Skip to main content
Log in

GP-SLAM: laser-based SLAM approach based on regionalized Gaussian process map reconstruction

  • Published:
Autonomous Robots Aims and scope Submit manuscript

A Correction to this article was published on 07 March 2020

This article has been updated

Abstract

Existing laser-based 2D simultaneous localization and mapping (SLAM) methods exhibit limitations with regard to either efficiency or map representation. An ideal method should estimate the map of the environment and the state of the robot quickly and accurately while providing a compact and dense map representation. In this study, we develop a new laser-based SLAM algorithm by redesigning the two core elements common to all SLAM systems, namely the state estimation and map construction. Utilizing Gaussian process (GP) regression, we propose a new type of map representation based on the regionalized GP map reconstruction algorithm. With this new map representation, both the state estimation method and the map update method can be completed with the use of concise mathematics. For small- or medium-scale scenarios, our method, consisting of only state estimation and map construction, demonstrates outstanding performance relative to traditional occupancy-grid-map-based approaches in both accuracy and especially efficiency. For large-scale scenarios, we extend our approach to a graph-based version.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Change history

  • 07 March 2020

    Unfortunately, the acknowledgement text was incorrectly published in the original article.

References

  • Arun, K. S., Huang, T. S., & Blostein, S. D. (1987). Least-squares fitting of two 3-D point sets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9(5), 698–700.

    Article  Google Scholar 

  • Bachrach, A., Prentice, S., He, R., & Roy, N. (2011). RANGE-robust autonomous navigation in GPS-denied environments. Journal of Field Robotics, 28(5), 644–666.

    Article  Google Scholar 

  • Bengtsson, O. & Baerveldt, A.J. (2001). Localization in changing environments-estimation of a covariance matrix for the IDC algorithm. In IEEE international conference on intelligent robots and systems(CIRS) (pp. 1931–1937).

  • Besl, P. J., & McKay, N. D. (1992). A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2), 239–256.

    Article  Google Scholar 

  • Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., et al. (2016). Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age. IEEE Transactions on Robotics, 32(6), 1309–1322.

    Article  Google Scholar 

  • Censi, A. (2007). An accurate closed-form estimate of ICP’s covariance. In IEEE international conference on robotics and automation(ICRA) (pp. 10–14).

  • Chen, Y., & Medioni, G. (1991). Object modeling by registration of multiple range images. IEEE international conference on robotics and automation(ICRA) (pp. 9–11). CA, Sacramento.

  • Chetverikov, D., Svirko, D., Stepanov, D. & Krsek, P. (2002). The trimmed iterative closest point algorithm. In Proceedings of international conference on pattern recongnition, 3(16), 545–548, Quebec City, August 11–15.

  • Choi, Y. H., Lee, T. K., & Oh, S. Y. (2008). A line feature based SLAM with low grade range sensors using geometric constraints and active exploration for mobile robot. Autonomous Robots, 24(13), 13–27.

    Article  Google Scholar 

  • Diosi, A., & Keelman, L. (2007). Fast laser scan matching using polar coordinates. International Journal of Robotics Research, 26(10), 1125–1153.

    Article  Google Scholar 

  • Doherty, K., Wang, J.K. & Englot, B. (2017). Bayesian generalized kernel inference for occupancy map prediction. In IEEE international conference on robotics and automation (ICRA), Singapore, May 29–June 3.

  • Gerardo-Castro, M. P., Peynot, T., & Ramos, F. (2015). Laser-radar data fusion with gaussian process implicit surfaces. In L. Mejias, P. Corke, & J. Roberts (Eds.), Field and service robotics. Springer Tracts in advanced robotics (Vol. 105, pp. 289–302). Cham: Springer.

    Google Scholar 

  • Grisetti, G., Kummerle, R., Stachniss, C., & Burgard, W. (2010). A tutorial on graph-based SLAM. IEEE Intelligent Transportation Systems Magazine, 2(4), 31–43.

    Article  Google Scholar 

  • Grisetti, G., Stachniss, C., & Burgard, W. (2007). Improved techniques for grid mapping with Rao–Blackwellized particle filters. IEEE Transactions on Robotics, 23(1), 34–46.

    Article  Google Scholar 

  • Guizilini, V., & Ramos, F. (2019). Variational Hilbert regression for terrain modeling and trajectory optimization. International Journal of Robotics Research. https://doi.org/10.1177/0278364919844586.

  • Haykin, S. (2001). Adaptive filter theory (4th ed.). Englewood: Prentice-Hall.

    MATH  Google Scholar 

  • Hess, w., Kohler, D., Rapp, H. & Andor, D. (2016). Real-time loop closure in 2D LIDAR SLAM. In IEEE international conference on robotics and automation (ICRA), Stockholm, Sweden, May 16–21.

  • Holý, B. (2018). Registration of lines in 2D LIDAR scans via functions of angles. Engineering Applications of Artificial Intelligence, 67, 436–442.

    Article  Google Scholar 

  • Huber, H. F. (2014). Recursive Gaussian process: On-line regression and learning. Pattern Recognition Letters, 45, 85–91.

    Article  Google Scholar 

  • Jadidi, M. G., Miró, J. V., Valencia, R. & Andrade-Cetto, J. (2014). Exploration on continuous gaussian process frontier maps. In IEEE international conference on robotics and automation(ICRA), Hongkong, China, May 31–June 7.

  • Jadidi, M. G., Miró, J. V., & Dissanayake, G. (2018). Gaussian processes autonomous mapping and exploration for range-sensing mobile robots. Autonomous Robots, 42(2), 273–290.

    Article  Google Scholar 

  • Kaess, M., Ranganathan, A., & Dellaert, F. (2008). iSAM: Incremental smoothing and mapping. IEEE Transactions on Robotics, 24(6), 1365–1378.

    Article  Google Scholar 

  • Kim, S., & Kim, J. (2013). Continuous occupancy maps using overlapping local Gaussian processes. 2013 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 3–7). Japan: Tokyo.

  • Kohlbrecher, S., von Stryk, O., Meyer, J., & Klingauf, U. (2011). A flexible and scalable SLAM system with full 3D motion estimation. IEEE international symposium on safety, security and rescue robots (pp. 1–5). Kyoto, Japan: Security and Rescue Robots.

  • Konolige, K., Grisetti, G., Kümmerle, R., Burgard, W., Limketkai, B. & Vincent R. (2010). Efficient sparse pose adjustment for 2D mapping. In 2010 IEEE/RSJ international conference on intelligent robots and systems(IROS). Taiwan: Taipei.

  • Kostavelis, I., & Gasteratos, A. (2015). Semantic mapping for mobile robotics tasks: A survey. Robotics and Autonomous Systems, 66, 86–103.

    Article  Google Scholar 

  • Leung, C., Huang, S. & Dissanayake, G. (2008). Active SLAM in structured environments. In IEEE international conference on robotics and automation(ICRA), Pasadena, CA, May 19–23.

  • Maiseli, B., Gu, Y. F., & Gao, H. J. (2017). Recent developments and trends in point set registration methods. Journal of Visual Communication and Image Representation, 46, 95–106.

    Article  Google Scholar 

  • Montemerlo, M., Thrun, S., Roller, D. & Wegbreit, B. (2002). FastSLAM: A factored solution to the simultaneous localization and mapping problem. In Proceedings of the AAAI national conference on artificial intelligence, 593–598. Edmonton, Canada.

  • Montemerlo, M., Thrun, S., Roller, D. & Wegbreit, B. (2003). FastSLAM 2.0: An improved particle filtering algorithm for simultaneous localization and mapping that provably converges. In Proceedings of the international joint conference on artificial intelligence, 1151–1156. Acapulo, Mexico, August 09–15.

  • O’Callaghan, S. T., & Ramos, F. (2012). Gaussian process occupancy maps. International Journal of Robotics Research, 31(1), 42–62.

    Article  Google Scholar 

  • Olson, E. B. & Arbor, A. (2009). Real-time correlative scan matching. In IEEE international conference on robotics and automation(ICRA), Kobe, Japan, May 12–17.

  • Park, C., Huang, J. Z., & Ding, Y. (2011). Domain decomposition approach for fast Gaussian process regression of large spatial data sets. Journal of Machine Learning Research, 12, 1697–1728.

    MathSciNet  MATH  Google Scholar 

  • Plagemann, C., Kersting, K., & Burgard, W. (2008). Nonstationary Gaussian process regression using point estimates of local smoothness. In W. Daelemans, B. Goethals, & K. Morik (Eds.), Machine learning and knowledge discovery in databases. Lecture notes in computer science (Vol. 5212, pp. 204–219). Berlin: Springer.

    Chapter  Google Scholar 

  • Rasmussen, C. E. & Ghahramani, Z. (2002). Infinite mixtures of Gaussian process experts. In Advances in neural information processing systems (Vol. 14, pp. 881–888). Cambridge: The MIT press.

  • Rasmussen, C. E., & Williams, C. K. Y. (2006). Gaussian Processes for machine learning. Cambridge: The MIT press.

    MATH  Google Scholar 

  • Rusinkiewicz, S. & Levoy, M. (2001). Efficient variants of the ICP algorithm. In Third international conference on 3D digital imaging and modeling(3DIM), Quebec City, Canada.

  • Roy, M., Montemerlo, M. & Thrum, S. (2003). Perspectives on standardization in mobile robot programming. In 2003 IEEE/RSJ international conference on intelligent robots and systems(IROS), Las Vegas, NV, October 27–31.

  • Scaramuzza, D., & Fraundorfer, F. (2011). Visual Odometry: Part I, The first 30 years and fundamentals. IEEE Robotics and Automation Magazine, 18(4), 80–92.

    Article  Google Scholar 

  • Shen, Y., Ng, A. Y., & Seeger, M. (2006). Fast Gaussian process regression using kd-trees. In Y. Weiss, B. Schölkopf, & J. Platt (Eds.), Advances in neural information processing systems (Vol. 18). Cambridge: The MIT press.

    Google Scholar 

  • Smith, R., Self, M., & Cheeseman, P. (1990). Estimating uncertain spatial relationships in robotics. In I. J. Cox & G. T. Wilfong (Eds.), Autonomous robot vehicles (pp. 167–193). New York: Springer.

    Chapter  Google Scholar 

  • Solvi, J., Fofi, D., & Forest, J. (2007). A review of recent range image registration method with accuracy evaluation. Image and Vision Computing, 25(5), 578–596.

    Article  Google Scholar 

  • Teixeira, L., & Chli, M. (2007). Real-time local 3D reconstruction for aerial inspection using superpixel rxpansion. In IEEE international conference on robotics and automation(ICRA). Singapore, May 29– June 3.

  • Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics. Cambridge: The MIT press.

    MATH  Google Scholar 

  • Tresp, V. (2000). A Bayesian committee machine. Neural Computation, 12(11), 2719–2741.

    Article  Google Scholar 

  • Urtasun, R., & Darrell, T. (2008). Sparse probabilistic regression for activity independent human pose inference. In IEEE conference on computer vision and pattern recognition(CVPR)(pp. 1–8). Anchorage, AK, June 23–28.

  • Vasudevan, S., Ramos, F., Nettleton, E. & Durrant-Whyte H. (2009). Gaussian process modeling of large scale terrain. In IEEE international conference on robotics and automation(ICRA).Kobe, Japan, May 12–17.

  • Wachinger, C., Golland, P., Reuter, M., & Wells, W. (2014). Gaussian process interpolation for uncertainty estimation in image registration. International conference on medical image computing and computer-assisted intervention(MICCAI), 17(1), 267–74. Boston: MA, Sep. 14–18.

Download references

Acknowledgements

The paper is based upon work supported by the National Natural Science Foundation of China(Grant Nos. 61673341, 61573091, 2016FZA4023), the Fundamental Research Funds for the Central Universities(Grant No. 2017QN81006), National Key R&D Program of China (2016YFD0200701-3), the Project of State Key Laboratory of Industrial Control Technology, Zhejiang University, China (No. ICT1913), and the Open Research Project of the State Key Laboratory of Industrial Control Technology, Zhejiang University, China (No. ICT1900312).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 165184 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Wang, Y., Zhang, Y. et al. GP-SLAM: laser-based SLAM approach based on regionalized Gaussian process map reconstruction. Auton Robot 44, 947–967 (2020). https://doi.org/10.1007/s10514-020-09906-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-020-09906-z

Keywords

Navigation