Skip to main content
Log in

Observability index optimization of robot calibration based on multiple identification spaces

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

A calibration method is proposed for six-DoF serial robot based on multiple identification spaces consisting of two subspaces in which the orientations of joint 3 and poses of end-effector are measured simultaneously using hybrid sensors. The rotational geometric errors with higher sensitivities are identified in the first space while the rest are identified in the second. Compared with single identification space used in traditional methods, the number of geometric errors to be identified is reduced in each subspace. Thus the identification vectors corresponding to the geometric errors belonging to identification models can be better spaced. Simulation results show that the observability indices and identifiability are further improved by using the multiple identification spaces. Experimental results are also obtained from a six-DoF serial robot with laser tracker and IMUs to verify the identification accuracy improvement. Uncertainty analysis of each identification results is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Borm, J. H., & Menq, C. H. (1991). Determination of optimal measurement configurations for robot calibration based on observability measure. International Journal of Robotics Research,10, 51–63.

    Article  Google Scholar 

  • Cai, Y. Y., Gu, H., Li, C., & Liu, H. S. (2018). Easy industrial robot cell coordinates calibration with touch panel. Robotics and Computer-Integrated Manufacturing,50, 276–285.

    Article  Google Scholar 

  • Chen, G., Li, T., Chu, M., Jia, Q. X., & Sun, H. X. (2014a). Review on kinematics calibration technology of serial robots. International Journal of Precision Engineering and Manufacturing,15(8), 1759–1774.

    Article  Google Scholar 

  • Chen, G. L., Wang, H., & Lin, Z. Q. (2014b). Determination of the identifiable parameters in robot calibration based on the POE formula. IEEE Transactions on Robotics,30(5), 1066–1077.

    Article  Google Scholar 

  • Chen, X. Y., Zhang, Q. J., & Sun, Y. L. (2019). Non-kinematic calibration of industrial robots using a rigid-flexible coupling error model and a full pose measurement method. Robotics and Computer Integrated Manufacturing,57, 46–58.

    Article  Google Scholar 

  • Diebel, J. (2006). Representing attitude: Euler angles, unit quaternions, and rotation vectors. Matrix,58(15–16), 1–35.

    Google Scholar 

  • Du, G. L., & Zhang, P. (2013). Online robot calibration based on vision measurement. Robotics and Computer-Integrated Manufacturing,29, 484–492.

    Article  Google Scholar 

  • Du, G. L., Zhang, P., & Li, D. (2015). Online robot calibration based on hybrid sensors using Kalman Filters. Robotics and Computer-Integrated Manufacturing,31, 91–100.

    Article  Google Scholar 

  • Elatta, A. Y., Li, P. G., Fan, L. Z., & Yu, D. (2004). An overview of robot calibration. Information Technology Journal,3(1), 74–78.

    Article  Google Scholar 

  • Filion, A., Joubair, A., Tahan, A. S., & Bonev, I. A. (2018). Robot calibration using a portable photogrammetry system. Robotics and Computer-Integrated Manufacturing,49, 77–87.

    Article  Google Scholar 

  • He, R. B., Zhao, Y. J., Yang, S. N., & Yang, S. Z. (2010). Kinematic-parameter identification for serial-robot calibration based on POE formula. IEEE Transactions on Robotics,26(3), 411–423.

    Article  Google Scholar 

  • Hollerbach, J. M., & Wampler, C. W. (1996). The calibration index and taxonomy for robot kinematic calibration methods. International Journal of Robotics Research,15(6), 573–591.

    Article  Google Scholar 

  • Joubair, A., Tahan, A. S., & Bonev, I. A. (2016). Performances of observability indices for industrial robot calibration. In IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 2477–2484.

  • Klimchik, A., Furet, B., Caro, S., & Pashkevich, A. (2015). Identification of the manipulator stiffness model parameters in industrial environment. Mechanism and Machine Theory,90, 1–22.

    Article  Google Scholar 

  • Legnani, G., & Tiboni, M. (2014). Optimal design and application of a low-cost wire-sensor system for the kinematic calibration of industrial manipulators. Mechanism and Machine Theory,73, 25–48.

    Article  Google Scholar 

  • Li, T., Sun, K., Xie, Z. W., & Liu, H. (2011). Optimal measurement configurations for kinematic calibration of six-DOF serial robot. Journal of Central South University,18(3), 618–626.

    Article  Google Scholar 

  • Li, C., Wu, Y. Q., Lowe, H., & Li, Z. X. (2016). POE-based robot kinematic calibration using axis configuration space and the adjoint error model. IEEE Transactions on Robotics,32(5), 1264–1279.

    Article  Google Scholar 

  • Li, J., Xie, F. G., Liu, X. J., Mei, B., & Li, H. J. (2018). A spatial vector projection based error sensitivity analysis method for industrial robots. Journal of Mechanical Science and Technology,32(6), 2839–2850.

    Article  Google Scholar 

  • Liu, Y. Z., Wu, J., Wang, L. P., & Wang, J. S. (2016). Measurement trajectory evaluation and error compensation for kinematic calibration of 5-axis hybrid machine tool. Journal of Tsinghua University,56(10), 1047–1054.

    Google Scholar 

  • Ma, L., Bazzoli, P., & Sammons, P. M. (2018). Modeling and calibration of high-order joint-dependent kinematic errors for industrial robots. Robotics and Computer-Integrated Manufacturing,50, 153–167.

    Article  Google Scholar 

  • Meggiolaro, M.A., & Dubowsky, S. (2000). An analytical method to eliminate the redundant parameters in robot calibration. In Proceedings of the 2000 IEEE lntemational conference on robotics & automation, pp. 3609–3615.

  • Menq, C. H., Borm, J. H., & Lai, J. Z. (1989). Identification and observability measure of a basis set of error parameters in robot calibration. ASME Journal Mechamissions, and Automation in Design,111, 513–518.

    Google Scholar 

  • Messay, T., Ordóñez, R., & Marcil, E. (2016). Computationally efficient and robust kinematic calibration methodologies and their application to industrial robots. Robotics and Computer-Integrated Manufacturing,37, 33–48.

    Article  Google Scholar 

  • Mooring, B., Roth, Z., & Driels, M. (1991). Fundamentals of manipulator calibration. New York: Wiley.

    Google Scholar 

  • Nahvi, A., & Hollerbach, J. M. (1996). The noise amplification index for optimal pose selection in robot calibration. In IEEE international conference on robotics and automation (Vol. 1(1), pp. 647–654).

  • Nategh, M. J., & Agheli, M. M. (2009). A total solution to kinematic calibration of hexapod machine tools with a minimum number of measurement configurations and superior accuracies. International Journal of Machine Tools and Manufacture,49, 1155–1164.

    Article  Google Scholar 

  • Nubiola, A., & Bonev, I. A. (2013). Absolute calibration of an ABB IRB 1600 robot using a laser tracker. Robotics and Computer-Integrated Manufacturing,29(1), 236–245.

    Article  Google Scholar 

  • Nubiola, A., & Bonev, I. A. (2014). Absolute robot calibration with a single telescoping ballbar. Precision Engineering,38(3), 472–480.

    Article  Google Scholar 

  • Nubiola, A., & Bonev, I. A. (2015). Non-kinematic calibration of a six-axis serial robot using planar constraints. Precision Engineering,40(3), 472–480.

    Article  Google Scholar 

  • Nubiola, A., Slamani, M., & Bonev, I. A. (2013). A new method for measuring a large set of poses with a single telescoping ballbar. Precision Engineering,37(2), 451–460.

    Article  Google Scholar 

  • Pashkevich, A. P. (2001). Computer-aided generation of complete irreducible models for robotic manipulators. In 3rd French simulation and simulation conference on “design, analysis and management of industrial systems (Vol. 1, pp. 294–299).

  • Qiao, Y., Chen, Y. P., & Chen, B. (2017). A novel calibration method for multi-robots system utilizing calibration model without nominal kinematic parameters. Precision Engineering,50, 211–221.

    Article  Google Scholar 

  • Santolaria, J., Brosed, F. J., & Velázquez, J. (2013). Self-alignment of on-board measurement sensors for robot kinematic calibration. Precision Engineering,37, 699–710.

    Article  Google Scholar 

  • Santolaria, J., Conte, J., Pueo, M., & Javierre, C. (2014). Rotation error modeling and identification for robot kinematic calibration by circle point method. Metrology and Measurement Systems,21(1), 85–98.

    Article  Google Scholar 

  • Schroer, K., Albright, S., & Grethlein, M. (1997). Complete, minimal and model—continuous kinematic models for robot calibration. Robotics and Computer-Integrated Manufacturing,13(1), 73–85.

    Article  Google Scholar 

  • Sun, Y., & Hollerbach, J. M. (2008). Observability index selection for robot calibration. In IEEE international conference on robotics and automation( pp. 831–836).

  • Wang, W., Liu, F., & Yun, C. (2015). Calibration method of robot base frame using unit quaternion form. Precision Engineering,41, 47–54.

    Article  Google Scholar 

  • Wu, Y., Klimchik, A., Caro, S., Furet, B., & Pashkevich, A. (2015). Geometric calibration of industrial robots using enhanced partial pose measurements and design of experiments. Robotics and Computer-Integrated Manufacturing,35, 151–168.

    Article  Google Scholar 

  • Zhang, X., Song, Y., & Yang, Y. (2017). Stereo vision based autonomous robot calibration. Robotics and Autonomous Systems,93, 43–51.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Young Scientists Fund of National Natural Science Foundation of China [Grant Number 51805039], The Supplementary and Supportive Project for Teachers at Beijing Information Science & Technology University (2018–2020) [Grant Number 5029011103], General Project of Science and Technology Plan of Beijing Municipal Education Commission [Grant Number KM201911232024].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhouxiang Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Z., Huang, M., Tang, X. et al. Observability index optimization of robot calibration based on multiple identification spaces. Auton Robot 44, 1029–1046 (2020). https://doi.org/10.1007/s10514-020-09920-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-020-09920-1

Keywords

Navigation