Skip to main content
Log in

Robustness and efficiency insights from a mechanical coupling metric for ankle-actuated biped robots

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

This paper presents results pertaining to the coupling between the actuated and unactuated degrees of freedom for biped robots. It is focused on revealing the qualitative relationship between a mechanical coupling metric and gait characteristics for an ankle-actuated biped robot. By considering robot models with varying masses, leg lengths and positions of the center of mass of the legs, it validates the universality of prior results based on a single robot model. The development of a method for designing ankle-actuated biped gaits is given in detail, and numerical computation is utilized to find the initial conditions needed to generate the ankle-actuated candidate gait regions. The correlation between the coupling metric and the maximum magnitude of disturbance that can be rejected is significant, regardless of the robot parameters. It indicates that robust gaits tend to have small coupling under zero disturbance so that the “reserve” coupling may be utilized to reject the disturbance. Furthermore, for the same walking speed, gaits with smaller cost of transport under zero disturbances have smaller coupling and therefore should be more robust, which highlights the value of gait optimization for biped walking. The coupling metric for hip actuation is also briefly discussed as a contrast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. The cost of transport quantifies the energy efficiency of walking.

References

  • Adolfsson, J., Dankowicz, H., & Nordmark, A. (2001). 3D passive walkers: Finding periodic gaits in the presence of discontinuities. Nonlinear Dynamics, 24(2), 205–229.

    Article  Google Scholar 

  • Au, S. K., & Herr, H. M. (2008). Powered ankle-foot prosthesis. IEEE Robotics & Automation Magazine, 15(3), 52–59.

    Article  Google Scholar 

  • Bullo, F., & Lewis, A. D. (2004). Geometric control of mechanical systems: Modeling, analysis, and design for simple mechanical control systems (Vol. 49). New York: Springer.

    MATH  Google Scholar 

  • Buss, B., Ramezani, A., Hamed, K., Griffin, B., Galloway, K., & Grizzle, J. (2014). Preliminary walking experiments with underactuated 3D bipedal robot MARLO. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 2529–2536).

  • Chen, T. & Goodwine, B. (2019a). Controllability and accessibility results for an \(n\)-link horizontal planar pendubot. In 2019 18th European control conference (ECC) (pp. 2596–2602). IEEE.

  • Chen, T. & Goodwine, B. (2019b). Controllability and accessibility results for n-link horizontal planar manipulators with one unactuated joint. arXiv preprint. arXiv:1907.13091.

  • Chen, T., Ni, X., Schmiedeler, J. P., & Goodwine, B. (2017). Using a nonlinear mechanical control coupling metric for biped robot control and design. In Proceedings of the 22nd international conference on methods and models in automation and robotics (MMAR) (pp. 903–908). IEEE.

  • Chen, T., Schmiedeler, J.P., & Goodwine, B. (2018). A study of the relationship between a mechanical coupling metric and gait characteristics for an ankle-actuated biped robot. In 2018 15th international conference on control, automation, robotics and vision (ICARCV) (pp. 1180–1185). IEEE.

  • Chevallereau, C., Abba, G., Aoustin, Y., Plestan, F., Westervelt, E., de Wit, C. C., et al. (2003). Rabbit: A testbed for advanced control theory. IEEE Control Systems Magazine, 23(5), 57–79.

    Article  Google Scholar 

  • Chevallereau, C., Grizzle, J. W., & Shih, C.-L. (2009). Asymptotically stable walking of a five-link underactuated 3-D bipedal robot. IEEE Transactions on Robotics, 25(1), 37–50.

    Article  Google Scholar 

  • Chevallereau, C., Westervelt, E., & Grizzle, J. (2005). Asymptotically stable running for a five-link, four-actuator, planar bipedal robot. The International Journal of Robotics Research, 24(6), 431–464.

    Article  Google Scholar 

  • Collins, S., Ruina, A., Tedrake, R., & Wisse, M. (2005). Efficient bipedal robots based on passive-dynamic walkers. Science, 307(5712), 1082–1085.

    Article  Google Scholar 

  • Collins, S., Wisse, M., & Ruina, A. (2001). A three-dimensional passive-dynamic walking robot with two legs and knees. International Journal of Robotics Research, 20(7), 607–615.

    Article  Google Scholar 

  • Da, X., Harib, O., Hartley, R., Griffin, B., & Grizzle, J. W. (2016). From 2D design of underactuated bipedal gaits to 3D implementation: Walking with speed tracking. IEEE Access, 4, 3469–3478.

    Article  Google Scholar 

  • De Luca, A., Oriolo, G., & Samson, C. (1998). Feedback control of a nonholonomic car-like robot. In Robot motion planning and control (pp 171–253). New York: Springer.

  • Endo, G., Morimoto, J., Nakanishi, J., & Cheng, G. (2004). An empirical exploration of a neural oscillator for biped locomotion control. In IEEE international conference on robotics and automation, 2004. Proceedings. ICRA’04, 2004 (Vol. 3, pp. 3036–3042). IEEE.

  • Fevre, M., Goodwine, B., & Schmiedeler, J. P. (2018). Design and experimental validation of a velocity decomposition-based controller for underactuated planar bipeds. IEEE Robotics and Automation Letters, 3(3), 1896–1903.

    Article  Google Scholar 

  • Fevre, M., Goodwine, B., & Schmiedeler, J. P. (2019). Terrain-blind walking of planar underactuated bipeds via velocity decomposition-enhanced control. The International Journal of Robotics Research,. https://doi.org/10.1177/0278364919870242.

    Article  Google Scholar 

  • Gregg, R. D., & Spong, M. W. (2010). Reduction-based control of three-dimensional bipedal walking robots. The International Journal of Robotics Research, 29(6), 680–702.

    Article  Google Scholar 

  • Hamed, K. A., & Grizzle, J. W. (2013). Event-based stabilization of periodic orbits for underactuated 3-D bipedal robots with left-right symmetry. IEEE Transactions on Robotics, 30(2), 365–381.

    Article  Google Scholar 

  • Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., et al. (2003). Biped walking pattern generation by using preview control of zero-moment point. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 3, 1620–1626.

    Google Scholar 

  • Kuo, A. D. (2002). Energetics of actively powered locomotion using the simplest walking model. Journal of Biomechanical Engineering, 124(1), 113–120.

    Article  Google Scholar 

  • Martin, A. E., Post, D. C., & Schmiedeler, J. P. (2014). Design and experimental implementation of a hybrid zero dynamics-based controller for planar bipeds with curved feet. The International Journal of Robotics Research, 33(7), 988–1005.

    Article  Google Scholar 

  • McGeer, T. (1990a). Passive bipedal running. Proceedings of the Royal Society of London. Series B, Biological Science, 240(1297), 107–134.

    Google Scholar 

  • McGeer, T. (1990b). Passive dynamic walking. International Journal of Robotics Research, 9(2), 62–82.

    Article  Google Scholar 

  • McGeer, T. (1990c). Passive walking with knees. In Proceedings of the IEEE international conference on robotics and automation (ICRA), Los Alamitos, California (pp. 1640–1645).

  • Nightingale, J. (2012). Geometric analysis and control of underactuated mechanical systems. PhD thesis, University of Notre Dame.

  • Nightingale, J., Hind, R., & Goodwine, B. (2008a). Geometric analysis of a class of constrained mechanical control systems in the nonzero velocity setting. In Proceedings of the international federation of automatic control world congress (pp. 1171–1176).

  • Nightingale, J., Hind, R., & Goodwine, B. (2008b). Intrinsic vector-valued symmetric form for simple mechanical control systems in the nonzero velocity setting. In Proceedings of the IEEE international conference on robotics and automation (ICRA).

  • Nightingale, J., Hind, R., & Goodwine, B. (2010). A stopping algorithm for mechanical systems. In G. S. Chirikjian, H. Choset, M. Morales, & T. Murphey (Eds.), Algorithmic foundation of robotics VIII: Selected contributions of the eight international workshop on the algorithmic foundations of robotics (pp. 167–180). Berlin: Springer.

    Google Scholar 

  • Plestan, F., Grizzle, J. W., Westervelt, E. R., & Abba, G. (2003). Stable walking of a 7-DOF biped robot. IEEE Transactions on Robotics and Automation, 19(4), 653–668.

    Article  Google Scholar 

  • Post, D. & Schmiedeler, J. (2014). Velocity disturbance rejection for planar bipeds walking with HZD-based control. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS), Chicago, IL (pp. 4882–4887).

  • Post, D. C., Goodwine, B., & Schmiedeler, J. P. (2016). Quantifying control authority in periodic motions of underactuated mobile robots. In ASME 2015 international design engineering technical conferences and computers and information in engineering conference. American Society of Mechanical Engineers Digital Collection.

  • Poulakakis, I., & Grizzle, J. W. (2009). The spring loaded inverted pendulum as the hybrid zero dynamics of an asymmetric hopper. IEEE Transactions on Automatic Control, 54(8), 1779–1793.

    Article  MathSciNet  Google Scholar 

  • Sakagami, Y., Watanabe, R., Aoyama, C., Matsunaga, S., Higaki, N., & Fujimura, K. (2002). The intelligent ASIMO: System overview and integration. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS) (Vol. 3, pp. 2478–2483). IEEE.

  • Shih, C.-L., Grizzle, J., & Chevallereau, C. (2012). From stable walking to steering of a 3D bipedal robot with passive point feet. Robotica, 30(07), 1119–1130.

    Article  Google Scholar 

  • Spong, M. W., et al. (1999). Passivity based control of the compass gait biped. IFAC world congress, 3, 19–23.

    Google Scholar 

  • Sreenath, K., Park, H.-W., Poulakakis, I., & Grizzle, J. W. (2013). Embedding active force control within the compliant hybrid zero dynamics to achieve stable, fast running on mabel. The International Journal of Robotics Research, 32(3), 324–345.

    Article  Google Scholar 

  • Vukobratović, M., & Borovac, B. (2004). Zero-moment point-thirty five years of its life. International Journal of Humanoid Robotics, 1(01), 157–173.

    Article  Google Scholar 

  • Westervelt, E., Grizzle, J., & Koditschek, D. (2003a). Hybrid zero dynamics of planar biped walkers. IEEE Transactions on Automatic Control, 48(1), 42–56.

    Article  MathSciNet  Google Scholar 

  • Westervelt, E. R., Grizzle, J. W., Chevallereau, C., Choi, J. H., & Morris, B. (2007). Feedback control of dynamic bipedal robot locomotion (Vol. 28). Boca Raton: CRC Press.

    Google Scholar 

  • Westervelt, E. R., Grizzle, J. W., & Koditschek, D. E. (2003b). Hybrid zero dynamics of planar biped walkers. IEEE transactions on automatic control, 48(1), 42–56.

    Article  MathSciNet  Google Scholar 

  • Yang, T., Westervelt, E., Schmiedeler, J., & Bockbrader, R. (2008). Design and control of a planar bipedal robot ERNIE with parallel knee compliance. Autonomous Robots, 25(4), 317–330.

    Article  Google Scholar 

  • Yang, T., Westervelt, E., Serrani, A., & Schmiedeler, J. P. (2009). A framework for the control of stable aperiodic walking in underactuated planar bipeds. Autonomous Robots, 27(3), 277.

    Article  Google Scholar 

Download references

Acknowledgements

The partial support of the US National Science Foundation under Grant IIS-1527393 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tan Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Schmiedeler, J.P. & Goodwine, B. Robustness and efficiency insights from a mechanical coupling metric for ankle-actuated biped robots. Auton Robot 44, 281–295 (2020). https://doi.org/10.1007/s10514-019-09893-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-019-09893-w

Keywords

Navigation