Skip to main content
Log in

A velocity obstacles approach for autonomous landing and teleoperated robots

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

Velocity obstacles (VO) are one of the most successful methods to compute collision-free trajectory for multi-agent systems. VO provide for each autonomous robot the set of velocities that avoids collisions with other robots (sharing or not the same motion policy) and with moving or static obstacles in the environment. In this paper we will focus on a particular efficient implementation of the VO paradigm available in the literature, called optimal reciprocal collision avoidance. After highlighting and solving a couple of deadlock situations that the current implementation cannot manage, we extend this approach to two challenging applications: (1) the landing of a UAV onto a UGV in crowded environments, and (2) the generation of force feedback for teleoperated vehicles. The theoretical outcomes are validated in simulated scenarios using V-REP as a virtual robot development tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. http://gamma.cs.unc.edu/ORCA/. Last access Jan 15, 2017

  2. A teleoperation architecture using collision avoidance without force feedback has been recently presented by Bareiss et al. (2016).

  3. https://it.3dsystems.com/haptics-devices/touch

  4. http://www.coppeliarobotics.com/

  5. The modeling can be made more complex by taking into account nonholonomic constraints; however this is out of the scope of this manuscript because such kinds of constraints cannot be easily and effectively integrated within the VO framework.

References

  • Alonso-Mora, J., Breitenmoser, A., Rufli, M., Beardsley, P., & Siegwart, R. (2013). Optimal reciprocal collision avoidance for multiple non-holonomic robots. In Distributed autonomous robotic systems (pp. 203–216). Berlin: Springer.

  • Alonso-Mora, J., Naegeli, T., Siegwart, R., & Beardsley, P. (2015). Collision avoidance for aerial vehicles in multi-agent scenarios. Autonomous Robots, 39(1), 101–121.

    Article  Google Scholar 

  • Bareiss, D., & van den Berg, J. (2015). Generalized reciprocal collision avoidance. The International Journal of Robotics Research, 34(12), 1501–1514.

    Article  Google Scholar 

  • Bareiss, D., Van Den Berg, J., Abbott, J. J., & Leang, K. K. (2016). Study of improved pilot performance using automatic collision avoidance for tele-operated unmanned aerial vehicles. In 2016 IEEE international symposium on safety, security, and rescue robotics (SSRR) (pp. 118–124). IEEE.

  • Bertolaso, A., Raeissi, M. M., Farinelli, A., & Muradore, R. (2016). In ECAI 2016: 22nd European conference on artificial intelligence, 29 August–2 September 2016 (pp. 1720–1721). The Hague, The Netherlands.

  • Best, A., Narang, S., Curtis, S., & Manocha, D. (2014). Densesense: Interactive crowd simulation using density-dependent filters. In Proceedings of the ACM SIGGRAPH/Eurographics symposium on computer animation (pp. 97–102). Aire-la-Ville: Eurographics Association, .

  • Borenstein, J., Koren, Y., & Member, S. (1991). The vector field histogram—Fast obstacle avoidance for mobile robots. IEEE Journal of Robotics and Automation, 7, 278–288.

    Article  Google Scholar 

  • Bruneau, J., & Pettré, J. (2015). Energy-efficient mid-term strategies for collision avoidance in crowd simulation. In Proceedings of the 14th ACM SIGGRAPH/Eurographics symposium on computer animation (pp. 119–127). ACM.

  • Canny, J. F. (1988). The complexity of robot motion planning. Cambridge: MIT Press.

    MATH  Google Scholar 

  • Chakravarthy, A., & Ghose, D. (1998). Obstacle avoidance in a dynamic environment: a collision cone approach. IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans, 28(5), 562–574. https://doi.org/10.1109/3468.709600.

    Article  Google Scholar 

  • Fiorini, P., & Shiller, Z. (1998). Motion planning in dynamic environments using velocity obstacles. International Journal of Robotics Research, 17, 760–772.

    Article  Google Scholar 

  • Fox, D., Burgard, W., & Thrun, S. (1997). The dynamic window approach to collision avoidance. IEEE Robotics Automation Magazine, 4(1), 23–33. https://doi.org/10.1109/100.580977.

    Article  Google Scholar 

  • Garcia-Pardo, P. J., Sukhatme, G. S., & Montgomery, J. F. (2002). Towards vision-based safe landing for an autonomous helicopter. Robotics and Autonomous Systems, 38(1), 19–29.

    Article  Google Scholar 

  • Godoy, J. E., Karamouzas, I., Guy, S. J., & Gini, M. (2015). Adaptive learning for multi-agent navigation. In Proceedings of the 2015 international conference on autonomous agents and multiagent systems, international foundation for autonomous agents and multiagent systems (pp. 1577–1585).

  • He, L., & van den Berg, J. (2013). Meso-scale planning for multi-agent navigation. In 2013 IEEE international conference on robotics and automation (ICRA) (pp. 2839–2844). IEEE.

  • Hokayem, P. F., & Spong, M. W. (2006). Bilateral teleoperation: An historical survey. Automatica, 42(12), 2035–2057.

    Article  MathSciNet  Google Scholar 

  • Hsu, D., Kindel, R., Latombe, J. C., & Rock, S. (2002). Randomized kinodynamic motion planning with moving obstacles. The International Journal of Robotics Research, 21(3), 233–255. https://doi.org/10.1177/027836402320556421.

    Article  MATH  Google Scholar 

  • Jaillet, L., & Simeon, T. (2004). A prm-based motion planner for dynamically changing environments. In 2004 IEEE/RSJ international conference on intelligent robots and systems (IROS) (vol. 2, pp. 1606–1611). https://doi.org/10.1109/IROS.2004.1389625.

  • Kim, M., & Oh, J. H. (2015). Study on optimal velocity selection using velocity obstacle (OVVO) in dynamic and crowded environment. Autonomous Robots, 40(8), 1459–1470.

    Article  Google Scholar 

  • Kong, W., Hu, T., & Zhang, J. (2017). Real-time stereo-vision localization system for safe landing of unmanned aerial vehicles. In 2017 IEEE international conference on robotics and biomimetics (ROBIO) (pp. 2366–2371). IEEE.

  • LaValle, S. M., & Kuffner, J. J. (2001). Rapidly-exploring random trees: Progress and prospects. In B. R. Donald, K. M. Lynch, & D. Rus (Eds.), Algorithmic and computational robotics: New directions (pp. 293–308). A.K. Peters.

  • Muradore, R., & Fiorini, P. (2016). A review of bilateral teleoperation algorithms. Acta Polytechnica Hungarica, 13(1), 191–208.

    Google Scholar 

  • Nuño, E., Basañez, L., & Ortega, R. (2011). Passivity-based control for bilateral teleoperation: A tutorial. Automatica, 47(3), 485–495.

    Article  MathSciNet  Google Scholar 

  • O’Dunlaing, C., & Yap, C. K. (1982). A retraction method for planning the motion of a disc. Journal of Algorithms, 6, 104–111.

    Article  MathSciNet  Google Scholar 

  • Saripalli, S., Montgomery, J. F., & Sukhatme, G. S. (2003). Visually guided landing of an unmanned aerial vehicle. IEEE Transactions on Robotics and Automation, 19(3), 371–380.

    Article  Google Scholar 

  • Scherer, S., Chamberlain, L., & Singh, S. (2012). Autonomous landing at unprepared sites by a full-scale helicopter. Robotics and Autonomous Systems, 60(12), 1545–1562.

    Article  Google Scholar 

  • Snape, J., & Manocha, D. (2013). Goal velocity obstacles for spatial navigation of multiple virtual agents. In Proceedings of the 2013 international conference on autonomous agents and multi-agent systems (pp. 1191–1192). Richland, SC: International Foundation for Autonomous Agents and Multiagent Systems. http://dl.acm.org/citation.cfm?id=2484920.2485137.

  • Snape, J., Van Den Berg, J., Guy, S. J., & Manocha, D. (2011). The hybrid reciprocal velocity obstacle. IEEE Transactions on Robotics, 27(4), 696–706.

    Article  Google Scholar 

  • Tan, C. K., Wang, J., Paw, Y. C., & Liao, F. (2018). Robust linear output feedback controller for autonomous landing of a quadrotor on a ship deck. International Journal of Control (just-accepted):1–33.

  • Tilove, R. B. (1990). Local obstacle avoidance for mobile robots based on the method of artificial potentials. In Proceedings., IEEE international conference on robotics and automation (vol. 1, pp. 566–571). https://doi.org/10.1109/ROBOT.1990.126041.

  • Tomlin, C., Pappas, G. J., & Sastry, S. (1998). Conflict resolution for air traffic management: A study in multiagent hybrid systems. IEEE Transactions on Automatic Control, 43(4), 509–521. https://doi.org/10.1109/9.664154.

    Article  MathSciNet  MATH  Google Scholar 

  • Van Den Berg, J., Lin, M., & Manocha, D. (2008a). Reciprocal velocity obstacles for real-time multi-agent navigation. In 2008 IEEE international conference on robotics and automation (pp. 1928–1935). IEEE.

  • Van Den Berg, J., Patil, S., Sewall, J., Manocha, D., & Lin, M. (2008b). Interactive navigation of multiple agents in crowded environments. In Proceedings of the 2008 symposium on interactive 3D graphics and games (pp. 139–147). ACM.

  • van den Berg, J., Guy, S. J., Lin, M., & Manocha, D. (2011a). Reciprocal n-body collision avoidance. In: C. Pradalier, R. Siegwart, & G. Hirzinger (Eds.), Robotics research. Springer tracts in advanced robotics (Vol. 70, pp. 3–19). Berlin, Heidelberg: Springer.

  • Van Den Berg, J., Snape, J., Guy, S. J., & Manocha, D. (2011b). Reciprocal collision avoidance with acceleration-velocity obstacles. In 2011 IEEE international conference on robotics and automation (ICRA) (pp. 3475–3482). IEEE.

  • Yang, S., Scherer, S. A., & Zell, A. (2013). An onboard monocular vision system for autonomous takeoff, hovering and landing of a micro aerial vehicle. Journal of Intelligent & Robotic Systems, 69(1–4), 499–515.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Muradore.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Battisti, T., Muradore, R. A velocity obstacles approach for autonomous landing and teleoperated robots. Auton Robot 44, 217–232 (2020). https://doi.org/10.1007/s10514-019-09887-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-019-09887-8

Keywords

Navigation