Skip to main content
Log in

Simultaneous planning of sampling and optimization: study on lazy evaluation and configuration free space approximation for optimal motion planning algorithm

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

A recent trend in optimal motion planning has broadened the research area toward the hybridization of sampling, optimization, and grid-based approaches. A synergy from such integrations can be expected to bring the overall performance improvement, but seamless integration and generalization is still an open problem. In this paper, we suggest a hybrid motion planning algorithm utilizing both sampling and optimization techniques, while simultaneously approximating a configuration-free space. Unlike conventional optimization-based approaches, the proposed algorithm does not depend on a priori information or resolution-complete factors, e.g., a distance field. Ours instead learns spatial information on the fly by exploiting empirical collisions found during the execution, and decentralizes the information over the constructed graph for an efficient reference. With the help of the learned information, we associate the constructed search graph with the approximate configuration-free space so that our optimization-based local planner exploits the local area to identify the connectivity of free space without depending on the precomputed workspace information. To show the novelty of the proposed algorithm, we apply the proposed idea to asymptotic optimal planners with lazy collision checking; lazy PRM\(^*\) and Batch Informed Tree\(^*\), and evaluate them against other state-of-the-arts in both synthetic and practical benchmarks with varying degrees of freedom. We also discuss the performance analysis, properties of different algorithm frameworks of lazy collision checking and our approximation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bialkowski, J., Karaman, S., & Frazzoli, E. (2011). Massively parallelizing the RRT and the RRT. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp 3513–3518).

  • Bialkowski, J., Karaman, S., Otte, M., & Frazzoli, E. (2013). Efficient collision checking in sampling-based motion planning. In International workshop on the algorithmic foundations of robotics (WAFR) (pp. 365–380).

  • Bialkowski, J., Otte, M., & Frazzoli, E. (2013). Free-configuration biased sampling for motion planning. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp 1272–1279).

  • Burns, B., & Brock, O. (2005a). Sampling-based motion planning using predictive models. In IEEE International conference on robotics and automation (ICRA) (pp. 3120–3125).

  • Burns, B., & Brock, O. (2005b). Toward optimal configuration space sampling. Cambridge: RSS.

    Book  Google Scholar 

  • Choudhury, S., Gammell, J. D., Barfoot, T. D., Srinivasa, S. S., & Scherer, S. (2016). Regionally accelerated batch informed trees (\({{\rm RABIT}}^{*}\)): A framework to integrate local information into optimal path planning. In IEEE international conference on robotics and automation (ICRA) (pp. 4207–4214).

  • Deheuvels, P. (1983). Strong bounds for multidimensional spacings. Probability Theory and Related Fields, 64(4), 411–424.

    MathSciNet  MATH  Google Scholar 

  • Denny, J., & Amato, N. M. (2011). Toggle PRM: Simultaneous mapping of C-free and C-obstacle—A study in 2D. In IEEE/RSJ International conference on intelligent robots and systems (IROS) (pp 2632–2639).

  • Denny, J., & Amato, N. M. (2012). The toggle local planner for sampling-based motion planning. In IEEE International conference on robotics and automation (ICRA) (pp. 1779–1786).

  • Denny, J., Shi, K., & Amato, N. M. (2013). Lazy toggle PRM: A single-query approach to motion planning. In 2013 IEEE international conference on robotics and automation (ICRA) (pp 2407–2414). IEEE.

  • Frigioni, D., Marchetti-Spaccamela, A., & Nanni, U. (2000). Fully dynamic algorithms for maintaining shortest paths trees. Journal of Algorithms, 34(2), 251–281.

    Article  MathSciNet  Google Scholar 

  • Gammell, J. D., Srinivasa, S. S., & Barfoot, T. D. (2014). Informed \({{\rm RRT}}^*\): Optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp 2997–3004).

  • Gammell, J. D., Srinivasa, S. S., & Barfoot, T. D. (2015). Batch informed trees (\({{\rm BIT}}^{*}\)): Sampling-based optimal planning via the heuristically guided search of implicit random geometric graphs. In IEEE international conference on robotics and automation (ICRA) (pp 3067–3074).

  • Haghtalab, N., Mackenzie, S., Procaccia, A. D., Salzman, O., & Srinivasa, S. S. (2018). The provable virtue of laziness in motion planning. In International conference on automated planning and scheduling.

  • Hauser, K. (2015). Lazy collision checking in asymptotically-optimal motion planning. In IEEE international conference on robotics and automation (ICRA).

  • Jaromczyk, J. W., & Toussaint, G. T. (1992). Relative neighborhood graphs and their relatives. Proceedings of the IEEE, 80(9), 1502–1517.

    Article  Google Scholar 

  • Jeon, J. H., Karaman, S., & Frazzoli, E. (2011). Anytime computation of time-optimal off-road vehicle maneuvers using the \({{\rm RRT}}^{*}\). In IEEE conference on decision and control and European control conference (CDC-ECC) (pp 3276–3282).

  • Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P., & Schaal, S. (2011). STOMP: Stochastic trajectory optimization for motion planning. In IEEE international conference on robotics and automation (ICRA) (pp 4569–4574).

  • Karaman, S., & Frazzoli, E. (2010). Incremental sampling-based algorithms for optimal motion planning. arXiv preprint arXiv:1005.0416.

  • Karaman, S., & Frazzoli, E. (2011). Sampling-based algorithms for optimal motion planning. International Journal of Robotics Research (IJRR), 30(7), 846–894.

    Article  Google Scholar 

  • Karaman, S., Walter, M., Perez, A., Frazzoli, E., & Teller, S. (2011). Anytime motion planning using the \({{\rm RRT}}^{*}\). In IEEE international conference on robotics and automation (ICRA) (pp 1478–1483).

  • Kavraki, L. E., Svestka, P., Latombe, J.-C., & Overmars, M. H. (1996). Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation, 12(4), 566–580.

    Article  Google Scholar 

  • Kim, D., Kwon, Y., & Yoon, S. (2018a). Adaptive lazy collision checking for optimal sampling-based motion planning. In International conference on ubiquitous robots (pp. 2519–2526).

  • Kim, D., Kwon, Y., & Yoon, S. (2018b). Dancing \({{\rm PRM}}^*\) : Simultaneous planning of sampling and optimization with configuration free space approximation. In IEEE international conference on robotics and automation (ICRA) (pp. 2519–2526). IEEE.

  • Kleinbort, M., Salzman, O., & Halperin, D. (2016). Collision detection or nearest-neighbor search? On the computational bottleneck in sampling-based motion planning. In International workshop on the algorithmic foundations of robotics (WAFR).

  • Koenig, S., Likhachev, M., & Furcy, D. (2004). Lifelong planning \({{\rm A}}^*\). Artificial Intelligence, 155(1–2), 93–146.

    Article  MathSciNet  Google Scholar 

  • Kuntz, A., Bowen, C., & Alterovitz, R. (2017). Fast anytime motion planning in point clouds by interleaving sampling and interior point optimization. In Proceedings of the international symposium on robotics research (ISRR) (pp. 1–16).

  • LaValle, S. M. (1998). Rapidly-exploring random trees: A new tool for path planning. Technical Report 98-11, Iowa State University.

  • LaValle, S. M. (2006). Planning algorithms. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Lindemann, S. R., & LaValle, S. M. (2005). Current issues in sampling-based motion planning. In Robotics research. The eleventh international symposium (pp. 36–54). Springer.

  • Niederreiter, H. (1992). Random number generation and quasi-Monte Carlo methods (Vol. 63). Philadelphia: SIAM.

    Book  Google Scholar 

  • Otte, M., & Frazzoli, E. (2015). RRT-X: Real-time motion planning/replanning for environments with unpredictable obstacles. In Algorithmic Foundations of Robotics XI (pp. 461–478). Springer.

  • Pan, J., & Manocha, D. (2016). Fast probabilistic collision checking for sampling-based motion planning using locality-sensitive hashing. International Journal of Robotics Research (IJRR), 35(12), 1477–1496.

    Article  Google Scholar 

  • Park, C., Pan, J., & Manocha, D. (2012). ITOMP: Incremental trajectory optimization for real-time replanning in dynamic environments. In International conference on automated planning and scheduling.

  • Rickert, M., Sieverling, A., & Brock, O. (2014). Balancing exploration and exploitation in sampling-based motion planning. IEEE Transactions on Robotics (T-RO), 30(6), 1305–1317.

  • Rohmer, E., Freese, M., & Singh, S. P. N. (2013). V-REP: A versatile and scalable robot simulation framework. In IEEE/RSJ international conference on intelligent robots and systems (IROS).

  • Shkolnik, A., & Tedrake, R. (2011). Sample-based planning with volumes in configuration space. arXiv preprint arXiv:1109.3145.

  • Sucan, I. A., Moll, M., & Kavraki, L. E. (2012). The open motion planning library. IEEE Robotics & Automation Magazine, 19(4), 72–82.

    Article  Google Scholar 

  • Zucker, M., Ratliff, N., Dragan, A. D., Pivtoraiko, M., Klingensmith, M., Dellin, C. M., et al. (2013). CHOMP: Covariant Hamiltonian optimization for motion planning. International Journal of Robotics Research (IJRR), 32(9–10), 1164–1193.

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate the anonymous reviewers for constructive comments and insightful suggestions. This work was partially supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT, No. 2019R1A2C3002833), Next-Generation Information Computing Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT (NRF-2017M3C4A7066317), and Defense Acquisition Program Administration and Defense Industry Technology Center under the Contract UC160003D, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Eui Yoon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 94754 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D., Yoon, SE. Simultaneous planning of sampling and optimization: study on lazy evaluation and configuration free space approximation for optimal motion planning algorithm. Auton Robot 44, 165–181 (2020). https://doi.org/10.1007/s10514-019-09884-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-019-09884-x

Keywords

Navigation