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Abstract
We propose a novel online learning algorithm, called SpCoSLAM 2.0, for spatial concepts and lexical acquisition with
high accuracy and scalability. Previously, we proposed SpCoSLAM as an online learning algorithm based on unsupervised
Bayesian probabilistic model that integrates multimodal place categorization, lexical acquisition, and SLAM. However, our
original algorithm had limited estimation accuracy owing to the influence of the early stages of learning, and increased
computational complexity with added training data. Therefore, we introduce techniques such as fixed-lag rejuvenation to
reduce the calculation time while maintaining an accuracy higher than that of the original algorithm. The results show that,
in terms of estimation accuracy, the proposed algorithm exceeds the original algorithm and is comparable to batch learning.
In addition, the calculation time of the proposed algorithm does not depend on the amount of training data and becomes
constant for each step of the scalable algorithm. Our approach will contribute to the realization of long-term spatial language
interactions between humans and robots.

Keywords Online learning · Place categorization · Scalability · Semantic mapping · Lexical acquisition · Unsupervised
Bayesian probabilistic model

1 Introduction

Robots operating in various human environments must adap-
tively and sequentially acquire new categories for places and
unknown words related to various places as well as the map
of the environment (Kostavelis and Gasteratos 2015). It is
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desirable for robots to acquire place categories and vocab-
ulary autonomously based on their experience because it is
difficult to manually design spatial knowledge in advance.
Related research in the fields of semantic mapping and place
categorization (Pronobis and Jensfelt 2012; Kostavelis and
Gasteratos 2015; Sünderhauf et al. 2016; Landsiedel et al.
2017; Rangel et al. 2018) has attracted considerable interest
in recent years. However, conventional approaches in most
of these studies are limited insofar as the robots cannot learn
unknown words and unknown place categories without pre-
set vocabulary and categories. In addition, the processes for
Simultaneous Localization And Mapping (SLAM) (Thrun
et al. 2005) and for estimating semantics related to place have
been addressed as separated module processes. However,
in our proposed approach, the robot can automatically and
simultaneously perform place categorization and environ-
ment mapping, and it can learn unknownwords without prior
knowledge. Our previously proposed unsupervised Bayesian
probabilistic model integrates multimodal place categoriza-
tion, lexical acquisition, and SLAM. In particular, this paper
focuses on the problems of estimation accuracy and compu-
tational scalability in online learning.
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We define a spatial concept as a place category is
autonomously learned by the robot based on multimodal
perceptual information, which includes names of places, fea-
tures of scene images, and position distributions. Then, we
define a position distribution as the spatial extent representing
a place in the environment. Our study regarding the spatial
concept formation and the lexical acquisition also consti-
tute constructive approaches to the human developmental
process and symbol emergence in cognitive developmental
systems (Cangelosi and Schlesinger 2015; Taniguchi et al.
2018b). Thus, we assume that the robot has not acquired any
vocabulary in advance and can recognize only phonemes or
syllables. In addition, the robot does not have prior knowl-
edge of the current environment. In this study, a scenario in
which the user teaches the robot the name of a place using a
spoken utterance while moving together in the environment
is studied. An overview of the scenario for online learning
task is shown in Fig. 1. The robot and the user move around
the environment. When they come to a place where the user
wishes to teach, the user speaks a sentence regarding the
place to the robot. The robot recognizes the speech, includ-
ing unknown words, and segments the speech into words.
Then, the robot obtains the present estimated position, the
scene image, and the speech signal at that time, and acquires
spatial knowledge regarding the environment, such as the
relationship between words and places.

In online learning, also called sequential learning or incre-
mental learning, an increase in scalability without reducing
accuracy is especially important but difficult to achieve for
mobile robots. Online learning has the advantage of being
performed in real-time. This means that it can be used to
adapt immediately to new data by sequentially estimating
parameters each time.On the other hand, batch learning takes
time to collect large amounts of data and to iterate it for
learning. In the case of online learning, previous knowledge
can be used immediately for reasoning and tasks such as
language communication. Taniguchi et al. (2017) focused
on deriving and constructing an appropriate online learn-
ing algorithm mathematically based on a theory of machine
learning. In our previous work, we proposed SpCoSLAM
as an integrated model of nonparametric Bayesian multi-
modal categorization, a Bayesian filter-based SLAM, speech
recognition, and word segmentation, from the standpoint
of unsupervised machine learning. However, this algorithm
(Taniguchi et al. 2017) had inferior accuracy in terms of
categorization and word segmentation compared to batch
learning, owing to a situation whereby sufficient statistical
information could not be used at the early stages of learning.
In addition, speech recognition and unsupervised word seg-
mentation were not completely online, and batch learning
was used as an approximation. Therefore, the computa-
tional complexity of the processes of speech recognition and
unsupervised word segmentation increased with an increase

in training data. To enable online learning based on long-
term human–robot interactions with limited computational
resources, the following core problems need to be solved: (i)
the increase in calculation cost owing to an increase in data,
and (ii) the decrease in estimation accuracy when compared
with batch learning. In intelligent robotics, the framework of
online learning is regarded as important. In particular, online
learning, which solves the above problem, is required for
robots that gain knowledge while moving in the real world.

We here describe improved and scalable algorithms to
solve the above-mentioned problems. The improved algo-
rithm mainly addresses the problems of misrecognition
(misclassification) and word segmentation in online learn-
ing. The scalable algorithm mainly addresses the problem of
the increase in computation time. In this study, we introduce
the approach of fixed-lag rejuvenation, which is considered
particularly effective at solving these problems. Regarding
the problem of online lexical acquisition, the improved and
scalable algorithms take two respective approaches to the
solution. The improved algorithm addresses the problem
of under-segmentation, whereby the phoneme sequence is
insufficiently segmented, by changing the manner by which
the language model is updated such that it re-segments
the word sequence. The scalable algorithm performs in a
pseudo-online manner by introducing a fixed-lag rejuvena-
tion approach to speech recognition and word segmentation.

One of the advantages to the proposed online learning
algorithm is that spatial concepts mistakenly learned by the
robot can be corrected sequentially, something that could not
be achieved thus far. Moreover, with the proposed algorithm,
the robot can flexibly deal with changes in the environment
and the names of places. The lower part in Fig. 1 shows the
progress of online learning. In the lower left of Fig. 1, clus-
tered places andwords are incorrectly estimated, as shown by
the elongated purple and blue ellipses. In the lower right of
Fig. 1, by contrast, more accurate estimation is achieved by
correcting errors as learning progresses. This is realized by
reviewing and rethinking previous estimation results when
new data is obtained.

The main contributions of this paper are as follows:

– We propose an improved and scalable online learning
algorithm with several novel techniques such as fixed-
lag rejuvenation.

– The improved online algorithm achieves an accuracy of
place categorization and lexical acquisition comparable
to batch learning.

– The scalable online algorithm achieves faster learning
compared to original algorithms by reducing the order of
computational complexity.

The remainder of this paper is organized as follows. In
Sect. 2, we discuss related work on the formation of spatial
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Fig. 1 Overview of the scenario for online learning in this study. We
assume a scenario in which the user teaches the robot the name of the
place using a spoken utterance while moving together in the environ-
ment. The robot learns spatial concepts, language models, and maps

while sequentially correcting mistakes from previous learnings based
on its interaction with the user and environment, as shown from the
bottom left to the bottom right

concepts and online learning that is relevant to our study.
In Sect. 3, we present an overview of the model, along with
the formulation and the original online learning algorithm,
SpCoSLAM. In Sect. 4, we present our proposed algorithms
for improved and scalable online learning. In Sect. 5, we dis-
cuss the effectiveness of the proposed algorithms in a real
environment. In Sect. 6, we evaluate the performance of place
categorization and lexical acquisition in various virtual home
environments. Section 7 concludes the paper.

2 Related work

2.1 Spatial concept formation

Taguchi et al. (2011) proposed an unsupervised method
for simultaneously categorizing self-positions and phoneme
sequences from user speech without any prior language
model. Taniguchi et al. (2016, 2018a) proposed the non-
parametric Bayesian Spatial Concept Acquisition method
(SpCoA) using an unsupervised word segmentation method,
latticelm (Neubig et al. 2012), and SpCoA++ for highly accu-
rate lexical acquisition as a result of updating the language
model. Gu et al. (2016) proposed a method to learn rela-
tive spatial concepts, i.e., the words related to distance and
direction, from the positional relationship between an utterer
and objects. Isobe et al. (2017) proposed a learning method

to derive the relationship between objects and places using
image features obtained by a Convolutional Neural Network
(CNN) (Krizhevsky et al. 2012). Hagiwara et al. (2018)
implemented a hierarchical clustering method for the for-
mation of hierarchical place concepts. However, none of the
above methods can sequentially learn spatial concepts from
unknown environments without a map, because they rely
on batch-learning algorithms. Therefore, we developed in
previous work an online algorithm, SpCoSLAM (Taniguchi
et al. 2017), that can sequentially learn a map, a lexicon, and
spatial concepts to integrate positions, speech signals, and
scene images. In Taniguchi et al. (2017), however, the accu-
racy was inferior to that of SpCoA. In this paper, we also
compare our proposal to the latest batch learning method,
SpCoA++. Because SpCoA++ is able to achieve nearly cor-
rect lexical acquisition, if we can successfully overcome the
above problems by appropriately devising the learning algo-
rithm, its accuracy should improve even with online lexical
acquisition.

Our approach is relevant to research integrating seman-
tic mapping with natural language processing (Walter et al.
2013; Hemachandra et al. 2014). Walter et al. (2013) devel-
oped an algorithm that can learn semantic graphs to integrate
semantic representation into metric maps from natural lan-
guage descriptions of aspects such as labels and spatial rela-
tionships. Hemachandra et al. (2014) proposed a mechanism
to more effectively ground natural language descriptions
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by integrating scene appearance observations using camera
images and laser data. In these studies, a word list, place
labels, and the number of category types were known in
advance. However, it is challenging to sequentially acquire
new words and categories efficiently from a situation in
which the lists of words and categories are not provided in
advance. Our study includes lexical acquisition for unknown
words and formation of new categories from speech signals
using spatial information.

Ball et al. (2013) implemented a biologically inspired
mapping system, RatSLAM, which is related to pose cells
in the hippocampus of a rodent. In addition, robots called
Lingodroids using RatSLAM could acquire a lexicon related
to places through robot-to-robot communication (Heath et al.
2016). These studies reported that robots created their own
vocabulary. Ueda et al. (2016) proposed a brain-inspired
method, namely, a Particle Filter onEpisode (PFoE) for agent
decisionmaking. PFoE can estimate the agent’s internal state
based on previous events recalled at the time. All previ-
ous data is thus accumulated to construct a state space in
PFoE. We believe that PFoE is unsuitable for long-term tri-
als because the state space becomes enormous. By contrast,
our approach forms concepts from episodes using resources
more reasonably for calculations, insofar as the state space is
reduced through clustering. Although our proposed method
was not originally inspired by biology or brain science, such
research is highly suggestive. SpCoSLAM is an integrated
model of self-localization, mapping, concept formation, and
lexical acquisition. From the point of view of the brain, it may
be possible to regard SpCoSLAM as a model that imitates
some functions of the hippocampus and the cerebral cortex.
If we assume that the training data—i.e., the robot’s experi-
ences based on a user’s utterances—is the episodic memory,
and that spatial concepts are semantic memory, the proposed
algorithmcan be interpreted as a representation of the process
of forming concepts by extracting meaning from short-term
episodic memory sequentially. Such matters are not further
discussed in this paper, although they remain important for
future research.

2.2 Improvement of online learning based on
particle filters in unsupervised Bayesianmodels

As an approach involving Bayesian models that is similar to
our model, there are related studies on object concepts. In
particular, Araki et al. (2012b) proposed online Multimodal
Latent Dirichlet Allocation (oMLDA) to acquire object con-
cepts in an online manner, and combined this with the Nested
Pitman–Yor Language Model (NPYLM), making it possible
to perform lexical acquisition of unknown words sequen-
tially. Aoki et al. (2016) constructed an algorithm that can
infer an approximately global optimal solution by represent-
ing it as a single integrated model. The NPYLM is an unsu-

pervised morphological analysis method based on a statisti-
cal model that enables word segmentation exclusively from
phoneme sequences (Mochihashi et al. 2009). In addition,
Nishihara et al. (2017) was able to reduce phoneme recogni-
tion errors by applyingPFoMDLAto inferences using a parti-
cle filter instead of oMLDA. In these studies, online learning
was realized as an algorithm in unsupervised machine learn-
ing. A spatial concept requires more real-time processing
than an object concept because the robot learns spatial con-
cepts while it moves through the environment. The mobile
robot should not halt its spatial movement for calculations.
Therefore, amore efficient and scalable algorithm is required.

Canini et al. (2009) improved the accuracy of an online
algorithmbased on a particle filterwith the rejuvenation tech-
nique. This technique resamples some randomly selected
samples of previous observation data from a conditional
probabilistic distribution similar to Gibbs sampling. For a
completely random choice, the robot needs to memorize all
of the previous data. Rejuvenation can deal with the problem
of degenerating particles in particle filters. In this study, we
introduce rejuvenation into our SpCoSLAM online learning
algorithm. In our algorithm, we perform resampling from
some recent data. Therefore, we consider that it will be pos-
sible to improve the estimation accuracy efficiently.

As another particle filter approach, Börschinger and John-
son (2011) proposed an online algorithmbased on aBayesian
model for word segmentation. In addition, Börschinger and
Johnson (2012) presented an incremental learning algo-
rithm that introduces rejuvenation to a particle filter. They
improved the performance of word segmentation with higher
accuracy. The studies above were premised on segmenta-
tion of sequences without phoneme recognition errors. In
this study, by contrast, the online word segmentation task is
particularly challenging because phoneme recognition errors
are included in speech recognition results.

3 SpCoSLAM: Online learning for spatial
concepts and lexical acquisition with
mapping

3.1 Overview

SpCoSLAM has the advantage that spatial concept for-
mation, lexical acquisition, and SLAM, can be performed
simultaneously by an integrated model. Figure 2 shows the
graphical model of SpCoSLAM and lists each variable of the
graphicalmodel. The details of the formulation of the genera-
tion process represented by the graphicalmodel are described
in Taniguchi et al. (2017). The method learns sequential spa-
tial concepts for unknown environmentswithoutmaps. It also
learns the many-to-many correspondences between places
andwords via spatial concepts and canmutually complement
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Fig. 2 Left: graphical model representation of SpCoSLAM (Taniguchi et al. 2017). Gray nodes indicate observation variables, and white nodes are
unobserved latent variables. Right: description of random variables in SpCoSLAM

the uncertainty of information usingmultimodal information.
Furthermore, the proposed method estimates an appropriate
number of clusters of spatial concepts and position distri-
butions depending on the data by using the so-called online
Chinese Restaurant Process (CRP) (Aldous 1985), one of the
constitutive methods of the Dirichlet Process (DP). In addi-
tion, lexical acquisition including unknownwords is possible
by sequentially updating the language model.

The procedure of SpCoSLAMfor each step is described as
follows. (a) The robot obtains Weighted Finite-State Trans-
ducer (WFST) speech recognition results from the user’s
speech signals using a language model. (b) The robot obtains
the likelihood of self-localization by performing FastSLAM.
(c) The robot segments theWFST speech recognition results
using an unsupervised word segmentation approach called
latticelm (Neubig et al. 2012). (d) The robot obtains the
latent variables of spatial concepts by sampling. (e) The robot
obtains the marginal likelihood of the observed data as the
importance weight. (f) The robot updates the environmental
map. (g) The robot estimates the set of model parameters
of the spatial concepts from the observed data and the sam-
pled variables. (h) The robot updates the language model
of the maximum weight for the next step. (i) The particles
are resampled according to their weights. Steps (b)–(g) are
performed for each particle.

3.2 Formulation of the online learning algorithm

Our previously proposed online learning algorithm,
SpCoSLAM, introduces sequential equation updates to esti-
mate the parameters of the spatial concepts into the for-
mulation of a Rao-Blackwellized Particle Filter (RBPF)

(Doucet et al. 2000) in the FastSLAM 2.0 algorithm, which
is landmark-based SLAM (Montemerlo et al. 2003), and the
technique (Grisetti et al. 2007) applied to grid-based SLAM
in a similar manner to that in FastSLAM 2.0. The parti-
cle filter is advantageous in that parallel processing can be
easily applied because each particle can be calculated inde-
pendently.

In the formulation of SpCoSLAM, the joint posterior dis-
tribution can be factorized to the probability distributions of
a language model LM , a map m, the set of model parame-
ters of spatial concepts Θ = {W,μ,Σ, θ, φ, π}, the joint
distribution of the self-position trajectory x0:t , and the set of
latent variablesC1:t = {i1:t ,C1:t , S1:t }. We describe the joint
posterior distribution of SpCoSLAM as follows:

p(x0:t ,C1:t , LM,Θ,m | u1:t , z1:t , y1:t , f1:t , AM,h)

= p(LM | S1:t , λ)p(Θ | x0:t ,C1:t , f1:t ,h)p(m | x0:t , z1:t )
· p(x0:t ,C1:t | u1:t , z1:t , y1:t , f1:t , AM,h)

︸ ︷︷ ︸

Particle filter

(1)

where the set of hyperparameters is denoted by h =
{α, β, γ, χ, λ,m0, κ0, V0, ν0}. It is noteworthy that the speech
signal yt is not observed during all time-steps. Herein, the
proposed method is equivalent to FastSLAM 2.0 when yt is
not observed, i.e., when the speech signal is a trigger for the
place categorization.

3.2.1 Particle filter algorithm

The particle filter algorithm uses Sampling Importance
Resampling (SIR). The importance weight is denoted by
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ω
[r ]
t = P [r ]

t /Q[r ]
t for each particle, where r is the particle

index. The target distribution is P [r ]
t , and the proposal distri-

bution is Q[r ]
t . The number of particles is R. The following

equations are also calculated for each particle r ; however, the
subscripts representing the particle index are omitted.

We apply two modifications related to the weighting of
the original SpCoSLAM algorithm (Taniguchi et al. 2017):
(i) additional weight for it , Ct , and xt (AW), and (ii)
weight for selecting a language model LM (WS). These
modifications aremore theoretically reasonable than the orig-
inal SpCoSLAM model, and our proposed SpCoSLAM 2.0
online learning algorithm is extended on their basis.

We describe the target distribution Pt that modified the
derivation of Taniguchi et al. (2017) as follows:

Pt = p(x0:t ,C1:t | u1:t , z1:t , y1:t , f1:t , AM,h)

≈ p(it ,Ct | x0:t , i1:t−1,C1:t−1, S1:t , f1:t ,h)

· p(zt | xt ,mt−1)p( ft | C1:t−1, f1:t−1,h)

· p(xt | xt−1, ut )p(St | S1:t−1, y1:t , AM, λ)

· p(xt | x0:t−1, i1:t−1,C1:t−1,h)
︸ ︷︷ ︸

Additional part

· p(St | S1:t−1,C1:t−1, α, β)

p(St | S1:t−1, β)
· Pt−1, (2)

where the term p(xt | x0:t−1, i1:t−1,C1:t−1,h) is the addi-
tional part compared to the original equation.

Here, the target distribution for the particle filter is the
marginal joint posterior distribution of the self-positions x0:t
and the set of latent variables C1:t because it is based on the
RBPF technique adopted in FastSLAM in the same manner.
The latent variables that are local parameters are estimated
by a particle filter, and the probability distributions for global
parameters LM , Θ , and m are calculated and held indepen-
dently for each estimated particle.

We describe the proposal distribution Qt as follows:

Qt = q(x0:t ,C1:t | u1:t , z1:t , y1:t , f1:t , AM,h)

= p(xt | xt−1, zt ,mt−1, ut )

· p(it ,Ct | x0:t , i1:t−1,C1:t−1, S1:t , f1:t ,h)

· p(St | S1:t−1, y1:t , AM, λ) · Qt−1. (3)

Then, p(xt | xt−1, zt ,mt−1, ut ) is equivalent to the
proposal distribution of FastSLAM 2.0. The probability dis-
tribution of it andCt is themarginal distribution pertaining to
the set ofmodel parametersΘ . This distribution can be calcu-
lated using a formula equivalent to collapsedGibbs sampling.
The details are described in Taniguchi et al. (2017).

3.2.2 Sampling of words using speech recognition and
word segmentation

We approximate the probability distribution of St in (3) as
speech recognition with the language model LMt−1 and
unsupervised word segmentation using the WFST speech
recognition results with latticelm (Neubig et al. 2012) as fol-
lows:

p(St | S1:t−1, y1:t , AM, λ)

≈ latticelm(S1:t | L1:t , λ)SR(L1:t | y1:t , AM, LMt−1)

(4)

where SR() denotes the function of speech recognition, L1:t
denotes the speech recognition results in WFST format,
which is a word graph representing the speech recognition
results. In the original mathematical formulas, only St should
be obtained by sampling. However, latticelm is a tool orig-
inally designed for batch learning. In addition, in order to
perform unsupervised word segmentation, it is necessary
to extract statistical information from the observation data.
Therefore, resampling is necessary using all data from 1 to
t , instead of exclusively using the distribution at time-step t .

3.2.3 Additional weight for it , Ct , and xt (AW)

Finally, the importance weight ωt modified from Taniguchi
et al. (2017) is represented as follows:

ωt ≈
∑

it=k

[

p(xt | x0:t−1, i1:t−1, it = k,h)

·
∑

Ct=l

p(it = k,Ct = l | C1:t−1, i1:t−1,h)
]

︸ ︷︷ ︸

Additional part

· p(zt | mt−1, xt−1, ut )p( ft | C1:t−1, f1:t−1,h)

· p(St | S1:t−1,C1:t−1, α, β)

p(St | S1:t−1, β)
· ωt−1. (5)

Unlike the original SpCoSLAM algorithm, the marginal
likelihood for it and Ct weighted by the marginal likelihood
for the position distribution was added to the additional part
of the first term on the right side of (5). The amount of cal-
culations does not increase because most of the formulas for
weight ωt are already calculated when it and Ct are sam-
pled. Weight calculation in consideration of the likelihood of
the entire model can be realized by (5). This is described in
Algorithm 1 (Line 16) and Algorithm 2 (Line 17).

3.2.4 Weight for selecting a languagemodel LM (WS)

In the formulation of (1), it is desirable to estimate the lan-
guage model LMt for each particle. In other words, speech
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recognition of the amount of data multiplied by the number
of particles for each teaching utterance must be performed.
In this paper, to reduce the computational cost, we use a lan-
guage model LMt of a particle with the maximum weight
for speech recognition.

We also modify the weight for selecting the language
model from the entire weight ωt of the model to the weight
ωS related to word information:

ωS = p(S1:t | C1:t−1, α, β)

p(S1:t | β)
. (6)

The segmentation result from all of the uttered sentences
for each particle changes at every step because the word
segmentation processes use all previous data. Indeed, bet-
ter word segmentation results can be selected by a weight
that considers not only current data but also previous data. In
addition, this modified weight corresponds to mutual infor-
mation used for selecting the word segmentation results in
SpCoA++ (Taniguchi et al. 2018a). This is described inAlgo-
rithm 1 (Line 23) and Algorithm 2 (Line 24).

4 SpCoSLAM 2.0: improved and scalable
online learning algorithm

In this section, we describe an improved and scalable online
learning algorithm, SpCoSLAM 2.0, that overcomes the
problems in the original algorithm. Although the genera-
tive process and graphical model for SpCoSLAM are the
same, the learning algorithm is different. SpCoSLAM 2.0 is
a novel learning algorithm proposed with a modified mathe-
matical formulation that retains the model structure, similar
to the extension from FastSLAM to FastSLAM 2.0. First,
the algorithm is improved by introducing techniques such
as rejuvenation, as explained in Sect. 4.1. Next, a scalable
algorithm is developed to reduce the calculation time while
maintaining higher accuracy than the original algorithm, as
described in Sect. 4.2.

4.1 Improving the estimation accuracy

We now turn to the details of the improved algorithm. Here,
we introduce two elements: fixed-lag rejuvenation of latent
variables, and re-segmentation ofword sequences. A pseudo-
code for the improved algorithm is given in Algorithm 1.

4.1.1 Fixed-lag rejuvenation of it and Ct (FLR–it , Ct )

Canini et al. (2009) demonstrated improved accuracy with
rejuvenation by resampling previous samples randomly. This
is based on a result of the independent and identically dis-
tributed (i.i.d.) assumption on the latent variables in the

Algorithm 1 SpCoSLAM 2.0: Improved algorithm
1: procedure SpCoSLAM2.0(Xt−1, ut , zt , f1:t , y1:t )
2: X̄t = Xt = ∅
3: L1:t = SR(L1:t | y1:t , AM, LMt−1)

4: for r = 1 to R do
5: x́ [r ]

t = sample_motion_model(ut , x
[r ]
t−1)

6: x [r ]
t = scan_matching(zt , x́

[r ]
t ,m[r ]

t−1)

7: for j = 1 to J do
8: x j = sample_motion_model(ut , x

[r ]
t−1)

9: end for

10: ω
[r ]
z =

J
∑

j=1

measurement_model(zt , x j ,m
[r ]
t−1)

11: S[r ]
1:t ∼ latticelm(S1:t | L1:t , λ)

12: for τ = t − TL + 1 to t do
13: i [r ]τ ,C [r ]

τ ∼ p(iτ ,Cτ | x [r ]
0:t , S

[r ]
1:t , f1:t ,

i [r ]{1:t |¬τ },C
[r ]
{1:t |¬τ },h)

14: end for
15: ω

[r ]
f = p( ft | C [r ]

1:t−1, f1:t−1, α, χ)

16: ω
[r ]
ic =

∑

it=k

[

p(x [r ]
t | x [r ]

0:t−1, i
[r ]
1:t−1, it = k,h)

·
∑

Ct=l

p(it = k,Ct = l | C [r ]
1:t−1, i

[r ]
1:t−1,h)

]

17: ω
[r ]
s = p(S[r ]

t | S[r ]
1:t−1,C

[r ]
1:t−1, α, β)

p(S[r ]
t | S[r ]

1:t−1, β)

18: ω
[r ]
t = ω

[r ]
z · ω

[r ]
f · ω[r ]

s · ω[r ]
ic

19: m[r ]
t = updated_occupancy_grid(zt , x

[r ]
t ,m[r ]

t−1)

20: Θ
[r ]
t = E[p(Θ | x [r ]

0:t ,C
[r ]
1:t , f1:t ,h)]

21: X̄t = X̄t ∪ 〈x [r ]
0:t ,C

[r ]
1:t ,m

[r ]
t ,Θ

[r ]
t , ω

[r ]
t 〉

22: end for

23: S∗
1:t = argmaxS[r ]

1:t

R
∑

r=1

ω
[r ]
S δ(S1:t − S[r ]

1:t )

24: LMt ∼ NPYLM(LM | S∗
1:t , λ)

25: for r = 1 to R do
26: draw i with probability ∝ ω

[i]
t

27: add 〈x [i]
0:t ,C

[i]
1:t ,m

[i]
t ,Θ

[i]
t , LMt 〉 to Xt

28: end for
29: return Xt
30: end procedure

Latent Dirichlet Allocation (LDA) model. However, in the
case of selecting from previous data of all time points, all
previous samples need to be held in the memory. In the
proposed algorithm, we introduce Fixed-Lag Rejuvenation
(FLR) inspired by theMonte Carlo fixed-lag smoother (Kita-
gawa 2014). This approach is similar to the sampling strategy
of fixed-lag roughening for particle filter-based SLAM in
Beevers and Huang (2007). Beevers and Huang (2007) indi-
cated that the statistical estimation error could be reduced by
applying Markov Chain Monte Carlo (MCMC)–based sam-
pling to the trajectory samples over a fixed lag at each time
step.

The fixed-lag smoother is a particle smoothing method
that estimates particles approximating the smoothing distri-
bution p(Cτ | D1:t ) (τ < t), where D is observed data. It
is obtained by a simple modification to the particle filter. In
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Algorithm 2 SpCoSLAM 2.0: Scalable algorithm
1: procedure SpCoSLAM2.0(Xt−1, ut , zt , ft ′+1:t , yt ′+1:t )
2: X̄t = Xt = ∅
3: t ′ = t − TL
4: Lt ′+1:t = SR(Lt ′+1:t | yt ′+1:t , AM, LMt ′ )
5: for r = 1 to R do
6: x́ [r ]

t = sample_motion_model(ut , x
[r ]
t−1)

7: x [r ]
t = scan_matching(zt , x́

[r ]
t ,m[r ]

t−1)

8: for j = 1 to J do
9: x j = sample_motion_model(ut , x

[r ]
t−1)

10: end for

11: ω
[r ]
z =

J
∑

j=1

measurement_model(zt , x j ,m
[r ]
t−1)

12: S[r ]
t ′+1:t ∼ latticelm(St ′+1:t | Lt ′+1:t , λ)

13: for τ = t ′ + 1 to t do
14: i [r ]τ ,C [r ]

τ ∼ p(iτ ,Cτ | x [r ]
t ′+1:t , S

[r ]
t+1:t , ft ′+1:t ,

i [r ]{t ′+1:t |¬τ },C
[r ]
{t ′+1:t |¬τ }, H

[r ]
t ′ )

15: end for
16: ω

[r ]
f = p( ft | C [r ]

t ′+1:t−1, ft ′+1:t−1, H
[r ]
t ′ )

17: ω
[r ]
ic =

∑

it=k

[

p(x [r ]
t | x [r ]

t ′+1:t−1, i
[r ]
t ′+1:t−1,

it = k, H [r ]
t ′ )

∑

Ct=l

p(it = k,Ct = l |

C [r ]
t ′+1:t−1, i

[r ]
t ′+1:t−1, H

[r ]
t ′ )

]

18: ω
[r ]
s = p(S[r ]

t | S[r ]
t ′+1:t−1,C

[r ]
t ′+1:t−1, H

[r ]
t ′ )

p(S[r ]
t | S[r ]

t ′+1:t−1, H
[r ]
t ′ )

19: ω
[r ]
t = ω

[r ]
z · ω

[r ]
f · ω

[r ]
s · ω

[r ]
ic

20: m[r ]
t = updated_occupancy_grid(zt , x

[r ]
t ,m[r ]

t−1)

21: H [r ]
t = F[p(Θ | x [r ]

t ′+1:t ,C
[r ]
t ′+1:t , ft ′+1:t , H [r ]

t ′ )]
22: X̄t = X̄t ∪ 〈x [r ]

t ′+1:t ,C
[r ]
t ′+1:t ,m

[r ]
t , H [r ]

t ′+1:t , ω
[r ]
t 〉

23: end for

24: S∗
t ′+1:t = argmaxS[r ]

t ′+1:t

R
∑

r=1

ω
[r ]
S δ(St ′+1:t − S[r ]

t ′+1:t )

25: LMt = argmaxLM p(LM | S∗
t ′+1:t , LMt ′ , λ)

26: for r = 1 to R do
27: draw i with probability ∝ ω

[i]
t

28: add 〈x [i]
t ′+1:t ,C

[i]
t ′+1:t ,m

[i]
t , H [i]

t ′+1:t , LMt ′+1:t 〉 to Xt
29: end for
30: return Xt
31: end procedure

this algorithm, particles are saved from time-step t − TL + 1
to t and are resampled according to the weight based on
newly observed data each step. Here, the value of the fixed-
lag is denoted by TL . This technique means that the particles
at step τ can be estimated not by using the observed data
D1:τ , but rather with D1:τ+TL , i.e., the smoothing distribution
p(Cτ | D1:τ+TL ). In general, a smoothing method such as a
fixed-lag particle smoother provides more accurate estima-
tions than naive online estimation methods such as a particle
filter in estimating the joint posterior distribution of latent
variables.

Figure 3 shows an overview of the FLR of it and Ct . The
notation τ | t in the box in Fig. 3 is shorthand notation for
the subscript representing the time-step in the conditional

marginal posterior distribution, e.g., p(Cτ | D1:t ). The FLR
is the process of sampling the latent variables iτ and Cτ by
iterating TL times from the previous step t − TL + 1 to the
current step t for each particle as follows:

iτ ,Cτ ∼ p(iτ ,Cτ | x0:t , S1:t , f1:t , i{1:t |¬τ },C{1:t |¬τ },h)

(7)

where i{1:t |¬τ } and C{1:t |¬τ } denote sets of elements from 1
to t without the elements of step τ . In this case, the latent
variables of step t − TL can be sampled using data up to step
t , as described in Algorithm 1 (Lines 12–14). Equation (7) is
the same as the conditional posterior probability distribution
for marginalized (collapsed) Gibbs sampling used in batch
learning. Therefore, the FLR corresponds to slightly iterate
Gibbs sampling for some recent previous latent variables in
online learning.

4.1.2 Re-segmentation of word sequences (RS)

We introduce re-segmentation of word sequences to improve
the accuracy of word segmentation. In the original algo-
rithm, we approximated the left side of (4) by registering
the word sequences segmented by latticelm to the word
dictionary. However, this can be considered a process of
sampling a language model LM from word sequences S∗

1:t
and a hyperparameter λ of a language model. Therefore, we
adopt NPYLM, an unsupervised word segmentation method
(Mochihashi et al. 2009), to estimate a language model from
the word sequences as follows:

LM ∼ NPYLM(LM | S∗
1:t , λ). (8)

The procedure of introducing theRS is as follows: (i) word
sequences S1:t are obtained byWFST speech recognition and
latticelm; (ii) word sentences S∗

1:t of a maximum likelihood
particle are converted into syllable sequences, and segmented
into word sequences using NPYLM; (iii) the word dictio-
nary LM is updated using segmented words, as described in
Algorithm 1 (Line 24). In this manner, we can overcome
problematic words that tend to become under-segmented
while taking into account the uncertainty of speech recog-
nition errors by latticelm. Note that there is a discrepancy
between the words used for spatial concept acquisition and
the word set registered in the word dictionary.

4.2 Scalability for reduced computational cost

In this section, we describe the details of the scalable algo-
rithm. Here, we introduce two elements: the sequential
Bayesian update of the parameters in the posterior distri-
bution, and unsupervised word segmentation from WFST
speech recognition results using FLR. The scalable algorithm
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1|1

2|2

3|3

4|4

5|5

Time of state vector

Time of data

Fixed-lag area
(Lag value: 3)

1|1

1|2 2|2

1|3 2|3 3|3

2|4 3|4 4|4

3|5 4|5 5|5

Original algorithm Improved algorithm

Distribu�ons of established latent variables
(Gray boxes)

Fixed-lag rejuvena�on by resampling

Fig. 3 Overviewof the Fixed-LagRejuvenation of it andCt . Left: naive
online learning in the original algorithm. Right: online learning using
FLR in the improved algorithm. The thick orange frame is estimated by
sampling. In this case, the fixed-lag value TL is three. The gray boxes

mean that the estimated value will never again be updated, i.e., distribu-
tions of already immobilized (fixed) latent variables by online learning
(Color figure online)

1|1

1|2 2|2

1|3 2|3 3|3

1|4 2|4 3|4 4|4

1|5 2|5 3|5 4|5 5|5

Time of state vector

Time of data

Fixed-lag area
(Lag value: 3)

1|1

1|2 2|2

1|3 2|3 3|3

2|4 3|4 4|4

3|5 4|5 5|5

Original algorithm Scalable algorithm

Simultaneous sampling Fixed-lag rejuvena�on by simultaneous sampling

Fig. 4 Overview of the fixed-lag rejuvenation of St . Left: batch learn-
ing with the original algorithm. Right: pseudo-online learning using
FLR in the scalable algorithm. The thick orange frame is estimated by
sampling from the joint distribution. In this case, the fixed-lag value TL

is three. The gray boxes denote that the estimated value will never be
updated again, i.e., distributions of already immobilized (fixed) latent
variables by online learning (Color figure online)

can be combined with the FLR Ct , it of the improved algo-
rithm. The pseudo-code for the scalable algorithm is given
in Algorithm 2.

4.2.1 Sequential Bayesian update of parameters in the
posterior distribution (SBU)

We introduce a Sequential Bayesian Update (SBU) for the
posterior hyperparameters Ht in the posterior distribution.
In the original algorithm, the model parameters Θ are esti-
mated from all the data D1:t = { f1:t , y1:t } and the set of latent
variables C1:t during each step. However, FastSLAM avoids
holding all the previous data by updating a map mt from xt ,
zt , and mt−1 sequentially. That is, it assumes the measure-
ment model p(zt | x0:t , z1:t−1) = p(zt | xt ,mt−1) and the

updated occupancy grid map p(mt | x0:t , z1:t ) = p(mt |
xt , zt ,mt−1). Similarly, the posterior hyperparameters Ht

can be calculated from the new data Dt , latent variables
Ct , and posterior hyperparameters Ht−1 from previous steps.
Thus, both the computational and memory efficiency, crucial
for long-term learning with real robots, can be significantly
improved. The SBU for the posterior hyperparameters is cal-
culated as follows:

p(Θ | Ht ) = p(Θ | D1:t ,C1:t ,h)

= p(Θ | Dt ,Ct , {D1:t−1,C1:t−1,h})
= p(Θ | Dt ,Ct , Ht−1)

∝ p(Dt | Ct ,Θ)p(Θ | Ht−1). (9)
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These posterior hyperparameters Ht can also be used to sam-
pleCt . In the implementation, it suffices to hold values of the
statistics obtained during the calculation of the posterior dis-
tribution. Here, the calculation results from the left side and
the right side of (9) are strictly the same. The SBU approach
is also said to keep track of sufficient statistics in the particle
filter (Kantas et al. 2015).

The SBU equation is used together with FLR as follows:

p(Θ | Ht ) = p(Θ | D1:t ,C1:t ,h)

= p(Θ | Dt ′+1:t ,Ct ′+1:t , {D1:t ′ ,C1:t ′ ,h})
= p(Θ | Dt ′+1:t ,Ct ′+1:t , Ht ′)

∝ p(Dt ′+1:t | Ct ′+1:t ,Θ)p(Θ | Ht ′), (10)

where a time-step before the lag value is t ′ = t − TL . In
this case, it is only necessary to hold the observed data and
posterior hyperparameters of the number corresponding to
the lag value TL . Equation (10) is applied to Algorithm 2.

4.2.2 WFST speech recognition and unsupervised word
segmentation using FLR (FLR–St )

We describe the proposed algorithm that combines FLR and
SBU to address problems of the unsupervised online word
segmentation and to reduce the computation time simulta-
neously. FLR can also be extended to the sampling of St
in a pseudo-online manner. Figure 4 shows an overview of
the FLR of St . The notation τ | t takes the same meaning
as it does in Fig. 3. The data used for speech recognition
and word segmentation is modified from that in (4) to data
with a fixed-lag interval. In addition, speech recognition is
performed using the initial syllable dictionary in the steps
before step TL and using a word dictionary from step t ′ in
the steps proceeding step TL +1. In this case, we can perform
word segmentation based on the statistical information col-
lected from the WFSTs recognized using the number of data
for the lag value TL . FLR performs simultaneous sampling
of word sequences St ′+1:t of time-steps from t ′ + 1 to the
current step t as follows:

St ′+1:t ∼ p(St ′+1:t | yt ′+1:t , AM, S1:t ′ , λ)

≈ latticelm(St ′+1:t | Lt ′+1:t , λ)

· SR(Lt ′+1:t | yt ′+1:t , AM, LMt ′). (11)

Therefore, this approach can address the problem in the orig-
inal algorithm bywhich incorrect word segmentation in early
learning stages was propagated to the following learning
stages.

Here, the amount of calculations is constant throughout
each step, irrespective of the total amount of data. This
property of the FLR of St is an important advantage in scal-
ability. However, there is a concern that word segmentation

Table 1 Computational complexity of the learning algorithms

Algorithm Order

SpCpSLAM (Taniguchi et al. 2017) O(N R)

SpCoSLAM 2.0 (Improved) O(N R)

SpCoSLAM 2.0 (Scalable) O(TL R)

SpCoA (Taniguchi et al. 2016) (Batch
learning)

O(NG)

SpCoA++ (Taniguchi et al. 2018a)
(Batch learning)

O(NGMI )

using FLR becomes inaccurate compared to batch learning
because of the limited availability of statistical information.
Essentially, the scalable algorithm is a trade-off between
calculation time and word segmentation accuracy. In the
languagemodel update, theword dictionary LMt holds infor-
mation regarding words St ′+1:t segmented from steps t ′ + 1
to t and the previous word dictionary LMt ′ . This is described
in Algorithm 2 (Lines 4, 12, and 25).

Table 1 shows the order of computational complexity for
each learning algorithm. The data number is denoted N , the
number of particles R, the value of fixed-lag TL , the number
of iterations forGibbs sampling in batch learningG, the num-
ber of candidates of word segmentation results for updating
the language model in SpCoA++ M , and the number of iter-
ations for the parameter estimation in SpCoA++ I . Variables
without N are constants that can be preset by the user. Among
these algorithms, therefore, only the scalable algorithm does
not depend on the number of data N . In this case, the com-
putational efficiency of the scalable algorithm is better than
the original SpCoSLAM algorithm when TL < N .

5 Experiment I

We performed experiments to demonstrate online learning
of spatial concepts in a novel environment. In addition, we
performed evaluations of place categorization and lexical
acquisition related to places. We compared the performance
of the following methods:

(A) SpCoSLAM (Taniguchi et al. 2017)
(B) SpCoSLAM with AW + WS (Sect. 3.2)
(C) SpCoSLAM 2.0 (FLR–it ,Ct )
(D) SpCoSLAM 2.0 (FLR–it ,Ct + RS)
(E) SpCoSLAM 2.0 (FLR–it ,Ct , St + SBU)
(F) SpCoA++ (Batch learning) (Taniguchi et al. 2018a)

Methods (A) and (B) used the original and modified
SpCoSLAM algorithms. Methods (C) and (D) used the pro-
posed improved algorithms under different conditions. In
methods (C) and (D), the lag value for FLR was set to TL =
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Image Correct word it Step 15 it Step 30 it Step 50
(English)

/kyouyuuseki/
(Shared desk) 1

/nobasyanyanamae/
/bawakyoo/
/yuseki/

1
/yusekinikibashita/
/kyoyuseki/
/kyoyusekidayo/

1
/kibashita/
/ni/
/kyouyuseki/

/ikidomari/
(End of the corridor) 3

/namaewa/
/enikimashita/
/gonobashiha/

3
/dayo/
/ikidomari/
/fokoga/

3
/idomari/
/miriiNgusupesu/
/koko/

/roboqtookiba/
(Robot storage space) 4

/robotokiba/
/robotokibanya/
/rimasu/

6
/kochirawaagaro/
/botoki/
/baninarimasu/

6
/wabotookiba/
/robotookiba/
/kochiraga/

Fig. 5 Top: learning results of position distributions in a generatedmap.
Ellipses denote the position distributions drawn on the map at steps 15,
30, and 50. The colors of the ellipses were randomly determined for
each index number it = k. Bottom: examples of scene images cap-

tured by the robot. The correct word (in English) and estimated words
are shown for each position distribution at steps 15, 30, and 50 (Color
figure online)

10. Method (E) used the proposed scalable algorithm under
three different conditions: the lag values for the FLRwere set
to TL = 1, 10, and 20 for (E1), (E2), and (E3), respectively.
Batch-learning methods (F) was estimated by Gibbs sam-
pling based on a weak-limit approximation (Fox et al. 2011)
of the Stick-Breaking Process (SBP) (Sethuraman 1994), one
of the constitutivemethods of theDirichlet Process (DP). The
upper limits of the spatial concepts and position distributions
were set to L = 50 and K = 50, respectively. We set the
number of iterations for Gibbs sampling to G = 100. In
method (F), we set the number of candidate word segmenta-
tion results for updating the language model to M = 6, and
the number of iterative estimation procedures to I = 10. In
addition, (F) did not use image features in the same manner
as the original model setting. Note that SpCoA++ (F) was not
evaluated in Taniguchi et al. (2017) because it is the latest
batch-learning method.

5.1 Online learning

We conducted experiments of online spatial concept acquisi-
tion in a real environment. We implemented SpCoSLAM 2.0

based on the open-source SpCoSLAM1, extending the gmap-
ping package and implementing grid-based FastSLAM 2.0
(Grisetti et al. 2007) in the Robot Operating System (ROS).
We used an open dataset, albert-b-laser-vision, i.e., a ros-
bag file containing the odometry, laser range data, and image
data. This dataset was obtained from the Robotics Data Set
Repository (Radish) (Howard and Roy 2003). We prepared
Japanese speech data corresponding to the movement of the
robot from the above-mentioned dataset because speech data
was not initially included. The total number of taught utter-
ances was N = 50, including 10 types of phrases. The
robot learned 10 places and 9 place names. The microphone
was a SHURE PG27-USB. Julius dictation-kit-v4.4 (DNN-
HMM decoding) (Lee and Kawahara 2009) was used as
a speech recognizer. The initial word dictionary contained
115 Japanese syllables. The unsupervisedword segmentation
system used latticelm (Neubig et al. 2012). The image fea-
ture extractor was implemented with Caffe, a deep-learning
framework (Jia et al. 2014). We used a pre-trained CNN
model, Places365-ResNet, trained with 365 scene categories
from the Places2 Database with 1.8 million images (Zhou

1 https://github.com/a-taniguchi/SpCoSLAM2.
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et al. 2018). The number of particles was R = 30. The hyper-
parameters for online learning were set as follows: α = 20,
γ = 0.1, β = 0.1, χ = 0.1, m0 = [0, 0]T, κ0 = 0.001,
V0 = diag(2, 2), and ν0 = 3. The above-mentioned parame-
ters were set such that all online methods were tested under
the same conditions. The hyperparameters for batch learning
were set as follows: α = 10, γ = 10, β = 0.1,m0 = [0, 0]T,
κ0 = 0.001, V0 = diag(2, 2), and ν0 = 3. The hyperparam-
eters were determined manually and empirically according
to each method. Note that the speech recognition decoder,
the image feature extractor, and the hyperparameters were
changed from Taniguchi et al. (2017).

Figure 5 (top) shows the position distributions in the envi-
ronmental maps at steps 15, 30, and 50 with (D). This figure
visualizes how spatial concepts are acquired during sequen-
tial mapping of the environment. The position distributions
were appropriately formed for places uttered by a user each
time. In step 15, the map covers only 2 rooms (in the upper
right) and a corridor, with 5 position distributions. The map
obtained at step 50 covers the entire environment, and there
were eventually 11 estimated position distributions. Figure 5
(bottom) shows an example of the correct phoneme sequence
of the place name, and the three best words estimated by the
probability distribution p(St | it ,Θt , LMt ) at step t . The left
side shows an example of the scene images observed in the
it -th position distribution corresponding to the name of each
place. As the steps proceed, it can be seen that the words cor-
responding to the places were stably learned as phoneme
sequences closer to the correct answers. For example, in
/kyouyuuseki/ (shared desk), in step 15, the correspondence
between the place and phoneme sequence was insufficiently
learned: e.g., /bawakyoo/ and /yuseki/. However, by step
50, the word was learned correctly: /kyouyuseki/. The index
of the position distribution of /roboqtookiba/ (robot storage
space) was changed from 4 to 6. This change means that the
label number switched as a result of the previous estimate val-
ues being modified while learning progressed. Details of the
online learning experiment can be found in a video online2.

5.2 Evaluationmetrics

We evaluated the different algorithms according to the fol-
lowing metrics: the Adjusted Rand Index (ARI) (Hubert and
Arabie 1985) of the classification results of spatial concepts
C1:N and position distribution i1:N ; the Estimation Accuracy
Rate (EAR) of the estimated total numbers of spatial concepts
L and position distributions K ; and the Phoneme Accuracy
Rate (PAR) of uttered sentences and words related to places.
We conducted six learning trials under each algorithm con-
dition. The details of the evaluation metrics are described in
the following sections.

2 https://youtu.be/H5yztfmxGbc

5.2.1 Estimation accuracy of spatial concepts

We compared the matching rate for the estimated indices
C1:N of the spatial concept and the classification results of
the correct answers given by a person. In this experiment, the
evaluation metric adopts the ARI, which is a measure of the
similarity between two clustering results. The matching rate
for the estimated indices i1:N of the position distributions
was evaluated in the same manner.

In addition, we evaluated the estimated number of spatial
concepts L and position distributions K using the EAR. The
EAR was calculated as follows:

EAR = max

(

1 − | nCt − nEt |
nCt

, 0

)

(12)

where nCt is the correct number and nEt is the estimated num-
ber at time-step t .

5.2.2 PAR of uttered sentences

We next compared the accuracy rate of phoneme recogni-
tion and word segmentation for all the recognized sentences.
However, it was difficult to separately weigh the ambiguous
phoneme recognition and the unsupervised word segmenta-
tion. Therefore, the experiment considered the position of a
delimiter as a single letter. The correct phoneme sequence
was suitably segmented into Japanese morphemes using
MeCab (Kudo 2006), an off-the-shelf Japanese morpho-
logical analyzer that is widely used for natural language
processing. However, the name of the place was considered
a single word.

We calculated the PAR of the uttered sentences with the
correct phoneme sequence sPt , and a phoneme sequence sRt
of the recognition result of each uttered sentence. The PAR
was calculated as follows:

PAR = max

(

1 − LD(sPt , sRt )

np
, 0

)

(13)

where LD() was calculated using the Levenshtein distance
between sPt and s

R
t . Here,n

P denotes the number of phonemes
of the correct phoneme sequence.

5.2.3 PAR of words related to places

We also evaluated whether a phoneme sequence has learned
the properly segmented place names. This experiment
assumed a request for the best phoneme sequence, s∗

t , rep-
resenting the self-position xt of the robot. We compared the
PAR of words with the correct place name and a selected
word for each teaching place. The PAR was calculated using
(13).
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Table 2 Evaluation results in a real environment

Metric Improved Scalable ARI EAR PAR

Ct it L K Sentence Word

(A) SpCoSLAM 0.273 0.502 0.756 0.881 0.524 0.154

(B) SpCoSLAM with AW + WS 0.233 0.420 0.805 0.901 0.496 0.086

(C) SpCoSLAM 2.0 (10 FLR–it ,Ct ) � 0.324 0.602 0.876 0.913 0.533 0.157

(D) SpCoSLAM 2.0 (10 FLR–it ,Ct + RS) � 0.320 0.555 0.881 0.901 0.801 0.419

(E1) SpCoSLAM 2.0 � � 0.244 0.443 0.869 0.923 0.648 0.158

(1 FLR–it ,Ct , St + SBU)

(E2) SpCoSLAM 2.0 � � 0.314 0.570 0.790 0.801 0.690 0.262

(10 FLR–it ,Ct , St + SBU)

(E3) SpCoSLAM 2.0 � � 0.351 0.673 0.748 0.890 0.704 0.292

(20 FLR–it ,Ct , St + SBU)

(F) SpCoA++ (Batch learning) 0.387 0.624 0.700 0.648 0.787 0.524

Bold underlined indicate the highest evaluation values, and underline indicates the second highest evaluation values

The selection of a word s∗
t,b was calculated as follows:

s∗
t = argmaxSt,b p(St,b | xt ,Θt , LMt ). (14)

In this experiment, we used the self-position xt that was
not included in the training data to evaluate the PAR of
words. Here, the robot can perform sufficiently accurate self-
localization using a laser range finder. Therefore, in this
experiment, we assume that xt is given an accurate coor-
dinate value without errors.

The more a method accurately recognized words and
acquired spatial concepts, the higher is the PAR. We con-
sider this evaluation metric to be an overall measure of the
proposed method.

5.3 Evaluation results and discussion

In this section, we discuss the improvement and scalability of
the proposed learning algorithms. Table 2 lists the averages
of the evaluation values calculated using the metrics ARI,
EAR, and PAR at step 50.

5.3.1 ARI and EAR results

In terms of categorization accuracy, the proposed algorithms
that introduced FLR tended to show higher ARI values than
the original algorithms (A) and (B) of SpCoSLAM. Figure 6
shows examples of the progress of place clustering for posi-
tion distributions in (A) and (D). The step numbers in the
figures on the left (A) and right (D) are not the same. In these
cases, large position distributions covering distant areas were
learned, i.e., the purple ellipses in the figures on top. In (A),
incorrect clustering results were obtained during the final
step (i.e., step 50) because the original SpCoSLAM algo-
rithm cannot correct past erroneous estimations. By contrast,

Incorrect
clustering
results

(A)

Correction of place clustering

(D)

Fig. 6 Examples of corrected place clustering results. Left: the original
algorithm (A). Right: the improved SpCoSLAM 2.0 algorithm (D)

in (D) by introducing FLR, an incorrect cluster occurred at
step 25 (top right figure). However, the proposed algorithm
could correct previous erroneous estimates at step 30 (bot-
tom right figure). Therefore, in the original algorithm (A),
estimation errors adversely affect subsequent estimations.
However, SpCoSLAM 2.0 (D) obtained more accurate esti-
mations immediately, despite previous incorrect estimations.
Similar situations to (D) were also confirmed in other pro-
posed algorithms that introduced FLR. Experimental results
demonstrated that FLR, which resamples the latent variables
of the previous step using observations up to the current step,
contributes to improving the accuracy of online place clus-
tering.

Figure 7 shows the results of the EAR values with spatial
concepts and position distributions, i.e., the accuracy of the
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Fig. 7 Change in the EAR regarding the estimated total number of
spatial concepts L (top) and position distributions K (bottom) for each
step

estimated number of clusters, for each step. The EAR values
were not stable in the steps during the first half, although they
converged stably to high values in the latter half. In the result
at step 50, (D) showed the highest EAR value L and (E1)
showed the highest EAR value K . However, for both L and
K , looking at all the steps on average, (A) and (B) yielded
relatively low values overall, and (C) and (D) yielded rela-
tively high values. (E1)–(E3) tended to show values between
original algorithms, (A) and (B), and improved algorithms
with FLR, (C) and (D). From the results of (C) and (D), EAR
values improved considerably by introducing the FLR of Ct

and it .

5.3.2 PAR sentence and word results

From the results of the improved algorithm (D), the PAR
values (sentence and word) improved markedly by adding
the re-segmentation of the word sequences. These results
show that the robot can accurately segment the names of
places and learn the relationship between places and words
more precisely. In particular, method (D), which combines
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(E1) 2.0 (1 FLR + SBU)
(E2) 2.0 (10 FLR + SBU)
(E3) 2.0 (20 FLR + SBU)

Fig. 8 Change in the PAR of words for each step

the FLR and RS, achieved an overall improvement com-
parable to the other online algorithms. Some trial results
showed PAR values comparable to those of SpCoA++ (F).
Figure 8 shows the PAR of words for each step. The PAR
tended to increase as a whole. Therefore, it can be expected
that the PAR values will further increase as the number of
steps advances. Table 3 presents examples of word segmen-
tation results with the four methods. The correct phoneme
sequence, i.e., ground truth, was segmented into Japanese
morphemes usingMeCab (Kudo 2006), where “ |” denotes a
delimiter, i.e., a word segment position. The parts in bold cor-
respond to the name for each place. SpCoSLAM (A) showed
under-segmentation results inmany cases. On the other hand,
it can be seen that SpCoSLAM2.0 (D) and (E3) properly seg-
mented the phoneme sequences representing the name of the
place. Comparing (D) and (E3), (D) obtained segmentation
results close to those of the batch learning method (F), and
(E3) sometimes slightly over-segmented words. Therefore,
SpCoSLAM 2.0 can mitigate under-segmentation when the
word segmentation of the batch learning method is applied
in a pseudo-online manner.

5.3.3 Original andmodified SpCoSLAM algorithms

Although the modified SpCoSLAM (B) is theoretically more
appropriate than the original algorithm (A), few differences
were found between them. In the proposed algorithms, the
time-driven process, i.e., SLAM part, and the event-driven
process, i.e., spatial concept formation and lexical acquisi-
tion, were estimated by the same particle filter. Although
self-localization and mapping were performed each time the
robot moved in an environment, latent variables for the spa-
tial concepts and lexicon are updated only upon the user’s
utterance. Thus, particles can fluctuate as a result of resam-
pling due to movement in the absence of the user’s utterance.
Consequently, the weight for self-localizationmight be influ-
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Table 3 Examples of word segmentation results of uttered sentences

English “This place is the shared desk.”

Ground truth kochira |ga |kyouyuuseki |ni |nari | masu

(A) a |kochiragagyoyusekiNni |narimasu

(D) kochira |ga |kyouyuseki |ninarimasu

(E3) uo |kochi | ra |ga |kyoyuseki |nina | ri | ma | su
(F) ochiraga |kyoyuseki |ninarimasu

English “This is the meeting space.”

Ground truth koko |wa |miitiNgusupeisu |desu
(A) kokowaga |midigisupesudesujoouya

(D) kokowa |miriiNgusupesu |desu
(E3) kowa |midigyusu |pesu |desu
(F) gokoga |miidiNgusupesu |desu
English “The printer room is here.”

Ground truth puriNtaabeya |wa |kochira |desu
(A) ioporiNtabeaakochiragadesuduuryuzu qaqo

(D) puriNtabeya |kochira |desu
(E3) puriNpabeya | ta |kochiradesu
(F) poriNpabeya |wakochiradesu
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(E3) 2.0 (20 FLR + SBU)

Fig. 9 Calculation times par step for evaluating scalability

ential, rather than the weight for the spatial concept and
lexicon. This will be investigated in future work.

5.3.4 Calculation time and scalable algorithm

Figure 9 shows the calculation times between online learning
algorithms. With batch learning, SpCoA++’s overall cal-
culation time including the runtime of rosbag for SLAM
was 13,850.873 s, and the calculation times per iteration
for the iterative estimation procedure and Gibbs sampling
were 1,318.954 s and 1.833 s, respectively. In the origi-
nal SpCoSLAM algorithm, (A) and (B), and the improved
SpCoSLAM 2.0 algorithm, (C) and (D), the calculation time
increased with the number of steps, i.e., as the amount of data

Fig. 10 Examples of home environments in SIGVerse

increased. However, the scalable SpCoSLAM 2.0 algorithm
(E1)–(E3) retained a constant calculation time regardless of
an increase in the amount of data. Therefore, we can exert
particularly powerful effects for long-term learning.

In the scalable algorithm (E1)–(E3), the evaluation values
of ARI and PAR tended to improve overall when the lag
value increased. In particular, when the lag value was 20,
relatively high evaluation values are seen to approach those
of the improved algorithm.

Owing to a trade-off between the fixed-lag size and accu-
racy, the algorithm needs to be set appropriately according
to both the computational power embedded in the robot and
the duration requirements for actual operation. In this exper-
iment, we did not evaluate the scalability of the algorithm
with parallel processing. However, we considered that the
proposed algorithm could be executed even faster by paral-
lelizing theparticle process andbyusingGraphicsProcessing
Units (GPUs). As such, we consider that the robot would be
able to move within the environment while learning in real-
time.

6 Experiment II

In this experiment, it is investigated whether trends similar
to the evaluation results of the real environmental dataset in
Sect. 5 can be stably obtained across different environments.
Place categorization and lexical acquisition related to places
in virtual home environments were evaluated, and the evalu-
ation metrics ARI, EAR, and PAR for the methods (A)–(F)
were compared in the same manner as in Sect. 5.

6.1 Condition

Online spatial concept acquisition experiments were con-
ducted in various virtual home environments. The simulator
environment was SIGVerse version 3.0 (Inamura et al. 2010),
a client-server based architecture that can connect the ROS
and Unity. The virtual robot in SIGVerse was Toyota’s
Human Support Robot (HSR), and we used 10 different
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Table 4 Evaluation results in simulator environments

Metric ARI EAR PAR

Ct it L K Sentence Word

(A) SpCoSLAM 0.252 0.604 0.785 0.818 0.558 0.098

(B) SpCoSLAM with AW + WS 0.347 0.684 0.802 0.815 0.565 0.141

(C) SpCoSLAM 2.0 (10 FLR–it ,Ct ) 0.346 0.713 0.733 0.868 0.553 0.096

(D) SpCoSLAM 2.0 (10 FLR–it ,Ct + RS) 0.314 0.719 0.730 0.840 0.835 0.464

(E1) SpCoSLAM 2.0 (1 FLR–it ,Ct , St + SBU) 0.307 0.672 0.817 0.800 0.671 0.165

(E2) SpCoSLAM 2.0 (10 FLR–it ,Ct , St + SBU) 0.385 0.688 0.833 0.782 0.733 0.305

(E3) SpCoSLAM 2.0 (20 FLR–it ,Ct , St + SBU) 0.354 0.790 0.883 0.898 0.768 0.350

(F) SpCoA++ (Batch learning) 0.522 0.899 0.800 0.850 0.830 0.480

Bold underlined indicate the highest evaluation values, and underline indicates the second highest evaluation values

home environments3 created using Sweet Home 3D4, which
is a free software for interior design application. Figure 10
shows examples of the home environments. For each place,
10 training data were provided on average. The total num-
ber of taught utterances was N = 60, including 10 types
of phrases. The robot learned six places and their respective
names.Themicrophone and speech recognizerwere the same
as those in Sect. 5.1. The image feature extractor was a pre-
trained BVLC CaffeNet model (Jia et al. 2014). The number
of particles was R = 10. The hyperparameters for learning
were set as follows: α = 10.0, γ = 1.0, β = 0.1, χ = 0.1,
m0 = [0, 0]T, κ0 = 0.001, V0 = diag(2, 2), and ν0 = 3. The
hyperparameters were determinedmanually and empirically.
The above-mentioned parameterswere set such that all meth-
ods were tested under the same conditions. In method (F),
the upper limits of the spatial concepts and position distri-
butions were set to L = 20 and K = 20, respectively. The
other settings were identical to those in Sect. 5.

The main target of the evaluation in this study is the
accuracy of place clustering and lexical acquisition, i.e.,
extended points in SpCoSLAM 2.0. Therefore, in this exper-
iment, it is assumed that sufficiently accurate mapping and
self-localization are possible with a high-precision distance
sensor, and using an online learning algorithm which sepa-
rates and omits the SLAM process was executed. The true
values obtained by the simulator were used as the self-
position data.

6.2 Result

In this section, the improvement and scalability of the
proposed learning algorithms in home environments are dis-
cussed. Table 4 lists the averages of the evaluation values
calculated using the metrics ARI, EAR, and PAR at step 60.

3 3Dmodels of home environments are available in https://github.com/
a-taniguchi/SweetHome3D_rooms.
4 Sweet Home 3D: http://www.sweethome3d.com/
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Fig. 11 Change in PAR of words for each step in simulator environ-
ments

The ARI showed a similar trend as the result of real
environmental data. However, compared to the original algo-
rithms (A) and (B), there was almost no difference in the
values in algorithms that introduced FLR. In addition, the
EAR showed a slightly different trend than the real environ-
mental data. In the improved algorithms (C) and (D), the
number L of categories of spatial concepts smaller than the
true value was estimated compared to other algorithms. We
consider that this reason was due to the fact that it was re-
combined into the samecategorybyFLR.Because the dataset
was obtained in the simulator environment, for example, the
image features could be insufficiently obtained for place cat-
egorization, i.e., similar features might be found in different
places. Such a problem did not occur when using real envi-
ronmental data.

The PAR had the same tendency as the result of real envi-
ronment data. Similar to Sect. 5.3, the improved algorithm
with RS (D) showed lexical acquisition accuracy compara-
ble to batch learning (F). In addition, the scalable algorithms
with FLR of St (E2) and (E3) showed higher values than the
original algorithms. Figure 11 shows the average values of
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Fig. 12 Calculation times par step in simulator environments

the PAR of words for each step in different environments.
Similar to Fig. 8, the PAR tended to increase overall. Thus, it
can be seen that RS and FLR of St work effectively in virtual
home environments.

In the comparison of the original and modified
SpCoSLAM algorithms (A) and (B), the modified algorithm
(B) showed higher overall values in the evaluation values of
ARI and PAR. We consider that the weight for the spatial
concept and lexicon acted more directly in this experiment
than in the experiment in Sect. 5, because it was not affected
by the weight for self-localization.

In scalable algorithms (E1)–(E3), as the FLR value
increased, the tendency for the overall evaluation values to
increase appeared more prominently than for the results of
real environment data.

Figure 12 shows the average calculation times between
online learning algorithms in simulator environments. We
confirmed that the result was similar to Fig. 9, which was the
result using the real environment data. With batch learning,
SpCoA++’s overall average calculation time was 8,076.288
s, and the calculation times per iteration for the iterative esti-
mation procedure and Gibbs sampling were 807.623 s and
1.346 s, respectively.

The following are the common inferences from the results
of both the simulation and real-world environments. For the
online learning, if the user requires the performance of lexical
acquisition even at an increased time cost, they can exe-
cute the improved algorithm (D) or scalable algorithm with
a larger lag value, e.g., (E2) and (E3). If the user requires
high-speed calculation, they can obtain better results faster
than the conventional algorithm (A) by executing a scalable
algorithm such as (E1) and (E2).

7 Conclusion

This paper proposed an improved and scalable online learn-
ing algorithm to address the problems encountered by our

previously proposed SpCoSLAMalgorithm. Specifically, we
proposed online learning algorithm, called SpCoSLAM 2.0,
for spatial concepts and lexical acquisition, for higher accu-
racy and scalability. In experiments, we conducted online
learning with a robot in a novel environment without any
pre-existing lexicon and map. In addition, we compared the
proposed algorithm to the original online algorithm and to
batch learning in terms of the estimation accuracy and cal-
culation time. The results demonstrate that the proposed
algorithm is more accurate than the original algorithm and
of comparable accuracy to batch learning. Moreover, the cal-
culation time of the proposed scalable algorithm becomes
constant for each step, regardless of the amount of training
data. We expect this work to contribute to the realization of
long-term spatial language interactions between humans and
robots.

In the future, we shall experiment with long-term online
learning of spatial concepts in large-scale environments
based on the scalable algorithm proposed in this paper. Fur-
thermore, with additional development, it will be possible
to introduce a forgetting mechanism to the proposed algo-
rithm as with Araki et al. (2012a). When a robot continues to
operate over a long period of time it will encounter changes
in the environment, such as the names of places and areas.
Consequently, the robot will benefit from using the latest
observation data as opposed to the previous observation data.
We believe that such amechanismwill be especially effective
for long-term learning.

The proposed method constructs spatial concepts on a
metric map; however, it can also be extended to learning the
topological structure of places as with Karaoğuz and Bozma
(2016); Luperto and Amigoni (2018). We explore whether
this facilitates navigation tasks with human–robot linguis-
tic interactions. In addition, loop-closure detection has been
studied actively in recent years, as is evident from long-term
visual SLAM (Han et al. 2018). The generative model of
SpCoSLAM is connected to SLAM and lexical acquisition
via latent variables related to the spatial concepts. There-
fore, we shall also explore loop-closure detection based on
speech signals and investigate whether spatial concepts can
positively affect mapping.

We will explore whether the SpCoSLAM model pro-
posed herein can be integrated with other probabilistic
models to form a large-scale cognitive model for general-
purpose autonomous intelligent robots using a SERKET
architecture (Nakamura et al. 2018). However, applications
of the SERKET architecture are limited due to its compu-
tational cost for learning the enormous parameters of the
whole model. Even in such a case, we consider that our
proposed approach to online learning will be extensively
useful because it can be applied to various other Bayesian
models.
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