Skip to main content
Log in

Learning attentional regulations for structured tasks execution in robotic cognitive control

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

We present a framework for robotic cognitive control endowed with adaptive mechanisms for attentional regulation and task execution. In cognitive psychology, cognitive control is the process that orchestrates executive and cognitive processes supporting adaptive responses and complex goal-directed behaviors. Similar mechanisms can be deployed in robotic systems in order to flexibly execute complex structured tasks. In this work, following a supervisory attentional system paradigm, we propose an approach that permits to learn how to exploit top-down and bottom-up attentional regulations to guide the execution of hierarchically structured tasks. We present the overall framework discussing its functioning in a mobile robot case study considering pick-carry-place tasks. In this setting, we show that the proposed system can be on-line trained by a user in order to execute incrementally complex activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Anderson, J. R., Matessa, M., & Lebiere, C. (1997). Act-r: A theory of higher level cognition and its relation to visual attention. Human-Computer Interaction, 12(4), 439–462.

    Article  Google Scholar 

  • Belardinelli, A., Pirri, F., & Carbone, A. (2007). Bottom-up gaze shifts and fixations learning by imitation. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 37(2), 256–271.

    Article  Google Scholar 

  • Borji, A., Ahmadabadi, M. N., Araabi, B. N., & Hamidi, M. (2010). Online learning of task-driven object-based visual attention control. Image and Vision Computing, 28(7), 1130–1145.

    Article  Google Scholar 

  • Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624–652.

    Article  Google Scholar 

  • Breazeal, C., Edsinger, A., Fitzpatrick, P., & Scassellati, B. (2001). Active vision for sociable robots. IEEE Transactions on Systems, Man and Cybernetics, Part A, 31(5), 443–453.

    Article  Google Scholar 

  • Byrne, M. D. (2001). Act-r/pm and menu selection: Applying a cognitive architecture to hci. International Journal of Human-Computer Studies, 55(1), 41–84.

    Article  Google Scholar 

  • Caccavale, R., & Finzi, A. (2015). Plan execution and attentional regulations for flexible human-robot interaction. In Proceedings of the IEEE international conference on systems, man, and cybernetics, pp 2453–2458.

  • Caccavale, R., & Finzi, A. (2016). Flexible task execution and attentional regulations in human–robot interaction. IEEE Transactions on Cognitive and Developmental Systems, 6(1), 68–79.

    Article  Google Scholar 

  • Caccavale, R., Cacace, J., Fiore, M., Alami, R., & Finzi, A. (2016). Attentional supervision of human–robot collaborative plans. In: Proceedings of the IEEE international conference on robot and human interactive communication (RO-MAN) (pp 867–873). IEEE.

  • Caccavale, R., Saveriano, M., Finzi, A., & Lee, D. (2018). Kinesthetic teaching and attentional supervision of structured tasks in human–robot interaction. Autonomous Robots, pp 1–17.

  • Chernova, S., & Arkin, R. C. (2007). From deliberative to routine behaviors: A cognitively inspired action-selection mechanism for routine behavior capture. Adaptive Behavior, 15, 199–216.

    Article  Google Scholar 

  • Colombini, E. L., da Silva, S. A., & Costa Ribeiro, C. H. (2017). An attentional model for autonomous mobile robots. IEEE Systems Journal, 11(3), 1308–1319.

    Article  Google Scholar 

  • Cooper, R. P., & Shallice, T. (2000). Contention scheduling and the control of routine activities. Cognitive Neuropsychology, 17, 297–338.

    Article  Google Scholar 

  • Cooper, R. P., & Shallice, T. (2006). Hierarchical schemas and goals in the control of sequential behavior. Psychological Review, 113(4), 887–916.

    Article  Google Scholar 

  • Cox, B., & Krichmar, J. (2009). Neuromodulation as a robot controller. Robotics & Automation Magazine, 16(3), 72–80.

    Article  Google Scholar 

  • Demiris, Y., & Khadhouri, B. (2006). Hierarchical attentive multiple models for execution and recognition of actions. Robotics and Autonomous Systems, 54(5), 361–369.

    Article  Google Scholar 

  • Di Nocera, D., Finzi, A., Rossi, S., & Staffa, M. (2012). Attentional action selection using reinforcement learning. In Proceedings of the international conference on simulation of adaptive behavior (pp. 371–380). Springer.

  • Di Nocera, D., Finzi, A., Rossi, S., & Staffa, M. (2014). The role of intrinsic motivations in attention allocation and shifting. Frontiers in Psychology, 5, 273.

    Article  Google Scholar 

  • Dong, D., & Franklin, S. (2015). Modeling sensorimotor learning in lida using a dynamic learning rate. Biologically Inspired Cognitive Architectures, 14, 1–9.

    Article  Google Scholar 

  • Donnarumma, F., Prevete, R., Chersi, F., & Pezzulo, G. (2015a). A programmer-interpreter neural network architecture for prefrontal cognitive control. International Journal of Neural Systems, 25(6), 1550017.

    Article  Google Scholar 

  • Donnarumma, F., Prevete, R., de Giorgio, A., Montone, G., & Pezzulo, G. (2015b). Learning programs is better than learning dynamics: A programmable neural network hierarchical architecture in a multi-task scenario. Adaptive Behavior, 24(1), 27–51.

    Article  Google Scholar 

  • Franklin, S., Madl, T., & D’Mello, S. (2014). Lida: A systems-level architecture for cognition, emotion, and learning. IEEE Transactions on Autonomous Mental Development, 6(1), 19–41.

    Article  Google Scholar 

  • Garcez, A., Besold, T. R., De Raedt, L., Földiak, P., Hitzler, P., Icard, T., Kühnberger, K. U., Lamb, L. C., Miikkulainen, R., & Silver, D. L. (2015). Neural-symbolic learning and reasoning: Contributions and challenges. In Proceedings of the AAAI spring symposium on knowledge representation and reasoning: Integrating symbolic and neural approaches, Stanford.

  • Garcez, A. S., Lamb, L. C., & Gabbay, D. M. (2008). Neural-symbolic cognitive reasoning. Berlin: Springer.

    MATH  Google Scholar 

  • Garforth, J., McHale, S. L., & Meehan, A. (2006). Executive attention, task selection and attention-based learning in a neurally controlled simulated robot. Neurocomputing, 69(16–18), 1923–1945.

    Article  Google Scholar 

  • Gianni, M., Kruijff, G. J. M., & Pirri, F. (2015). A stimulus-response framework for robot control. ACM Transactions on Interactive Intelligent Systems, 4(4), 21:1–21:41.

    Article  Google Scholar 

  • Kasderidis, S., & Taylor, J. (2004). Attentional agents and robot control. International Journal of Knowledge-Based and Intelligent Engineering Systems, 8(2), 69–89.

    Article  Google Scholar 

  • Kawamura, K., Gordon, S. M., Ratanaswasd, P., Erdemir, E., & Hall, J. F. (2008). Implementation of cognitive control for a humanoid robot. International Journal of Humanoid Robotics, 5(04), 547–586.

    Article  Google Scholar 

  • Khamassi, M., Lallée, S., Enel, P., Procyk, E., & Dominey, P. F. (2011). Robot cognitive control with a neurophysiologically inspired reinforcement learning model. Frontiers in NeuroRobotics, 5(1).

  • Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). Soar: An architecture for general intelligence. Artificial Intelligence, 33(1), 1–64.

    Article  Google Scholar 

  • Lashley, K. S. (1951). The problem of serial order in behavior. In L. A. Jeffress (Ed.), Cerebral mechanisms in behavior. New York, NY: Wiley.

    Google Scholar 

  • Menna, M., Gianni, M., & Pirri, F. (2013). Learning the dynamic process of inhibition and task switching in robotics cognitive control. In Proceedings of ICMLA 2013, Vol. 1, pp. 392–397.

  • Mozer, M. C., & Sitton, M. (1998). Computational modeling of spatial attention. Attention, 9, 341–393.

    Google Scholar 

  • Nagai, Y. (2009). From bottom-up visual attention to robot action learning. In Proceedings of international conference on development and learning, pp 1–6.

  • Nau, D., Cao, Y., Lotem, A., & Muñoz-Avila, H. (1999). Shop: Simple hierarchical ordered planner. In Proceedings of IJCAI (pp. 968–973). Morgan Kaufmann Publishers Inc.

  • Nicolescu, M. N., & Mataric, M. J. (2003). Natural methods for robot task learning: Instructive demonstrations, generalization and practice. In Proceedings of AAMAS (pp. 241–248). ACM.

  • Norman, D. A., & Shallice, T. (1986). Attention to action: Willed and automatic control of behavior. In R. J. Davidson, G. E. Schwartz and D. Shapiro (Eds.), Consciousness and self-regulation: Advances in research (Vol. IV, Chap 1, pp. 1–18). New York, NY: Plenum Press.

  • Pardowitz, M., Knoop, S., Dillmann, R., & Zollner, R. D. (2007). Incremental learning of tasks from user demonstrations, past experiences, and vocal comments. IEEE Transactions on Systems Man and Cybernetics Part B (Cybernetics), 37(2), 322–332.

    Article  Google Scholar 

  • Posner, M. I., & Snyder, C. R. R. (1975). Attention and cognitive control. In: Information processing and cognition, pp. 55–85.

  • Rubinstein, J., Meyer, E., & Evan, J. E. (2001). Executive control of cognitive processes in task switching. Journal of Experimental Psychology: Human Perception and Performance, 27(4), 763–797.

    Google Scholar 

Download references

Acknowledgements

The research leading to these results has been partially supported by the Projects REFILLs (H2020-ICT-731590), RoMoLo (MISE F/050277/01-02-X32 under EU-funded Actions for R&D), and ICOSAF (PON R& I 2014-2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Finzi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caccavale, R., Finzi, A. Learning attentional regulations for structured tasks execution in robotic cognitive control. Auton Robot 43, 2229–2243 (2019). https://doi.org/10.1007/s10514-019-09876-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-019-09876-x

Keywords

Navigation