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ABSTRACT

Underwater vehicles are employed in the exploration of dynamic environments where tuning of a
specific controller for each task would be time-consuming and unreliable as the controller depends
on calculated mathematical coefficients in idealised conditions. For such a case, learning task from
experience can be a useful alternative. This paper explores the capability of probabilistic inference
learning to control autonomous underwater vehicles that can be used for different tasks without
re-programming the controller. Probabilistic inference learning uses a Gaussian process model of
the real vehicle to learn the correct policy with a small number of real field experiments. The use of
probabilistic reinforced learning looks for a simple implementation of controllers without the burden
of coefficients calculation, controller tuning or system identification. A series of computational sim-
ulations were employed to test the applicability of model-based reinforced learning in underwater
vehicles. Three simulation scenarios were evaluated: waypoint tracking, depth control and 3D path
tracking control. The 3D path tracking is done by coupling together a line-of-sight law with prob-
abilistic inference for learning control. As a comparison study LOS-PILCO algorithm can perform
better than a robust LOS-PID. The results shows that probabilistic model based reinforced learning
is a possible solution to motion control of underactuated AUVs as can generate capable policies with
minimum quantity of episodes.
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1 Introduction

Autonomous underwater vehicles play an important role in the exploration of the seas. This exploration is primarily
driven by commercial, military and scientific needs. In this context, the proper and correct navigation of the vehicle
is a key requirement. Motion controllers that are used for navigating AUVs can be classified in four basic strategies:
point stabilization [1], trajectory tracking [2], path following [3] and path tracking [4]. Point stabilization controllers
stabilize a vehicle to the desired goal posture from an initial configuration [5]. Trajectory tracking controllers use a
virtual vehicle to generate a reference trajectory that has an associated time required to be employed by the real vehicle
[6]. In the case of path following the vehicle is forced to pursue the desired path without temporal specifications. In
the case of path following controller, they usually employ the Frenet-Serret line-of-sight(LOS) coupled with another
controller to minimize the error between the obtained geometric references and the vehicle variables. The final strategy
is path tracking, which combines trajectory tracking and path following by the introduction of a virtual time parameter
to force the vehicle to complete the path whitin a specific time.

Difficulty of controlling underwater vehicles arises due to non-linear and time-varying dynamics of underwater vehi-
cles, uncertainties in its hydrodynamic coefficients and disturbance in the environment.(e.g. ocean currents). Further-
more, all complexities are exacerbated for the controller in underactuated vehicles [5]; underactuated vehicles have
more degrees of freedom to be controlled than surfaces of control. Nevertheless, this configuration is more prevalent
as it is the most energy efficient design for travelling at high speeds [7].

Waypoint tracking is the most common methodology to control a vehicle, e.g. commercial vehicles such as Gavia
[8]and REMUS [9] use this methodology. Waypoint tracking is directing the vehicle to approximate to a series of
specific target points. The vehicle calculates the required direction to which the vehicle should be directed and upon
arriving at the proximities of a point is given a new target. Like many industries, PID is the most common methodology
to control the vehicle orientation and speed. However, there is research to employ more robust options than PID. [10]
employs a NARMAX model from the vehicle and a constrained self-tuning controller to direct the vehicle to the
respective target. Other methodologies employ a combination of LOS for waypoint [11] and a standard controller or
backstepping techniques to minimize the error between the vehicle position and the desired position [12].

In the case of LOS, commercially LOS-PID and LOS-Fuzzy controllers are employed as their implementation are
simpler and more accepted in the industry [13, 14, 15]. Other research as [16] used a LOS guidance law with two
integrators and three feedback controllers to compensate for external unknown perturbation such as ocean current
which is one of the weaknesses for methodologies as PID/Fuzzy controllers. [17] have used an alternative methodology
of a grey prediction to obtain the next AUV position in advance and then use LOS to calculate the desired angles, such
that if there is environmental interference, the vehicle will not be affected.

In the search of more robust controllers, nonlinear control techniques had been explored. [18] have designed a hor-
izontal path following controller based on Lyapunov stability theorem and backstepping method. In [19], a method
consisted of Lyapunov stability theorem and feedback gain backstepping reduce the complexity of the controller and
improve adjustability of the parameters. Another methodology proposes a global path following for AUV based on
the same coordinates to achieve global asymptotic stability of the following error [20]. Following the research of
backstepping, [21] have adopted fuzzy backstepping sliding mode control to overcome non-linearities, uncertainties
and external disturbances.

However, the aforementioned research in controls are focused to provide a more robust path following performance.
The controller still requires the calibration of parameters or specific design of observers to identify the unknown
parameters of the dynamic model. A methodology to overcome this is the use of machine learning algorithms. The
most prominent algorithm in machine learning is neural networks. In particular, the research to control underwater
vehicles had focused on the use of machine learning algorithms to recognize uncertainties. [22, 23] have designed
a combined version of control law for the convergence of the kinematic model and an adaptive backstepping sliding
control based in radial basis function (RBF) neural network to identify the unknown parameters of the dynamic model.
In a similar way, [24] have reduce the backstepping complexity by the inclusion of a second-order filter to obtain the
derivatives of the virtual controller and filter high-frequency measurement noise, and coupled the filter with an RBF
neural network that compensates for vehicle uncertainties.

Although the practicality of machine learning has been largely to identify uncertainties in AUV control, some machine
learning algorithms are capable of doing more such as controlling the vehicle directly. Recently, there has been
increasing research efforts on the use of reinforcement learning to generate policies to control underwater vehicles
and robots in general. An example of machine learning control can be seen in [25],where reinforced learning (RL)
based on the Markov decision process (MDP) was employed to produce a policy capable of controlling a vehicle
around an obstacle with a minimum cost. In the case of path-following, reinforced learning had been applied to path
following of ships. In [26], an actor-critic multilayer perception reinforced learning is used to reduce the tracking
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error to zero. Deep reinforced learning has also been proposed as a possible solution for the tracking problem. [27]
employed two neural networks. The primary neural network selects the action and the secondary evaluates whether the
produced action is valid; with further modification through a deep deterministic policy gradient. Another application
used continuous actor-critic learning automaton algorithm to teach an AUV to follow a pipeline [28], considering the
improved performance in search of the policy of this algorithm the number of episodes over the platform can be over
the hundreds.

RL can be divided into two methodologies: model-based methods and model-free methods, such as Q-learning [29] or
TD-learning [?]. The application of path-following control based in traditional RL such as Q-learning [30] is highly
complex and difficult as a high quantity of experiments is required to acquire data and test each policy iteration. The
additional difficulties in underwater vehicles are vehicle safety, maximum time underwater and computational power.
RL for a system with low-dimensional state spaces and fairly favourable dynamics can require thousands of trials to
arrive at the appropriate policies[31, 27].

Model-based RL methods are more efficient than model-free methods in searching for a useful policy, as the policy
is searched over a model and not the real platform. However, their accuracy can suffer severely from model errors.
A solution to address the model errors is the use of probabilistic models to express its uncertainty. An application
of model-free methodologies that use a probabilistic methodology was propose by [32]. Their methodology use
a on-line selective reinforcement learning approach combined with Gaussian Process (GP) regression for learning
reference tracking control policies given no prior knowledge of the dynamical system. [31] have proposed Probabilistic
Inference for Learning Control (PILCO), which is a model-based policy search method. The probabilistic model uses
non-parametric Gaussian processes (GPs) to characterise the model uncertainty and the policy improvement is based
on analytic policy gradients which employs deterministic approximate interference techniques. Due to probabilistic
modelling and inference approach, PILCO can achieve higher learning efficiency than other methods in continuous
state-action domains and, hence, is directly applicable to complex mechanical systems, such as robots.

In this paper, the authors explore the applicability of PILCO to control underactuated AUVs by a series of simulations
with different objectives and target values. The main goals of our implementation of reinforced learning with PILCO
are:

• Minimum quantities of episodes over the platform;

• Small test time over the platform;

• Minimum quantity of variables to be predicted by the GP; and

• Vehicle safety.

2 Underwater Vehicle Mathematical Model

In [33] it was shown that the non-linear dynamic equations of motion of an underwater vehicle can be expressed
in vector notation defined by a state vector composed by the vector v of velocities on the body frame of the form

[u, v, w, p, q, r]T and the vector η of position in the Earth fixed frame (Fig. 1) of the form [ξ, η, ζ, φ, θ, ψ]T such that

Mv̇ +C (v)v +D (v)v + g (η)= τ (1)

with the kinematic equation
η̇ = J (η)v (2)

where

η position and orientation of the vehicle in Earth-fixed frame,

v linear and angular vehicle velocity in body fixed frame,

v̇ linear and angular vehicle acceleration in body fixed frame,

M matrix of inertial terms,

C (v) matrix of Coriolis and centripetal terms,

D (v) matrix consisting of damping or drag terms,

g (η) vector of restoring forces and moments due to gravity and buoyancy,

τ vector of control and external forces, and

J (η) rotation matrix that converts velocity in a body fixed frame v to an Earth fixed frame velocity η̇ .
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Figure 1: AUV different reference frames, vehicle frame is equal to the centre of buoyancy.

Equation (1) can be expanded into a more general equation of motion as has been shown in [34, 35]. The result of
the expansion will be a system of six equation with 73 hydrodynamic coefficients. However, for a complete model the
control surfaces must be modelled. In a general case, the resulting forces and moments of a control surface (thrusters
and fins) can be expressed as [33]

Fprop = −Kfprop |n|n
Mprop = −Kmprop |n|n (3)

Lfin = KL|δfinδfinv
2
e

Mfin = KM|δfinδfinv
2
e

(4)

A more accurate thruster model can be found in [36] with the inclusion of the motor model and fluid dynamics.
However, in this study, the more conservative model from [33] is used.

3 LOS guidance law mathematical background

This section describes the mathematical background of the 3D guidance law employ in the present study for control
of an underactuated AUV. In this study, it was decided to employ the LOS proposed in [14] as it is an extension of the
work of [33].

Figure 2: LOS reference frames

If the vehicle kinematic is represented by its spatial position p (t)
∆
= [x (t) , y (t) , z (t)]

T
and its velocity is repre-

sented by v(t) , ṗ (t) ∈ R
3 state is related to the {I} frame. Also, the speed is represented by U (t)

∆
= |v (t)| =

√

ẋ(t)
2
+ ẏ(t)

2
+ ż(t)

2
> 0. The steering of the underactuated AUV is characterized by the azimuth angle χ and

elevation υ (Fig. 2).






χ = atan2 (ẏ, ẋ)

υ = arctan

(

−ż√
ẋ2+ẏ2

)

(5)

If its consider a continuously path parametrized by a scalar variable ̟ ∈ R, the position of a point over the path is
represented by pp (̟) ∈ R

3 (Fig. 3). Similarly, the orientation of the point can be defined as
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Figure 3: LOS main variables







ψp = atan2
(

y′p, x
′
p

)

θp = arctan

(

−z′p√
x′2

p+y′
2
p

)

(6)

where x′p = dxp/d̟, y′p = dyp/d̟ and z′p = dzp/d̟ . Hence the tracking error is expressed as:

ε = [xe, ye, ze]
T
= RT

F (p− pp) (7)

where RT
F := Rz (ψp)Ry (θp)

Rz =

[

cos (ψp) − sin (ψp) 0
sin (ψp) cos (ψp) 0

0 0 1

]

(8)

Rz =

[

cos (θp) 0 sin (θp)
0 1 0

− sin (θp) 0 cos (θp)

]

(9)

If the following Lyapunov control function positive definitive is

Vε =
1

2
εT ε (10)

The derivative of Eq. (10) can be written as

Vε = xe (Ud cos (ψr) cos (θr)− Up)+
yeUd sin (ψr) cos (θr)− zeUd sin (θr)

(11)

where Ud is the desired composite speed of the AUV. The auxiliary control input of the virtual point Pp is chosen as:

Up = Ud cos(ψr) cos(θr) + kxxe (12)

where the steering angles are:






ψr = arctan
(

−kyye
∆y

)

θr = arctan
(

kzze
∆z

) (13)

If the guidance variables ∆y and ∆z > 0, the control gains kx, ky, kz are positive constants. If Eq. (12) and Eq. (13)
are substituted into Eq. (11) and considering the relationship among inertial frame {I}, flow frame {W} and path
frame {F}, the desired azimuth angle υd and elevation angle χd can be written as [37]:

υd = arcsin(sin θp cosψr cos θr + cos θp cos θr)
χd = atan2(χdy, χdx)

(14)

where
χdy = cosψp sinψr cos θr − sinψp sin θp sin θr

+sinψp cos θp cosψp cos θr
(15)

5



A PREPRINT - DECEMBER 30, 2019

χdx = − sinψp sinψr cos θr − cosψp sin θp sin θr
+cosψp cos θp cosψp cos θr

(16)

In order to transform the path following to path tracking the path was defined over time together with Eq. (14) and
Eq. (12). This was to produce not only the desire angles but also the required speed at each time instance. The steering
error vector can be expressed as [eµ, eυ, eχ] where eµ = µd − µv , eυ = υd − υv and eχ = χd − χv.

4 Probabilistic Inference for Learning Control (PILCO)

PILCO algorithm [31, 38] (?? 1) employs GPs as the base for policy search. A GP can be defined by a mean function
m(·) and a positive definitive covariance function k(·, ·) commonly known as kernel. Usually a prior mean function
m ≡ 0 and an exponentiated quadratic kernel (Eq. (17)) are employ. This kernel only has two parameters to learn, l
that determines the length of the ’wiggles’ in the function and σ2 which determines the average distance of the function
away from its mean [39].

kSE(x, x
′) = σ2 exp

(

− (x− x′)2
2ℓ2

)

(17)

Given n training inputs X = [x1, ..., xn] and corresponding training targets Y = [y1, ..., yn], the posterior GP hyper-
parameters l and σ2 are learned by evidence maximization [40]. The posterior predictive distribution p(f∗|x∗) of the
function value f∗ = f(x∗) for a test input x∗ is Gaussian with mean and variance

mf (x∗) = kT∗
(

K+ σ2
εI
)−1

y

σ2
f (x∗) = k∗∗ − kT∗

(

K+ σ2
εI
)−1

k∗ + σ2
ε

(18)

[1]init:Sample controller parameters θ ∼ N (0, I);
[2]Apply random control signals and record data.;
[3]repeat
[4] Learn probabilistic (GP) dynamics model;
[5] repeat
[6] Approximate inference for policy evaluation;
[7] Gradient-based policy improvement;
[8] Update parameters θ;

until Convergence;
[9] return θ∗;
[10] Set π∗ ← π (θ∗);
[11] Apply π∗ to system and record data;

until Task Learned;
Algorithm 1: PILCO Algorithm

To find a policy π∗ which converges to the desired target, PILCO builds a probabilistic GP dynamics model. This
model will be the base for the deterministic approximate inference and policy evaluation, followed by the analytic
computation of the policy gradients ∂Jπ(θ)/∂θ for policy improvement. The policy π is improved based on the
gradient information ∂Jπ(θ)/∂θ.

5 Simulation Setup

The underwater vehicle should be able to switch between different controllers in a single mission depending on the task
to be solved at a specific time. The possible variants of controllers that an AUV can use in a mission are: follow bottom,
depth control, follow pipe, go-to-point, path tracking, path following, etc. A series of different simulations were
designed to evaluate the capability of PILCO to control an underactuated AUV within the three different evaluation
scenarios: way-point-tracking, Depth Control and Path-Tracking.

5.1 Vehicle Model

The vehicle model employed in this research is derived from semi-empirical calculation of the coefficients for the
vehicle MULLAYA. MULLAYA is an underactuated AUV designed by the Defence Science and Technology Group
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as a research platform. The vehicle is controlled by a single propeller, a pair of elevator fins and a pair of rudder fins.
General specifications of the vehicle are given in Table 1. The coefficients were calculated with the same technique
of [34] and the obtained coefficients are presented in Table 2. As a engineering research platform, the vehicle will
undergo multiple transformations over time in shape and internal engineering. This constant change requires the needs
of constant update of the controller for the vehicle. Possible future modification can include vectorized propulsion
systems and buoyancy controllers.

Table 1: MULLAYA AUV particulars.

Property Value Unit

Length 1.56 m
Diameter 150 mm
Max RPM 3000 RPM

Weight 239.364 N
Buoyancy 246.2 N

Table 2: MULLAYA AUV coefficients employed in simulations.

Coeff. Result Coeff. Result Coeff. Result

Xuu -2.8 Zrp 0.68 Nuv -30.88
Xwq -29.6 Yuudr 12.12 Npq -5.06
Xqq -0.68 Nuudr -7.51 Ixx 0.083
Xvr 29.6 Zuuds -12.12 Iyy 3.08
Xrr -4.95 Kpp -1.30E-01 Izz 3.08
Yvv -95.37 Kpdot 1.09E-02 Nwp 0.66
Yrr -2.45 Mww 6.96 Nur -5.31
Yuv -32.9 Mqq -135.04 Xudot -0.51
Ywp 29.64 Mrp 5.1 Yvdot -29.64
Yur 7 Muq -5.34 Nvdot 0.66
Ypq 0.68 Muw 27.16 Mwdot 0.66
Zww -95.37 Mwdot -0.68 Mqdot -5.05
Zqq 2.45 Mvp -0.68 Zqdot -4.94
Zuw -32.9 Muuds -7.738 Zwdot -29.64
Zuq -7 Nvv 6.96 Yrdot 4.95
Zvp -29.64 Nrr -135.03 Nrdot 5.05

5.2 Waypoint Tracking

The first type of controller evaluated for the underwater vehicle is a waypoint tracking controller. These types of
controllers can be employed to transfer the vehicles between location were more specific controllers are employed or
if can be work with the results of a path planning law that convert a desire path in waypoints. In this case, it is desired
to control the vehicle velocity, azimuth and elevation such that the vehicle moves towards a specific location. The
methodology used in this simulation is similar to the one employed in [41] but extended to 3D. If ηv is the vehicle
state vector [Xv, Yv, Zv, φv, θv, ψv] that can be divided in position vector Xv and orientation vector θv on earth frame
and the target point is expressed as the vector XT = [Xd, Yd, Zd] the angles of the vector between the current position
and the desired position can be expressed as

ψd = tan−1

(

Yd − Yv
Xd −Xv

)

θd = tan−1





√

(Yd − Yv)2 + (Xd −Xv)
2

Zd − Zv





(19)

and the vector of angle errors can be expressed as the difference between the vehicle orientation and the desire orien-
tation, i.e θe = [eψ, eθ, eu], where eψ = ψd − ψv and eθ = θd − θv. The target of the policy will be to minimize the
error angles to zero and the surge speed error to zero. In the proposed simulation a surge speed of 1.2m/s was set as
the desired speed with an initial position of [0, 0, 0] ,an orientation of [0, 0, π/4] and an initial surge speed of 0.5m/s.
The first 12 seconds of real model simulation was employed to learn the policy with a target point with coordinates
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[40, 40, 10]. A constraint to limit the vehicle turn < 180o was applied to the process of policy testing over the vehicle
model. A second simulation with two target points [30, 30, 10] and [90, 100, 10] is employed to check the viability of
the policy. A total of 1000 sparse points was located as the limiter from which a sparse model will be employ. The
policy and simulation were executed at 5Hz. A noise with variance of σ2 = 0.005 was employed in the simulation
and a variance of σ2 = 0.2 was employed for the start position of the vehicle. When the vehicle arrives at 3 meters of
the objective the vehicle will be given the secondary target as the new objective. If the vehicle arrives at 1 meter of the
final target the simulation will stop.

AUV+
-

+
-

PID

cat2sph

XT

Xv

Xe �d

�v

�e <Xv,�v>

Figure 4: Control system block for waypoint tracking with PID controller.

AUV+
-

+
-

Policy

cat2sph

XT

Xv

Xe Өd

Өv

Өe <Xv,Өv>

GPs

Figure 5: Control system blocks for waypoint tracking with RL policy.

5.3 Depth Control

A secondary scenario is explored to evaluate the controller’s capability to keep a specific depth while traveling between
location. This is an extension to the previous search of a policy, i.e. waypoint. In this scenario, we want the vehicle to
arrive at a specific depth before going to the desired location. The policy will minimize the vector of error to zero with
the difference that the vector of errors is θe = [eψ, eθ, eu, ez], where ez = zd − zv similar to the waypoint tracking.
The vehicle starts from the same initial position of the waypoint tracking scenario [0, 0, 0]. the proposed training target
was the vector [40, 40, 5] and the selected test target points are [30, 30, 5] and [90, 100, 5]. A total of 1500 sparse points
was located as the limiter from which a sparse model will be employed. The policy and simulation were executed at
5Hz. A noise of σ2 = 0.005 was employed for the simulation and a σ2 = 0.2 was employed for the start position of
the vehicle. When the vehicle arrives at 3 meters of the objective the vehicle will be given the secondary target as the
new objective. I If the vehicle arrives at 1 meter of the final target the simulation will stop.

5.4 Path Tracking

With the aim to test the capability of PILCO for path tracking, the scenario consists of a single policy to control
propeller force, elevator force and rudder force of the vehicle. The decision to learn the force and not to control direct
the RPM and angle of the fins was to be able to compare the policy to a standard controller from the literature. In
the design of the authors path tracking simulation, the equation presented in section Section 3. Fig. 7 shows the block
diagram of the LOS-PILCO control implementation whereby the policy will evolve based on the learned GPs. The
target of all learned policies is to reduce the vector of errors [eµ, eυ, eχ] to zero. A LOS-PID was used as a performance
comparison. The LOS-PID (Fig. 6)with the exact coefficient of the model was coded in the same ways as [14] with
the inclusion of measurement noise. The initial position of the vehicle was established as [60, 3, 1] with an initial
orientation [0, 0, 3π/4]. A total of 1500 sparse points was located as the limiter from which a sparse model will be
employed. A noise with σ2 = 0.001 was employed throughout the simulation and a random variation of the start point
with a variance of σ2 = 0.2 was employed. Higher values of σ were not possible for the LOS-PID to be comparable
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as it was not able to overcome higher values of noise. Both the PID and PILCO policy were executed at a frequency
of 10 Hz. A helix path (Fig. 8) was parametrized as is show in Eq. (20).

AUV+
-

+
-

PID
η

v v v uv,vv,�v]

ud,vd,�d]

Figure 6: Control systems block for LOS-PID

AUV+
-

+
-

PolicyP���
η(	


[�v,�v�v] �uv,vv,φv]

�ud,vd,φd]

GPs

Figure 7: Control systems block for LOS-PILCO

Xhelix = 60 ∗ cos(0.02618 ∗ wramp(t))
Yhelix = 60 ∗ sin(0.02618 ∗ wramp(t))
Zhelix = 2 + 2 ∗ wramp(t)/200

(20)

where wramp(t) is a function over time with a slope m. The control learning of the vehicle was done over the first 20
seconds at a frequency of 10 Hz.

0
5

10

60

Z
(m

)

40
60

20 40

Y(m)

0 20

X(m)

0-20
-20

-40 -40
-60 -60

Figure 8: Spiral Path to be follow
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6 Results

6.1 Waypoint Tracking

As evident in Fig. 11, the learning of a policy for waypoint tracking of an AUV is possible with the application of
PILCO. However, reinforced learning does not require the calibration of parameters, but rather, requires the tuning of
the parameters of the Q matrix from the cost function. For the cost function design, the surge speed was given a higher
importance in the cost function than the other error vectors. This escalation of each target in the learning policy was
needed as an underactuated AUV needs to get to a specific speed to be able to dive and navigate with a more linear
model. An example of the data employed to create the GPs model can be seen in Fig. 9.

0

5

10

40

Z
(m

)

30

20

Y
(m

)

10

0

X(m)

4035302520151050

Vehicle
Start
Target
Direct path

Figure 9: Real model waypoint tracking data example for GPs learning.

The authors simulations showed that the required number of episodes over the platform was under 25 to obtain a usable
policy to control the vehicle and be able to arrive at all three targets. Fig. 10 shows the evolution of the cost function
over time for the platform. The cost function drops rapidly to a low value as the vehicle learns to control the surge
speed and from there, how to control its orientation. The decision to do this is based in that the control surfaces as fin
require a minimum speed to be useful.

The result from the final policy selected is shown in Fig. 11; plotting against the results from the PID controller for
the same scenario. Both PID and PILCO arrive near to both test point. However, PILCO shows a more direct route
taken towards the targets.The PID controller took 1201 cycles to arrive equivalent to 240.2 seconds and the PILCO
policy took 569 cycles equivalent to 113.8 seconds. PILCO has an advantage over a simple PID as PILCO has learned
the policy over a noisy platform(or enviroment) and the PID doesn’t have any component to compensate for the noise
in the measurement. For PID to compensates for the noise an observer will have to be designed and implemented.
However, this will increase the complexity of the controller and the need for more design and calibration time for the
PID controller. The results show that the waypoint tracking with a PILCO controller can be a viable option as the
tuning of the controller coefficients are practically zero. The robustness of the PILCO policy is higher as the platform
will start the learning from different angles and can overcome noise in the measurement. The policy is also updated in
case of failure. A down point of PILCO in the simulated scenarios is that the controller tries to always have the same
behaviour, e.g. if the vehicle dives a little before directing to the first point after the second point the policy will try to
repeat the same behaviour.

6.2 Depth control

The simulation of simultaneous waypoint tracking, and depth control of underwater vehicles shows that PILCO can
learn a complex policy to control the vehicle. An example of the training data used for learning the vehicle GPs model
can be seen in Fig. 12. The quality of the learning of the GPs model is directly related to the quality of the learning
of the policy. After 20 episodes episodes over the platform a good quality GPs model has been learned such that a
policy can be learnt. The evolution of the cost function over time can be seen in Fig. 13. In similar way to the standard
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Figure 10: Waypoint tracking cost function evolution.

0
5

10

100

Z

15

100

Y

50

X

50

0 0

Initial Direction
PILCO
Start
First Point
Second point
Direct Path
PID

Figure 11: 3D view Waypoint tracking comparative result between PILCO and PID Results [m].

waypoint tracking, the cost evolves very fast to a low value and then small changes are done in the policy learning.
This small change is produced by the scaling of each of the targets to be obtained.

Fig. 14 shows the results of policy 22. The policy is capable of keeping the depth at near to 5 meters and at the same
time keep all four errors at near zero value. Usually, the task described here will be done with two controllers a depth
controller and a azimuth controller. As we are applying a single controller with two targets(elevation, depth) that at
the start go on different paths. The [X,Y, Z] results from the simulation are presented in Fig. 15. The policy produces
a different behaviour than normal controllers, if by operator error a target was setup with a different depth than the
desire depth the learned policy will try to push the vehicle to the target disregarding the depth by a small quantity such
the target can be completed this can be observed in Fig. 16 . Three targets were setups as [30, 30, 5], [70, 70, 3], and
[90, 100, 5] the second target is outside of the desire depth of the policy.

6.3 Path Tracking

The training evolution of the GPs model in the direction of a better policy allows PILCO to search for a better policy
after each iteration with the real model (Fig. 18). Fig. 17 presents an example of the data used for training of the GPs
model that is later used for policy search. The reinforced learning simulation to learn a LOS controller with PILCO
shows that the reinforced learning algorithm can learn to follow the desired path based on the desire angles produced
by a LOS law. The policy can perform better than a LOS-PID controller that is without noise compensation algorithms.
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Figure 13: Waypoint tracking and depth control cost function evolution.

The results from the PID to follow the LOS law can be seen in Fig. 19, without noise the PID can stabilize himself
very fast but with minimum noise in the depth sensor the χ angle cannot be completely stable and the controller will
fluctuate. In the same way, PILCO controller (Fig. 20) reacts to the noise of the measurement but can follow the
desired path in a better way that the LOS-PID controller implemented.

The measurement of the RMSE between the desire vehicle position and the vehicle position for both LOS-PID and
LOS-PILCO is presented in Table 3. LOS-PILCO is shown to out-perform the PID controller in the reduction of error
between the LOS law and the vehicle position. Not only in the accuracy of placing the vehicle in the correct position
but in the speed of deployment of a controller to follow LOS will LOS-PILCO will require less tuning with field tests.
Another advantage of PILCO is the absence of knowledge from the vehicle coefficients and not need to use other
vehicles variables a surge, heave and sway speeds.

Fig. 21 and Fig. 22 present the comparative plots of position in X,Y, Z and the 3D path taken by the vehicle with
LOS-PID controller and LOS-PILCO policy. Both controllers shows their ability to direct the AUV to the desired path,
with the PILCO policy showing a better performance after episode 20.
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Figure 15: [X,Y, Z] Waypoint tracking and depth control PILCO results.

Table 3: RMSE results from LOS-PID and LOS-PILCO.

RMSE Value

LOS-PID 1.214
LOS-PILCO 0.89
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Figure 17: Sample of data used for learning of GPs model employed.

7 Conclusions

This paper investigates the applicability of PILCO algorithms and its requirements to learn policies to control under-
actuated AUVs. Three sets of simulations were designed to evaluate the capability of PILCO for waypoint tracking,
depth control and path tracking. The simulations shown that a simple waypoint tracking control can be learnt in a small
quantity of experiments over the real vehicle, the performance of the learnt policy was compared with a PID controller
which is over-performed by the policy as the policy obtained is learned over the platform and the non-parametric model
includes noise.

In a similar way, a depth control policy was learned by mixing the waypoint tracking objective with the depth objective.
However, in this research the learning of a policy to only control depth was not successful as the GPs model to allow
the learning of a policy requires more information. Nevertheless, in the simulation of depth control it had been shown
that a policy of depth control can be obtained by the learning of simultaneous waypoint tracking and depth control.
The combination of objectives gives us a more intuitive behaviour, similar to what a human will do with the proposed
objectives.

In the case of the proposed LOS-PILCO methodology, it has been shown that PILCO is a viable option to learn a
policy to minimize the error between a LOS law and the vehicle position. The PILCO policy is shown to perform
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Figure 19: Desire LOS angles and speed and vehicle LOS angles and speed produced by PID controller.

equally and sometimes better than a PID. The RMSE shows that PILCO can obtain better performance and the long
period of simulation shows that the learned policy can constantly minimize the error to the desired value.

PILCO algorithm has shown that is applicable to an underactuated AUV. In the simulations were consider limits that
are a requirement for safety of the vehicle as maximum depth and maximum angles. The limits imposed to the platform
do not limited the capability of PILCO to learn a viable policy. In the design of the cost function ,the vehicle shape
and type of actuators force the selection of values of the cost function such that forward speed has to represent a higher
cost than the specific vehicle angles or position. Model based reinforced learning for underactuated AUV shows to be
a solution motion control of underwater vehicles and can be a solution to control bioinspired vechicles which are more
dynamically complex to describe with a mathematical model.
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