivors The survivors domain involves a team of ro-
bots on a crash site. Each location must be visited by
a robot and some survivors are scattered and must be
brought to an hospital. Moving one survivor requires
at least 2 robots. The locations to explore are grouped
into zones and the robots are split between teams. The
abstract actions represent a patrol for a given team to
explore all the locations of a given zone. This choice
limits the size of the problem since there are less zones
than locations and less teams than robots.

The robots are organized in team of 2 robots and
the problem contains either 2 or 3 teams. The locations
are organized in grid of zones. There is either 2, 3 or
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4 rows of 2 zones each. Each zone is a square grid of
locations of either 4, 9 or 16 locations. So in the largest
problem, there is 4∗2∗16 = 128 locations There is either
2, 3, 4 or 5 survivors placed randomly and 2 different
hospitals. So in total, there is 2 ∗ 3 ∗ 3 ∗ 4 = 72 random
problems generated. The solution found can contains
up to 320 elementary actions in the largest problem.

4.4.2 Results

For each problem in each domain, we ran HiPOP in
many different configurations. Each configuration was
given 10 minutes and 4GB of RAM for each problem
on an Intel X5670 processor running at 2.93Ghz.

What are the gains of using abstract actions? To eval-
uate the impact of abstract actions (thus comparing
our hybrid planning with POP planning), we performed
experiments in the same conditions without providing
abstract actions to HiPOP. The results of the 3 best
performing configurations are shown with the 2 best
performing POP configurations (labelled Bare) in Fig-
ure 4.
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Fig. 4 Results of several configurations of HiPOP on 2 differ-
ent domains. Each graph shows the number of solved problems
(in the y-axis) in less than a given time (in the x-axis). The
AR stands for advance reuse (see 4.2.3), the R stands for reuse.
local states that the algorithm selects first the open link for
the action most recently introduced in the plan (taken from
VHPOP) whereas threatFirst does not sort them: they are
taken in LIFO order. motion states that geometrical reasoning
is used (introduced in 4.3) and ncm stands for no cost motion.
Bare means that HiPOP is not taking the abstract actions in
consideration when planning: it is equivalent to a POP algo-
rithm.

In survivors2, the number of solved problems is sig-
nificantly higher with abstract actions. The abstract ac-
tions allow the planner to reduce the number of plans

2 Similar results were obtained on other domains of the Inter-
national Planning Competition (IPC) not shown here because
of lack of space.

explored and to reduce the search space, which leads to
faster planning.

In satellite, the abstract actions are not really inter-
esting since they group together actions that the plan-
ner has no difficulty to associate. When the planner
adds an abstract action and instantiates it, it only re-
places the fact of adding two elementary actions that
would have been the only way of achieving the goal
anyway. So the abstract actions do not limit the search
space and do not really reduce the number of stages
needed to find a solution. This explains why HiPOP-AR-
time-local-motion has the same result, on satellite,
with and without abstract actions. It changes the order
of resolution of flaws with the threatFirst heuristics
but has no significant effect with the local heuristic.

To conclude, as in HTN, hierarchical planning re-
quires additional work to describe the abstract actions
but improves the performance of the hybrid planner in
various problems.

What are the gains of using geometrical reasoning? For
the brievety of this paper, we do not show the improve-
ment of every modification introduced with geometrical
reasoning but instead the improvement of all of them
together. Only the “no cost motion” modification gave
mixed results, so we present it separately from the oth-
ers.

Figure 5 shows the performance of HiPOP on 2 do-
mains. Five configurations are shown: the 3 best per-
forming configurations without geometrical reasoning
(namely HiPOP-R-time-local, HiPOP-time-threatFirst
and HiPOP-AR-time-local) and the 2 best configura-
tiond with it (one with the no cost motion heuristic:
HiPOP-AR-time-local-ncm and the other without:
HiPOP-AR-time-local-motion).

The most notable result can be seen on the sur-
vivors domain. Without the modification for geometri-
cal reasoning, no problem was solved by HiPOP as the
problem relies heavily on geometrical reasoning. But
with the geometrical reasoning, all the problems could
be solved by at least one configuration. In this domain
the no-cost-motion heuristic seems to deteriorate the
performance. In satellite, some problems could only be
solved with the geometrical reasoning and the no cost
motion heuristic.

Our interpretation for the no cost motion heuristic
is that without this modification, the heuristic over-
estimates the cost of the plan. When an open link on
a position is solved, the heuristic diminishes more than
the cost increases: the search will be focused on this part
of the search space. So if the first resolution leads to a
good solution, this modification helps by focusing the
search on a good branch of the search tree. But if the
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Fig. 5 Results of several configurations of HiPOP on 2 different
domains. Each graph shows the number of solved problems (in
the y-axis) in less than a given time (in the x-axis). The AR
stands for advance reuse (see 4.2.3), the R stands for reuse.
local states that the algorithm selects first the open link for
the action most recently introduced in the plan (taken from
VHPOP) whereas threatFirst does not sort them: they are
taken in LIFO order. motion states that geometrical reasoning
is used (introduced in 4.3) and ncm stands for no cost motion.
time states that the objective of the planner is to reduce the
time length of the plan.

first resolution does not lead to a good solution, a big
space must be searched before considering another res-
olution for this open link. Improving this modification
by finding the right balance between make span/dis-
tance of the plan and cost for each situation is an open
problem, out of the scope of the article.

Overall, geometrical reasoning is an improvement as
it allows to solve previously unsolvable problems.

How does HiPOP behave in relation to other planners?
In addition to HiPOP configurations, we also ran sev-
eral other temporal planners. Since the description of
abstract actions is specific to our planner, we could
not compare the hierarchical part with another planner.
So we used classical temporal planners: Temporal Fast
Downward [54], YAHSP [57] and VHPOP [59]. Figure 6
shows the number of problems solved by each planner,
with only one configuration of HiPOP given.
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Fig. 6 Results of several planners on 2 different domains. Each
graph shows the number of solved problems (in the y-axis) in
less than a given time (in the x-axis).

First, one can see that in all the domains YAHSP is
orders of magnitude faster than other planners. YAHSP
was the winning planner in the agile track in the Inter-
national Planning Competition. In this track the goal is
to find a solution quickly without focusing on the qual-
ity of the solution. So it is not surprising to find YASHP
to be faster than all other planners. The two other plan-
ners TFD and VHPOP are almost always slower than
HiPOP. It can be seen that HiPOP can solve the same
number of problems in satellite (with a configuration
shown on previous figures) and more in survivors and
other domains. The addition of abstract actions allowed
HiPOP to be faster than those two planners.

Figure 7 shows the quality of the found solutions.
Two configurations for YAHSP are shown: the nominal
one and the anytime. In anytime mode, YAHSP uses
all its allocated time to find the best plan possible. We
can see here that even in anytime mode, the quality of
the plans produced by YAHSP is at roughly an order
of magnitude worst than with other planners, includ-
ing HiPOP. This is explained by the fact that YAHSP
searches for a plan as quickly as possible without try-
ing to find a good plan. The other planners usually find
better plans than HiPOP. This is because by mandat-
ing the use of abstract actions, we prevent the planner
to search for all the possibilities, even if those possibil-
ities would have been better. The abstract actions can
accelerate the search but they worsen the plan quality:
there is a trade-off.
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Fig. 7 Results of several planners on 2 different domains. Each
graph shows the length of the solution plan (in the y-axis, log
scale) for each problem in the domain.

4.5 Application to our case study

The planning algorithm described in this section was
used offline to compute an initial plan for the surveil-
lance mission (described in section 1.2). The elemen-
tary actions of the robots are: the move action, the
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observe action and the communicate action (involving
two robots).

The space has been discretized into several sets of
waypoints by the operator. A set of reachable waypoints
is given for each type of robot, matching its capabilities.
The mission is defined by a set of points of interest that
must be observed at least once during the mission: this
is the goal of the team. An imperfect 3D-model of the
terrain is known before the mission. This model has
been used to compute an estimated duration for all the
move actions and to compute for each point of interest
which robot could observe it from which waypoint. The
operator also defines a list of patrols as abstract actions:
they correspond to allowed successions of move actions,
with the corresponding observe actions possible along
the resulting path.

The mission also contains mandated meetings be-
tween robots. This means that at a given time, a com-
munication action between the two robots in question
must be present in the plan. Listing 1 shows the PDDL
description of an elementary move action. Listing 2
shows some of the problem data generated from the
previous inputs and the 3D model of the environment.
( : durative−action move

:parameters (? r − robot ?from ?to − loc−wp)
:agent (? r )
:duration (= ?duration ( distance ?from ?to ))
: condition(and(over a l l (robot−allowed ?r ?from))

(over a l l (robot−allowed ?r ?to ))
(over a l l ( adjacent ?from ?to ))
(over a l l (not (= ?from ?to )))
(at start (at−r ?r ?from)))

: effect (and (at end (at−r ?r ?to ))
(at start (not (at−r ?r ?from ))))

)

Listing 1 Example of a PDDL move action

( : init
// l i s t of allowed waypoints per robot
(robot−allowed eff ibot3 effipt_11949_−4580
// i n i t i a l position of the robots
(at−r ef f ibot5 effipt_17600_6350)
// v i s i b i l i t y link between robot position and
//observation points . Used for observed actions .
( v is ib le ef f ibot1 effipt_22989_265

ptobs_23044_275)
// v i s i b i l i t y link for 2 robots to plan meetings
( vis ible−com ressac1 mona r1pt_15139_−3419

lpt_17289_−1755)
//distance between two waypoints .
//used to compute the duration of a move action .
(= ( distance r1pt_18235_−2588

r1pt_20232_−2588) 30.98)
. . .

)

Listing 2 Example of some generated PDDL statements for
the problem

The initial constraints created by the operator are
shown on Figure 8. The mission involves 8 robots of 3
different types and about 80 locations. The two “ressac”
robots are AAV, the 3 “effibot” are small UGV that can
only move on roads and the 3 others are big UGV that

can move on grass. The temporal representation of the
initial plan computed for the mission is shown in Figure
9. The initial plan has 65 actions and took about 10
seconds for the planner to compute (depending on the
computer used).

Fig. 8 Screenshot of the mission preparation software. Each
red cross is a point to observe. The allowed positions for the
AAV are in light green (encompassed in two safety zones in
cyan and gray). For the two types of AGV, there are in blue and
dark green. In addition, the patrols are drawn between allowed
positions. The green squares represent the starting points of the
robots.

4.6 Execution

In order to execute the plan onboard the robots during
the mission, we have developed a distributed execution
mechanism. As we must be robust to intermittent com-
munication, we have adapted the classical STN execu-
tion process to a distributed architecture.

The idea is that each robot is executing its own part
of the plan and broadcasts to the others when an action
is executed. If no words are heard from other robots,
they are expected to follow the original plan. Else, if a
message is received, the plan is updated in consequence.
If an inconsistency occurs, a repair is triggered. This
strategy allow robots to limit the number of repairs to
only the cases needing one, preventing a repair for every
delay during the execution.
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t(sec)0 50 100 150 200 250 300 350 400

ressac2 move(79,6) move(102,-25) move(141,-5) move(122,14) move(136,30) move(161,0) move(182,14) move(182,53) move(162,53)

ressac1 move(213,10) move(181,-11) move(162,-25) move(191,-61) move(154,-86) move(142,-45) move(182,-25) move(202,-45)move(227,-39) move(195,2)

momo move(214,-13) move(195,-27) move(214,-52) move(227,-39)

minnie move(197,15) move(197,-10) move(162,-10) move(138,-27)

manamove(154,53)move(141,40)move(123,26) move(97,19)move(81,13)move(89,-8)move(95,-19)move(119,-45)

effibot3 move(162,30) move(161,0) move(133,-22)

move(229,2)move(208,28) move(194,45)move(180,61)effibot2

effibot1 move(212,-41) move(192,-65) move(175,-86)move(159,-104) move(135,-65) move(121,-47)

Fig. 9 Temporal representation of the initial plan (x-axis in seconds). Each horizontal line represents the plan of a given robot
with each block representing a move action. Each vertical bold line represents a communication action between two robots (then
6 meetings).

5 Repair

During the execution of the mission, the team must
be able to react to disruptive events. As stated in the
section 2.3, we have chosen a “unrefine-then-refine” ap-
proach. This allows us to re-use our planning algorithm
as a repair algorithm. This section first presents im-
provements made to HiPOP to repair a plan and its
evaluation on an appropriate benchmark. We then pre-
sent the improvements made to repair a plan during its
execution and the plan execution algorithm developed
to supplement the planning algorithm in the embedded
architecture.

5.1 Repairing a plan

In this work we assume that repairing is similar to a
planning problem except that the repairing algorithm
uses a non-empty initial plan. This plan might not be
valid anymore but we expect (as a result of how the
plan was built) that a solution plan close enough to the
initial plan exists.

The main idea of the repair process is to successively
call the HiPOP algorithm with a specific initial plan
I. When performing the initial planning, this starting
plan is empty (see Algorithm 1): it only contains the
Init and Goal states. In the repair setting, this plan is
computed from the current plan by removing some ele-
ments (actions, causal links and temporal links). Given
this initial plan, HiPOP will try to find a solution only
by adding elements to it. If none is found, more elements
are removed from the initial plan and a new search is
launched using the new starting plan. The whole pro-
cess is described in Figure 10.

The repair algorithm must be able to deal with sev-
eral issues: obsolete actions (actions that are in the ini-

Read the current plan

Remove obsolete elements

Launch a search Returns computed plan

Is there any steps
left to remove ? No solution plan

Remove more steps

1

2

3
4

5 6

7

solution
foundno solution

found

no

yes

Fig. 10 Repair algorithm: the idea is to iteratively try a search
starting from a partial plan computed from the initial plan until
a solution is found or until the replanning fails.

tial plan but not allowed anymore), a change in the
initial conditions and a change in the goal.

The first stage is to remove from the plan all obso-
lete elements (stage 2 in Figure 10) and actions that are
not in the problem description anymore. If actions are
allowed to change their preconditions or effects, some
causal links could also become invalid and are removed.
This is the case for instance if the goal has changed:
the last action of the plan has changed its precondi-
tion which could remove some causal links. Once those
causal links are removed, the algorithm also removes all
the steps that do not support causally another action
as they do not accomplish something that helps accom-
plishing the goal (i.e. we remove all steps τ ∈ T such
that @τi inT , (τ −→ τi) ∈ CL.)

HiPOP can then be run with the newly computed
starting plan (stage 3 in Figure 10). If the search start-
ing with this plan finds a solution, then the repair has
succeeded (stage 4 in Figure 10). Else, another starting
plan must be created by removing more elements.
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We decided to use the causal links in the plan to
determine what actions to remove next (stage 7 in Fig-
ure 10). The idea is that if a problem occurred in the
plan, the first steps to remove are the one directly im-
pacted by this event. The next one should be the steps
“close” in the plan: steps that were added to support
the removed steps or steps that were supported by the
removed steps. So in this stage we remove all the steps
that were causally linked to a step removed at the pre-
vious iteration: all steps τ ∈ T such that ∃τi in T ,
∃(τi −→ τ) ∈ CL and τi has been removed in a previ-
ous stage. For instance if a communication is removed
from the plan, the actions that moves to and from this
position are the next candidate to be removed from the
plan as we want the modification of the plan to be as
local as possible.

To ensure the completeness of the algorithm, if there
is no more step to remove by following causal links,
the last stage is to remove all steps and try one last
search. In this case this is a “replanning” and no longer
a “repairing”: it is a planning problem that do not take
into account the initial plan. If this last replanning fails,
then there is no solution to the problem (stage 6 in
Figure 10).

5.1.1 Using the hierarchy in the repair process

The previous modification allows a POP planner to re-
pair a plan. In our hybrid planner, there are another
information in the plan: the abstract actions. We be-
lieve that this information could be used to improve the
repair process. Semantically, two steps that are parts
of the same abstract action were added to achieve the
same high-level goal. If this goal is no longer needed or
if one of the actions is not available anymore, it could
be better to remove the whole abstract step. This is
the same idea than following the causal links: we want
to find the steps that were enabled or required by the
steps removed from the plan.

Whenever a step that is part of an abstract decom-
position is removed, we choose to un-instantiate the ab-
stract step. This means that the algorithm will remove
all the elements (steps, causal links and temporal links)
that were added by the method chosen to instantiate
this abstract action. When an abstract step is removed,
the algorithm will un-instantiate it before.

5.1.2 Phantom elements

By removing causal links and/or temporal links, the
ordering of the steps can be changed. This change can
create a lot of threats (thus increasing the amount of
work needed to find a solution) and decreases the plan

stability (because the produced plan can be very differ-
ent from the initial plan).

To prevent these drawbacks, we decided to keep the
ordering of the steps implied by all the elements of the
initial plan, even if some of the elements are removed.
This preservation is done by introducing phantom links:
a removed step, causal link or temporal link, is replaced
by a phantom link in the generated plan. This phantom
link imposes a temporal precedence between the two
timepoints. When removing a step, the algorithm will
keep the timepoints of the start and of the end of the
step in the STN as phantom timepoints with all their
temporal constraints. In the initial plan the minimum
separation between those points was the duration of the
action. In the generated plan the constraint is only that
the start is before the end.

Once all the constraints between the timepoints are
computed, the phantom links and the phantom time-
points can be removed from the plan. This process is
illustrated in Figure 11. The initial plan is shown in Fig-
ure 11(a). When the second step is removed from the
plan, all causal links that are related to the removed
step are also removed from the plan. All the removed
timepoints and links are kept in the plan as phantom
links (Figure 11(b)). Before using the plan as a starting
point for the search, the phantom elements are removed
from the plan and temporal constraints are added to
keep the order implied by the phantom links. In this
example, a temporal constraint is still present in the
plan to force the first step before the third step (in blue
in Figure 11(c)).

move a b..... move b c move c d .....t1 t2 t3 t4 t5 t6

(a) Initial plan with 3 steps and 2 causal links (in black).

move a b..... move b c move c d .....t1 t2 t3 t4 t5 t6

(b) The second step is removed from the plan. Phantoms links
are in dotted green.

move a b..... move b c move c d .....t1 t2 t3 t4 t5 t6

(c) New temporal constraints are in blue.

Fig. 11 Use of phantom elements on an example.

5.2 Evaluation

We created a benchmark to evaluate the ability of HiPOP
to repair. A repair problem is defined by the initial
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problem, the initial plan (a plan solution of the initial
problem) and the problem to solve (with the assump-
tion that this problem is close enough to the initial
problem). We modified the generator of survivors prob-
lems to first generate an initial problem, secondly solve
it with HiPOP and thirdly modify it to create a repair
problem (survivors-repair). We introduced 3 types of
disruptive events: a change in the initial position of the
robots (no modification of the PDDL domain), the de-
tection of a new survivor (a new goal to achieve) and
the modification of the position of a survivor (modi-
fication of the goals and of the domain by removing
abstract actions related to the old position and adding
abstract actions related to the new position). These 3
events are respectively called startingPos, newSurvivor
and survivorPos.

We built a benchmark in the same condition than
in 4.4.2 by generating a set of repair problems and run-
ning many configurations of HiPOP. The configuration
labelled repair have been given the initial plan while
the other are replanning: they are only given the new
problem to solve. To analyse more closely the result,
the data are split according to the introduced disrup-
tive event.

What are the gains of repairing instead of replanning?
The results of the two best repair configurations and
of the two best replanning configurations are shown in
Figure 12.

One can see on the first row that for all the events,
repairing is faster than replanning. This is expected
when the initial plan is close enough to a solution plan.

The third row shows that, as expected, the plan
produced when repairing is close to the initial plan: no
matter the size of the initial plan is, the modification
only deals with a fixed number of actions. This result
means that the plan is only locally modified. On the
other hand, when replanning, the number of changed
actions is proportional to the number of actions in the
initial plan.

If the plans produced when repairing are more sta-
ble, one could expect their length to be higher. This loss
of quality would be due to the fact that the exploration
is not performed on the whole space. The second row
shows that this effect is not significant. Since HiPOP is
not an optimal planner, there are cases where repair-
ing produces better plans and cases where repairing is
worse. But the difference is not significant.

What are the gains of repairing with abstract actions?
We also wanted to highlight the role of abstract actions
in the process. As seen previously, HiPOP is not able to
solve this type of problems without abstract actions. So

we created a new configuration that could use abstract
actions but that discards every information about hi-
erarchy in the initial plan. This configuration is called
repairFlat as it tries to repair a flatten version of the
initial plan.

The results of the best repair, repairFlat and replan-
ning configurations are shown in Figure 13. One can see
that the hierarchy has different effects according to the
type of disruptive event.

When the starting position of robots is changed
(event startingPos), repairFlat is similar to repair. That’s
because the first action in the plan is usually a move
action to reach the initial position of an abstract action.
As changing the initial position only impacts the move
action, the two configurations are similar.

When a new goal is added (event newSurvivor), re-
pairFlat is similar in speed to replanning but keeps the
plan more stable. Since abstract actions are removed,
some causal links are removed which creates more work
for the planner. In some cases, the planner times out
before re-establishing all those causal links and another
iteration is needed (which explains the spike in the last
row: a lot of actions are removed during the second it-
eration).

The hierarchy is best used in the last setting, when a
goal is changed (event survivorPos). In this case repair-
ing without abstract actions is worse than replanning.
This is due to the fact that several actions must be
removed. As they are all part of the same abstract ac-
tion, the repair configuration removes them all at the
same time. The repairFlat does not have this piece of
information. So it must remove iteratively several ac-
tions following causal links, which leads to removing
too many actions: causal links also linked to actions
that were in the following or the previous abstract ac-
tion. The plan instability is then higher (since more
actions have been removed) and the search slower.

In conclusion, repairing instead of replanning shows
an improvement of the performance of HiPOP. Repair-
ing also allows the process to be more predictable for
the supervisor: a large part of the initial plan is kept
when a repair modifies the plan. In addition, we have
also shown that the presence of abstract actions in the
initial plan improves the repair process: it is faster and
the obtained plan is more stable.

5.3 Repairing a partially-executed plan

This part describes the modifications made in HiPOP
to allow it to repair a partially-executed plan. Once its
execution has started, new constraints arise: the du-
ration of actions can change and the past actions can
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Fig. 12 Results of several configurations of HiPOP on a repair benchmark. Each column represents a disruptive event to repair
(i.e. a change in the problem to solve). The first row gives the number of problems solved in a given time (in the x-axis). The
second row gives the length of the found plan for each problem. The third row gives the plan instability, i.e. the number of actions
that have changed between the initial plan and the solution plan for each problem. Since the problems are generated by changing
some factors (the number of zones, number of robots, etc.) the problem are not sorted by order of difficulty. This explains the
‘shape’ of the plot in the last 2 rows, and some discontinuities appears if a problem is not solved but the next one is.

not be removed from the plan. So HiPOP has to be
adapted to these constraints if we want to use it online.
The starting plans for the search will then be different
from the ones used in the repair algorithm presented in
Figure 10.

The first constraint is the fact that executed actions
are in the on-going plan. The planner must also be able
to deal with actions that had a different duration than
their nominal definition. This could impact the feasi-
bility of meeting a deadline. To repair a plan with an
unreachable deadline, we decided to remove all steps
between the current time and the deadline. This choice

guarantees that nothing unnecessary is imposed to let
the planner meet this deadline. If there is enough time,
the repair process will add back some of those steps
before the deadline, or they will be scheduled later. In
any case, it is the planner job to choose how to achieve
the deadline, the only goal of this repair process is to
avoid over-constraining the planner. A summary of all
the stages of the repair algorithm is shown in Figure 14.
The consideration of deadlines (stages 3 and 4) is the
added value of this repair based on a partially-executed
plan.
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Fig. 13 Results of several configurations of HiPOP on a repair benchmark. Each column represents a disruptive event to repair
(i.e. a change in the problem to solve). The first row gives the number of problems solved in a given time (in the x-axis). The
second row gives the length of the plan that are found for each problem. The third row gives the plan instability, i.e. the number
of actions that have changed between the initial plan and the solution plan for each problem. Since the problems are generated by
changing some factors (the number of zones, number of robots, etc.) the problem are not sorted by order of difficulty. This explains
the ‘shape’ of the plot in the last 2 rows, and some discontinuities appears if a problem is not solved but the next one is.

Another difficulty comes from the fact that the ac-
tions already executed or in execution cannot be modi-
fied. In the process described earlier, only non-executed
steps can be removed. A step tagged to be removed by
the stage 2 but already executed has then to stay in the
starting plan.

This fact has some consequences when abstract ac-
tions are in the plan. We decided to un-instantiate all
steps associated to an abstract action or one of its chil-
dren when we want to remove an abstract action. But
when one of its children has already been executed,
there can be in the plan an half-executed abstract ac-

tion, i.e. an abstract action with only a part of one
method. This contradicts the idea of methods and of
allowed actions (described in section 4.2): we wanted
to limit the set of actions that could be used directly to
solve an open link because we assumed that the meth-
ods would always be used in full. In the cases where an
half-executed abstract action must be un-instantiated,
the planner removes then all non-executed steps and
must allow all the actions to be added in the plan to be
able to repair this method, not just the allowed actions
(i.e. A = A).
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Fig. 14 Repair algorithm: extension of Figure 10 taking into
account the deadlines in the plan. Step 3 and 4 can be repeated
if multiple deadlines are violated.

Another problem that can arise is the fact that we
have no guarantee on the time taken to repair the plan.
This means that when a repair was done, the plan was
usually still temporally valid. In the rare case when the
plan was invalid, it was because a deadline was nearly
infeasible during the first repair and in this case the
second repair was successful. In more time critical mis-
sion, the operator might be able to intervene to remove
some goal or the deadline to ease the search. But this
is out of scope for this paper.

5.4 Repairing with partial communication

Since plans can be executed in a distributed fashion,
we need to adapt HiPOP to enable it to repair a dis-
tributed plan. The repair process is shown in Figure 15
for an example with 3 robots, one being out of reach
when the repair is triggered, the communication com-
ing back after a moment. When a repair begins during
the execution phase, since the planning algorithm only
deals with global plans, all the robots must send their
local plan to the robot tasked with the repair (merger
phase). Since the plans use the POP formalism and
come from the same global plan, they can be directly
merged. So the tasked robot have all the information
to repair the plan for the whole team (repair phase)
and will send the repaired plan to everyone else (dis-
patch phase). This process allows one robot to repair
for everyone else without relying on a single “master”
or “server”. Any robot, at any time, can trigger a repair
when it detects a problem. If some problem arise pre-
venting this robot from completing the repair process,
any other robot can detect it (by realising that the new
plan is not sent) and start the repair process itself.

Some adaptations must be done to HiPOP to deal
with imperfect communications. We assume that either
a robot can communicate with the repairing robot dur-
ing the whole repair process or it cannot. With this
assumption, when a repair is triggered, the global plan
is computed using the local plans of reachable robots
and the last known local plans of unreachable robots.
During the merger phase of Figure 15, Robot 1 keeps
the last known local plan of Robot 3 (the last line of its
global plan, in red) since it cannot obtain from Robot
3 its updated local plan. The repairing algorithm must
not modify the local plan of unreachable robots: as with
executed steps, the planning algorithm is thus not given
the possibility to modify steps of unreachable robots.
This constraint guarantees that after the repair process,
the robots will have compatible local plans. During the
repair phase of Figure 15, the last line of the global
plan cannot be modified, only the other lines (repre-
sented with a cross pattern) can be modified.

Even with local plans generated this way, each robot
must have the same global plan when exchanging infor-
mation about their plan. To achieve this, a global iden-
tifier (ID) is assigned to each global plan and sent with
it. This ID allows each robot to detect whenever the
global plan of a reachable robot has changed. So the
robots executing the latest plan can detect it and do
nothing while the robots executing the oldest plan can
take the new plan as the global plan (synchronization
phase). Since this new plan has been computed without
modifying their local plan, the new global plan is also
valid for them. In the case where two repairs have been
carried out without any communication between them,
a new repair is carried out to make sure that the two
plans together are still valid and that all the problems
have been dealt with by all the robots. This assumes
that at the end of the mission, the robots must be in
communication range with the others (or with the op-
erator) to notify them that they have finished their part
of the mission. For instance, this can be introduced in
the plan by having a given position to reach at the end
for every robot that is in communication range with the
others.

We also ensured that two robots in communication
range will not try to repair the plan at the same time.
When a robot repairs it starts by contacting all the
other robots to compute a global plan. So a robot can
detect if another robot wants to repair at the same time
and only one robot is allowed to repair. We choose to
enforce it by having a priority among robots based on
their name: only the first one in alphabetical order con-
tinues with the planning. One could use any other crite-
ria for this, such as available computing power or band-
width for instance. In addition, if a repair is currently
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Fig. 15 Repair process for a team of robots where one robot is isolated for a moment. The global plan for each robot is represented
in a box and each line in this box shows the local plan of each robot. During the execution, Robot 1 encountered an event that
triggered a repair with only Robot 2, Robot 3 being out of reach at this time. The communication is re-established after, triggering
the synchronization phase.

going on (i.e. if a robot has been contacted by another
robot and has not yet received a repaired plan), this
robot will not start a repair until the new plan is broad-
casted. When the new plan arrives, the plan might not
be valid and need an additional repair.

5.5 Repairing applied to the surveillance mission

In the surveillance mission we consider (see section 1.2),
the repair can be triggered by:
– an inconsistency in a robot STN, meaning that a

future deadline will be violated; such deadline may
be linked to the current communication task, mean-
ing that the other robot is too late at the meeting
point;

– a robot being out of service, which is indicated by
the operator;

– a robot being allocated to the tracking stage, then
being unavailable for the surveillance.
Moreover, if the repair algorithm fails to find a solu-

tion, we try to remove some goals and re-try the repair
in order to not abort the mission. We can then drop
meetings. If after removing all the meeting no solution
is found, then the operator is notified that the mis-
sion cannot be carried out, and can decide to withdraw
some observation points, or to allocate robots currently
in the tracking stage to the surveillance stage in order
to find a new feasible plan. If a meeting is dropped by a
robot, it will try to notify the other robot. If the other
robot is out of reach, it may never learn about it and
wait for the first robot at the meeting point. But in any

case, it will trigger a deadline and the other robot will
also drop the meeting to carry on with the mission. So
having one robot drop a meeting without being able to
notify the other robot will not prevent the mission from
being carried out.

6 Evaluation of the whole architecture

The whole architecture, including the HiPOP algorithm,
the execution and repair processes, has been evaluated,
first in simulation in order to assess the performance
and the robutness of our contribution. We have then
perfomed experiments on the field with real robots.

6.1 Statistical evaluation

The statistical evaluation has been performed in an ad-
hoc simulation. Our objective is to evaluate the perfor-
mances of the architecture composed of the distributed
execution and the distributed repair. We have executed
the plans by assuming that each action takes its ex-
pected duration to run and we added disruptive event
to this lightweight simulation. This has allowed us to
run multiple simulation in a short timeframe for the
statistical analysis.

We have created a set of patterns of the disrup-
tive events that could happen during the execution: a
broken robot, a robot out of communication, a target
found, a delayed action and many combinations of these
events. The chosen value for the delay of an action is of
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45 seconds. This value is enough to trigger the deadline
associated with a communication (when a robot waits
for another robot for a scheduled communication, it will
not wait longer than 30 seconds to prevent a deadlock
when the other robot is stuck out of communication
range). This pattern could have no impact (if the plan
is flexible enough to deal with it) or it could increase the
duration of at most 45 seconds. When a robot is out of
communication (labeled “out of reach”), it cannot com-
municate with any other robot for one minute. Since the
execution does not need the communication, we guar-
antee that this happens while another disruptive event
is taking place in order to evaluate the robustness of
our architecture to communication failures.

For each pattern, 30 scenarios were randomly gen-
erated and ran. The following results show the mean
of several metrics for each pattern. The reference is
the nominal achievement of the mission (no disruptive
event), shown with a vertical bar in the following fig-
ures. The first significant result is that for all the ex-
ecuted missions, HiPOP never failed a repair and the
missions were thus carried out to the end. For each mis-
sion where a target is detected, a robot was given the
order to follow it, and the repair without this robot has
been successful.

Figure 16 shows the duration of the mission. The
longest missions are in the last pattern when 5 random
events happen. When 2 targets are found, two robots
have to be replaced, which also increases significantly
the mission duration. But this increase is always rela-
tively limited (less than 20% on average).
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Robot out of reach

Target found

Target found
Robot out of reach
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Delayed action
Robot out of reach

Two events

Five events

Fig. 16 Duration of the mission when disruptive events happen
during the mission. The red line shows the mean for the nominal
mission, each cross represents a mission and blue bars represent
the mean for all the missions of the same pattern.

Figure 17 shows the number of points of interest
that are successfully observed during the mission. When

a robot breaks down or is assigned to a target, its ac-
tions must be reallocated to other robots. In our data,
there exist 3 points of interest that can only be observed
from the waypoints of only one robot. So if this robot
fails, 1, 2 or 3 points could no longer be observed. This
explains why the minimum number of observed points
is 22 out of 25. Even if all points of interest have not
been observed, these missions are considered success-
ful for the architecture point of view: this is the best
possible result regarding the failures that happened.
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Fig. 17 Number of observed points when disruptive events
happen during the mission. The red line shows the mean for
the nominal mission, each cross represents a mission and blue
bars represent the mean for all the missions of the same pattern.

Figure 18 shows the number of successful meetings
between the robots. 6 meetings were planned in the
initial mission. When a robot breaks down, follows a
target or is too late, a meeting can be canceled to carry
on with the plan. But we did not implement the possi-
bility to schedule new meetings, this is why the number
of meetings quickly drops with the number of disruptive
events.

Figure 19 shows the number of messages transmit-
ted between the robots. When no disruptive events hap-
pen, only synchronization messages are sent. When dis-
ruptive events happen, a repair can be triggered. The
repair process needs some messages and can increase
the number of actions, thus increasing further the num-
ber of messages. The number of messages is correlated
with the mission duration and is limited. So the repair
process does not increase significantly the number of
messages needed to be exchanged.

Further to this statistical evaluation by simulation,
our architecture proved its robustness with respect to
the occurrence of several types of disruptive events.
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Fig. 18 Number of successful meetings when disruptive events
happen during the mission. The red line show the mean for the
nominal mission, each cross represents a mission and blue bars
represent the mean for all the missions of the same pattern.

Total number of messages

Fig. 19 Number of messages transmitted when disruptive
events happen during the mission. The red line show the mean
for the nominal mission, each cross represents a mission and
blue bars represent the mean for all the missions of the same
pattern.

6.2 Experimental demonstrations

The mission described in section 1.2 has led to the ini-
tial plan presented in section 4.5. We have then per-
formed the mission with 2 aerial robots from Onera
(ressac1 and ressac2), 3 ground robots from LAAS-
CNRS (Mana, Minnie and Momo), and 3 ground robots
from DGA (Effibots). We have moreover considered 4
simulated robots in the team (ressac3, Mona, effibot4,
effibot5). The simulated robots had initially an empty
plan (meaning no action scheduled) and could be ac-
tivated if needed during a repair. The simulation en-
vironment used is the MORSE simulator [20]. Each
robot was running HiPOP and our execution frame-
work. Communication between robots was done using
ROS. Each elementary action for HiPOP was given as

a task for the robot middleware to execute. Each robot
was running its own middleware, and we then imple-
mented wrappers in our execution framework to man-
age action execution on the several middlewares (ROS,
Orocos, socket).

8 missions have been played on an experimenting
field located in the south of France. The robots deployed
in the mission are heavy (several tens of kilograms),
and require some logistics (in term of infrastructure and
people involved). This prevented to perform a lot of ex-
periments: simulations were used to statistically evalu-
ate our architecture (see previous section), whereas ex-
periments were used to assess the operation feasability
of the mission.

One of the 8 missions ended without the need to
repair a plan. Some actions were late but the tempo-
ral flexibility in the plan was enough to deal with them
without repairing. The trajectory of the robots for this
nominal mission is shown in Figure 20 and the tem-
poral representation of the executed plan is shown in
Figure 21. One can see the trajectory of the two aerial
robots (ressac1 and ressac2) being distorted mainly be-
cause of the wind, which lead to all the move actions
being late (but without the need to repair as mentioned
previously). The initial plan has a duration of 410 sec-
onds. This execution lasted about 450 seconds.

Plan repair was needed for the 7 other missions. In
every case, HiPOP was able to repair and the mission
to finish. One such mission is represented in Figure 22.
Two simulated robots are used to take the actions of
robots unable to finish their plans. The two broken
robots had a problem after about 2 min but the oper-
ator declared them unavailable only after 500 seconds.
This explains why the spare robots did not start earlier
and why the mission lasted over 700 seconds. Out of
the 6 meeting scheduled, 3 were dropped because one
of the robot was unavailable, 2 were dropped because
robots were too late and only 1 took place.

In the 6 other missions, two of them have no robot
failure. In one of them a target appeared, meaning that
a robot still has to discard its plan to follow the target.
In the other one, a robot was too late at a meeting
point meaning that a communication was dropped. The
other 4 had at least one robot failure (i.e. a robot stuck
somewhere, a robot for which the safety operator had
to intervene, etc.). Overall, 13 robot failures happened
during those 5 missions (including the one presented
earlier). Each failure triggered a repair and the mission
length was increased by 1 to 5 minutes depending on
the mission.

These demonstrations were a success. They vali-
dated experimentally on realistic patrolling missions
the HiPOP planning algorithm and its integration in
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Fig. 20 Field experiment: trajectory of the robots during the
nominal mission (no online repair needed).

an embedded architecture with the described execution
algorithm. Robots cooperated efficiently in the team to
achieve the missions in an autonomous way when dis-
ruptive events broke the current plan, and especially in
case of communication losses. The human operator was
at a minimum level in the loop: he only had to take
high level decisions. The repair process only modified
the plans of few robots and not of the whole team.

7 Conclusion and future work

The use of a lot of robots having different and comple-
mentary capabilities widens the type of missions that
can be achieved by a robotic system. The autonomy of
the team is essential when the communications are not
guaranteed and it also reduces the workload of human
operators who can focus on high level exchanges. This
paper addresses more specifically the problem of using
heterogeneous robots in complex missions operated in
outdoor environments. The computation of a flexible
initial plan for the team of robots is a central issue but
being able to adapt this plan online when a disruptive
event occurs is the added value of this work. This paper
has described the design of an hybrid planner, HiPOP,
that mixes HTN and POP planning. This planner is
able to use hierarchical actions defined by the human
operators to improve its search of a plan for the team
of robots. It outputs a plan with temporal flexibility,
which eases its execution, and with a hierarchy among
actions, which eases the online repair process. The ar-
chitecture has been evaluated for a surveillance mission
both in simulation and during experimental demonstra-
tions. Both evaluations were successful and validated
our initial choice of using hybrid planning. The abstrac-
tion of the capabilities of the robots and the abstract

actions allowed us to easily add a new type of robot in
the team.

Future work could deal with the limited temporal
scope of this approach: missions were planned for 5 to
10 minutes. The goal was to observe once every point
of interest. For longer-term autonomy, the goal of the
mission must then be updated. For instance instead of
using a plan that visits each interest point once, the
planning algorithm could try to find a plan that min-
imizes the time between two observations of the same
point. Meetings could be automatically added to the
plan in the repair process to guarantee synchroniza-
tions between all the robots of the team. Instead of
just repairing the plan when a disruptive event occurs,
the plan could be extended regularly. Another approach
could be to compute a valid plan for the next few min-
utes and an abstract plan (i.e. a plan where abstract
actions are not instantiated) for the next few hours.
In this way there will be a visibility on the high level
goals to achieve in the long term while still having a
valid plan to execute. And periodically, the rolling plan
would be instantiated for the next few minutes when
needed.
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