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Abstract

We incorporate communication into the multi-UAV path planning problem for search and rescue missions to enable dynamic
task allocation via information dissemination. Communication is not treated as a constraint but a mission goal. While achieving
this goal, our aim is to avoid compromising the area coverage goal and the overall mission time. We define the mission tasks
as: search, inform, and monitor at the best possible link quality. Building on our centralized simultaneous inform and connect
(SIC) path planning strategy, we propose two adaptive strategies: (1) SIC with QoS (SICQ): optimizes search, inform, and
monitor tasks simultaneously and (2) SIC following QoS (SIC+): first optimizes search and inform tasks together and then
finds the optimum positions for monitoring. Both strategies utilize information as soon as it becomes available to determine
UAV tasks. The strategies can be tuned to prioritize certain tasks in relation to others. We illustrate that more tasks can be
performed in the given mission time by efficient incorporation of communication in the path design. We also observe that the
quality of the resultant paths improves in terms of connectivity.
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1 Introduction

Unmanned aerial vehicles (UAVs), commonly called drones,
are employed in search and rescue (SAR), monitoring and
surveillance, network provisioning, and other applications.
In many cases, a combination of aerial sensor coverage
and wireless connectivity is desirable. For instance, in SAR
and surveillance—where coverage enables target or event
detection—connectivity ensures information dissemination
to concerned authorities for quick response and situation
awareness. Correspondingly, the drone flight paths should
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allow the desired connectivity along with complete and
successful coverage. Such path planning and optimiza-
tion solutions are called connectivity-constrained coverage
(Scherer and Rinner 2016) and connectivity-aware coverage
(Flushing et al. 2013).

Our work is motivated by the fact that different drone
applications require different connectivity priorities (e.g.,
always, periodic, delay-tolerant). Path planning algorithms
tunable to connectivity requirements have not been explored
in the literature. In our previous work, we studied the cov-
erage and connectivity requirements of drone applications
(Hayat et al. 2016) and used the knowledge to design a tun-
able multi-objective path planning (MOPP) algorithm (Hayat
et al. 2017). A single parameter A € [0, 1] is used to tune
between coverage and connectivity; it offers the full range
between coverage-optimized paths (A = 1) and connectivity-
optimized paths (A = 0). Figure 1 shows the demands of
different applications using A. Our analysis (Hayat et al.
2016) then focused on the special case A = 0.5, in which
coverage and connectivity are equally important.

Another issue disregarded in common path planning is that
different multi-drone applications have different data traffic
demands (e.g., in terms of throughput, delay, jitter). The cor-
responding optimized paths vary vastly.
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Taking into account the importance of both connectivity
and communication, MOPP is a multi-phase path planning
algorithm with special focus on SAR missions. The goals
of the SAR mission are the area coverage for target local-
ization, followed by delivery of target location, followed by
real-time status information to the first responders. The pur-
pose of phase 1 (coverage) is to search for a single stationary
target on a discretized area using discrete time steps. This
is performed using the search task, where the multiple trav-
elling salesmen problem (mTSP) (Bektas 2006) is used to
design coverage paths. These paths allow the drones to cover
the given area and locate the target in the shortest possible
time. Phase 2 ensues after a target has been located during
phase 1. The purpose of phase 2 (connectivity) is to dissem-
inate information in the network. It consists of two tasks:
The inform task carries the target location information to
the ground base station (BS). The monitor task establishes a
best quality-of-service (QoS) link between the target location
and the BS. Such link establishment is required for contin-
uous target state monitoring until help arrives at the target
location. A genetic algorithm (GA) is used to evaluate a pop-
ulation of the “shortest time” mTSP-based coverage paths,
with the optimal paths resulting in the quickest completion
of phase 2 tasks. Thus, GA optimizes mission completion
time, which includes time to perform search, inform, and
monitor tasks. The resultant GA-optimal paths are the mis-
sion flight paths. The initial mission paths are pre-designed
but adaptable to new information. Once a target has been
located, the drones replan their individual paths by respond-
ing to the information about the target and other drones in the
network. Replanning helps to quickly spread the victim infor-
mation and allocate tasks efficiently. In particular, as soon as
better-suited drones are encountered (leading to shorter mis-
sion time), the drones handover their tasks and head back to
the BS.

MOPP optimizes both coverage and connectivity, using
A to favor one over the other, based on the application’s
demands. Setting A = 1 optimizes only phase 1 and > = 0
optimizes phase 2. In this sense, our treatment of the problem
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considers connectivity as a goal rather than a constraint for
path planning. To design MOPP paths that enable connec-
tivity with QoS considerations, results from our real-world
experiments (see Hayat et al. 2015; Yanmaz et al. 2014a) are
used to establish a connectivity map.

This work extends our previously proposed strategy using
MOPP called simultaneous inform and connect (SIC) (Hayat
etal. 2017). SIC does not take into account the QoS demands:
the mission consists of the search and inform tasks only. In
this paper, we design and evaluate two SIC-based advanced
path planning strategies: (i) SICQ jointly optimizes the
search, inform, and monitor tasks and (ii) SIC+ optimizes
the search and inform tasks jointly, followed by monitor task
optimization. Both strategies aim to minimize mission time.
The purpose of comparing the two path planning strategies is
to evaluate if jointly optimizing the monitor task with search
and inform tasks degrades the overall mission quality by
increasing the time to locate the target and inform the BS
about the target position. We illustrate that, for sufficiently
many drones, such joint optimization allows monitor task to
be performed in addition to search and inform tasks in a given
mission time. For fewer drones, we witness a considerably
shorter mission time.

The main contributions of this work are to:

— define an SAR mission in terms of causal tasks that need
to be performed for successful mission completion;

— emphasize the role of communication as an enabler for
multi-UAV applications;

— define communication as a goal by incorporating QoS
demands in UAV path planning;

— use real-world link measurements to incorporate connec-
tivity and QoS in path planning in a realistic manner;

— introduce two adaptive path planning/replanning strate-
gies to illustrate impact of including communication in
path planning for SAR missions; and

— analyze the impact of the tuning parameter on mission
times and UAV path quality.



Autonomous Robots (2020) 44:1183-1198

1185

The rest of the paper is organized as follows. Section 2
discusses pre-existing work for path planning for applica-
tions requiring coverage and connectivity optimization, such
as SAR. Section 3 formulates the problem under considera-
tion, and describes the optimization problem and modeling
assumptions. Section 4 describes the proposed path planning
algorithms. Sections 5 and 6 focus on the results and conclu-
sions of the work, respectively.

2 Related work

This work proposes a path planning/replanning algorithm for
missions where coverage and connectivity-related tasks are
dynamically and causally allocated in a drone network. Due
to this causal relation, classical task allocation strategies (as
Choi et al. 2009; Hoeing et al. 2007; Lemaire et al. 2004;
Ponda et al. 2010) do not apply. The causality of tasks is
considered in Parker (1998), with the goal to study fault tol-
erance in a multi-robot system. As timely task completion is
not of significance in the proposed architecture, it can not be
applied to time-critical applications such as SAR.

2.1 Basic path planning

Several planning strategies are proposed for ground and aerial
robots with different objectives and constraints (see Choset
2001; Cole et al. 2009; Elfes 1990; Jin et al. 2006; Kovacina
et al. 2002; Poduri and Sukhatme 2004; Potvin 2009; Tis-
dale et al. 2009; Vincent and Rubin 2004; Zlot et al. 2002).
Basic path planning approaches are based on cell decompo-
sition, roadmaps, and potential fields (Frazzoli et al. 2002;
Latombe 1991). These can be used for different phases (or
combination thereof) in an SAR mission. Cell decomposition
methods partition the configuration space into regions inside
a grid, marking the obstacles on the grid. Roadmaps (such
as visibility graphs and Voronoi diagrams) pre-compute a
graph such that obstacles can be avoided by staying on the
“roads”. Approaches based on potential fields utilize attrac-
tive forces toward the goal and repulsive forces from the
obstacles. They rely on the set of all possible configurations
of the robot. Complete solutions exist at a high computa-
tion cost and are not feasible for high dimensions. Instead,
sampling-based planners (such as probabilistic roadmaps)
find “good” samples of the configuration space by ran-
domly adding points to a tree and creating possible paths.
In all these solutions, path planning discretizes the configu-
ration space and then uses graph-based searches such as A*,
D* (for dynamic replanning) and their variations (de Filip-
pis et al. 2012), each with different complexity, optimality,
and suitability for dynamic replanning. A further sampling-
based planning approach is Rapidly Exploring Random Trees
(RRT) that explores the space rapidly in all directions taking

into account vehicle dynamics. RRT does not require exten-
sive pre-processing. With all these path planning methods,
there is a trade-off between completeness, speed, and practi-
cality in higher dimensions.

2.2 Search path planning

The use of drones has been proposed for target detection
in Flint et al. (2002), Gan and Sukkarieh (2011), Lin and
Goodrich (2009), Waharte and Trigoni (2010), York and
Pack (2012), where search algorithms have been used for
path planning. These works focus on target detection (phase
1), using algorithms that provide either fast area coverage
(Waharte and Trigoni 2010), or maximize the accumulated
probability for target detection (Lin and Goodrich 2009).
However, the successful completion of search missions not
only relies on locating the target but also on informing the
BS about the location. Informing the BS requires some form
of connectivity in the network.

Connectivity as a constraint Most research work on multi-
drone area coverage assumes basic disk-shaped connectivity
amongst the drones (see Beard and McLain 2003; Flint et al.
2002; Gan and Sukkarieh 2011; Lin and Goodrich 2009;
York and Pack 2012). Path planning for search usually uti-
lizes communication for information merging to improve the
target detection probability through cooperation (Beard and
McLain 2003; Khan et al. 2015). Connectivity is treated
as a constraint in algorithm design in scenarios where BS
needs notification of a target or event (Acevedo et al. 2013;
Bezzo and Fierro 2011; Cesare et al. 2015; Hollinger and
Singh 2012; Scherer and Rinner 2016; Schleich et al. 2013).
Such restrictive approach (constrained connectivity to BS)—
whether it be continuous (Scherer and Rinner 2016) or
periodic connectivity (Cesare et al. 2015)—Ieads to coverage
performance degradation.

Connectivity as a goal Most auction/consensus-based
algorithms for distributed task allocation rely on perfect com-
munication. These algorithms are proven to degrade with
the quality of the communication links (Otte et al. 2019).
As designing connected search paths is a necessity in such
cases, another approach for cooperative search is to treat con-
nectivity as a goal rather than a constraint (see Danoy et al.
2015; Flushing et al. 2013; Goddemeier et al. 2012; Mes-
sous et al. 2016; Yanmaz 2012). For instance, Yanmaz (2012)
extends Yanmaz and Guclu (2010) to include the demand for
maintaining connectivity to the BS (sink node). The paper
Goddemeier et al. (2012) ensures efficient exploration using
multi-hop connectivity to the BS. This connectivity is not a
constraint as the air-to-ground links are expected to be tem-
porarily releasable. Different to these works, our approach
allows flexible path planning in terms of coverage and con-
nectivity parameters. Based on the mission demands, the
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algorithm allows a tradeoff between the two parameters. The
paper Flushing et al. (2013) offers the closest solution to
ours in this regard. The authors propose a mixed-integer
linear programming (MILP) approach, where connectivity
directives are introduced in the planning process. Authors
state that the inclusion of the proposed directives reduces the
quality of the solutions. Drones are employed only for estab-
lishing communication between the ground agents, either as
relays or data mules. Assigning dedicated tasks to a number
of agents in the network may lead to inefficient resource uti-
lization, as the number of agents in the network is limited,
and SAR missions are time-critical in nature. We tackle this
problem by utilizing all drones for coverage. Communica-
tion tasks (relaying/data ferrying) are assigned to the drones
when information dissemination is required. Unlike previous
work employing data ferrying (Henkel and Brown 2006) or
relaying (Grgtli and Johansen 2012), we use a combination
of both, with the aim to reduce the overall mission comple-
tion time. To the best of our knowledge, no other algorithm
exists that ensures a best possible QoS path at the end of the
mission.

Optimization criteria Different parameters have been used
for the design of connectivity-aware coverage paths. The
papers Messous et al. (2016) and Yan and Mostofi (2014)
use energy as the design parameter for path planning, where
Yan and Mostofi (2014) includes motion, sensing, and com-
munication energy costs in the total energy costs. The papers
Flushing et al. (2013) and Kantaros and Zavlanos (2016) use
area coverage as the design parameter, keeping in mind the
connectivity considerations. In Cesare et al. (2015), area cov-
erage and communication to the BS is optimized. Keeping
the time-critical nature of SAR in mind, we choose mission
completion time as the parameter to optimize.

Optimization tool Joint coverage and connectivity opti-
mization has been addressed using different solution meth-
ods: potential fields (Yanmaz et al. 2013), MILP (Flushing
et al. 2013; Scherer and Rinner 2016), space-filling curves
(Yan and Mostofi 2014), and GA (Goddemeier et al. 2012).
We use GA for evaluating our algorithm. However, it should
be emphasized that GA is only a tool for evaluation. The
comparison of different metaheuristics is out of the scope of
this work.

Preliminary work We proposed a MOPP strategy for SAR
missions using GA (Hayat et al. 2017). The strategy, named
SIC, aims to optimize mission time, which includes time to
locate the targetin phase 1 (search task) and the time to inform
the BS about the target position in phase 2 (inform task).
During phase 1, pre-planned search paths are assigned to the
drones. Phase 1 completes when a UAV detects the target.
This UAV hovers above the target as a sensing UAV. Phase 2
starts when a second UAV comes in communication range of
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the sensing UAV. The second UAV then acts as a data mule
and flies on a direct path to inform the BS about the target
location. SIC is designed such that a relay chain is formed
between the BS and the target position for continuous target
monitoring during the time it takes the data mule drone to
reach the BS. The strategy design does not take into account
the application QoS demands.

3 System description
3.1 Mission overview

We consider a SAR mission with multiple UAVs and a single
stationary target at an unknown location in a bounded area.
Before the mission commences, the path planner is informed
about the search area, communication technology (e.g., avail-
able data rates), QoS demands (e.g., throughput or delay),
and the energy constraints. This information is used to plan
collision-free paths specific to the QoS demands with cov-
erage time minimized. Each drone is able to fulfill its tasks
and return to the BS before its battery depletes.

A mission starts with the coverage phase (phase 1), where
UAVs fly their pre-planned paths to search for the target
(search task). The detection of the target triggers the con-
nectivity phase (phase 2). The UAVs now replan their paths
in a distributed manner to inform the BS (inform task) and
establishing a QoS path between the target location and the
BS (monitor task) until help arrives at the target. A UAV
follows its coverage path until it is informed about the tar-
get detection. It then abandons its coverage path and updates
its plan to spread target information through the network. As
UAVs come into contact with each other and learn new infor-
mation, they further replan. The replanning continues until
the connectivity phase is completed.

During the mission, for flight safety, the drones period-
ically broadcast beacons with their current mission status.
The status includes the drone id, current time stamp, the task
carried out, and the current coordinates. For simplicity, mis-
sion failures caused by reasons other than battery outage and
drone collisions are not considered.

Table 1 lists the parameters used throughout the paper, and
the symbols used to represent them in the algorithm descrip-
tion.

3.2 Mission time

We are interested in the total time t it takes to complete
a mission. The search task takes g to find the target. The
inform task lasts for t; to inform the BS about the target
location after detection. The monitor task is performed in
time 77 needed to reorganize the UAVs for best possible QoS
link to BS for continuous monitoring. From the algorithm
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Table 1 Symbols

Symbol Explanation

0,1 Locations of BS and target

n Number of square cells in the search area

ny length of the side of a square cell

Reomm Communication range between UAVs for beacon transfer during phase 1; corresponds
to a radius of 6 cells in the simulation setup

M Total number of UAVs

R Set of relay UAVs

rd Relay UAV closest to the BS

P A population of subset of possible pre-planned GA paths

Py, The string containing the nth combination of the paths of all M UAVs

Py Position of UAV m at step k during its coverage flight path

" Time taken by UAV m to fly to and sense a cell in time step &

Ag Max. of T;" over all M UAVs in time step k

T§, T7, TV Search time, inform time, monitor time

T Mission time

w Set of final waypoints between / and BS that ensure the best possible QoS

A Parameter to tune coverage versus connectivity

design perspective, the mission is completed when a QoS
path has been established. The total mission time is T =
s+ 17 + i

3.3 Mission phase tuning

The paths can be designed such that coverage (ts) is priori-
tized over connectivity (t;, Tp7) and vice versa, depending on
requirements. This tuning is done with A € [0, 1], which has
the extreme cases A = 0 for generating connectivity-only
paths and 1 = 1 for coverage-only paths. If an applica-
tion prefers coverage over connectivity, we choose a value
A > 0.5, and if connectivity must be prioritized over cover-
age, we use A < 0.5.

3.4 Area and QoS demands

As mentioned in Sect. 3.1, the algorithm takes information
about the search area, communication technology, and QoS
demands as input to pre-plan search paths. The communica-
tion technology is an input requisite as different technologies
offer various throughput, delay, and coverage range; i.e., sup-
ported QoS demands over a certain area also differ for each
technology. Thus, assigning generic values for QoS demands
in the algorithm design is not realistic. In the following,
we explain our assumptions about the input parameters. We
use our experimental measurements using sensors and com-
munication interfaces to extract appropriate values for these
parameters. While these values may differ for different tech-
nologies, the proposed algorithm is not limited to a specific
communication technology.

The input search area is divided into n square cells with
side length n;, where each cell corresponds to the sensing
range of a UAV at a specific (constant) height . Using square
cells is consistent with the sensing range of the onboard cam-
eras used during our experimental research (Yahyanejad et al.
2011), where n; = 50 m at a height of 50 m. A BS is located
at cell ‘0’ which may lie inside or outside the search area. A
target is located at a random, uniformly sampled but unknown
cell [ in the area. The detection sensors are 100 % accurate,
i.e., the target is detected once cell / is visited by a UAV. The
effects of terrain, ground clutter, and elevation are assumed
to be insignificant in terms of coverage, movement, and com-
munication.

During the monitor task, we consider three QoS levels:
high, medium, and low quality. These vary in their throughput
and delay requirements. The network interfaces communi-
cate using high, medium and low data rates in disk-shaped
ranges. We extract the values for these input parameters
using our experimental work (Yanmaz et al. 2014b). With
802.11a as the communication technology of choice, we per-
formed experiments in a setup imitating a real-world SAR
scenario (Scherer et al. 2015). The high-quality video, low-
quality video and image transfers in our experiments serve
to extract the demands of the three QoS levels mentioned
above. High QoS (high-quality video) requires throughput
greater than 13 Mb/s and delays below 50 ms . Medium
QoS (low-quality video) requires at least 3 Mb/s and max-
imum delay of 200 ms. Low QoS (image transfer) requires
700 kb/s with delays no more than 350 ms. The high, medium,
and low data rates using 802.11a correspond to 54 Mb/s,
36 Mb/s, and 12 Mb/s, respectively. The edge of the commu-
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nication range (lowest data rate disk) lies at a radius where
the received signal strength from the communicating device
drops below —80dBm. Consequently, the number of packet
re-transmissions is too high to sustain a link (Yanmaz et al.
2014b). We consider an obstacle-free (i.e., line-of-sight) sce-
nario as presented in Scherer et al. (2015), where it is safe to
assume disk-shaped connectivity.

Figure 2 illustrates the relation between traffic type, dis-
tance, and the number of hops (drones) needed to support
the traffic type, using our chosen parameter values. As the
throughput and delay requirements are considered while
extracting this relationship, we assume that the information
transfer is real-time if a certain QoS link exists. The blue line
shows that a direct link supports high data rates in a radius
of two cells (100 m) from the BS. Beyond this range, the
error rate causes the data rate to drop. Medium data rate is
maintained in a radius of three cells. Low data rate extends
by up to six cells. Beyond this range, a single drone can not
support any traffic transfer due to the quality of the received
signal strength. The figure illustrates that a one-hop link sup-
ports high QoS links in a radius of three cells. A two-hop
links extends this range to four cells (red line). Beyond this,
high QoS can not be supported. Using both one and two-hop
links, medium QoS can be supported by up to six cells. Using
a two-hop link offers no benefit in range extension compared
to a single hop due to the accumulated error rate on the two
hops. A three-hop link extends medium QoS range up to nine
cells. Beyond this range, only low quality can be supported.
This information is used to extract the resource-optimal curve
(black dashed line), which provides the optimal number of
UAVs (hops) needed to achieve the best possible QoS consid-
ering a certain distance from the BS. The area over which a
certain QoS is supported is limited by the choice of the com-
munication technology as an input to the algorithm. With the
considered radio and QoS requirements, the maximum dis-
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tance from the BS at which the lowest quality link can still
be sustained is 24 cells (1.2 km) using four drones.

4 Path planning algorithm

The path planning algorithm chooses pre-planned coverage
paths and re-planned connectivity paths based on the shortest
time to perform the search, inform, and monitor tasks. A time
step needed by a UAV m to complete step k in its coverage
path p' is T)" = t" + t;, where t]' = %" is the time to
fly the distance dy with velocity v, and ¢, is a constant time
to sense a cell. Once the target is discovered, the UAVs that
become aware of it no longer sense the cells. For the purpose
of synchronization, the UAVs in flight move to the next cell
in their coverage path only after each UAV has completed its
previous step. Thus the time Ay needed by all UAVs in flight
to finish their step k is:

Ay = m”ellx{Tkm}. (D

The reported variance (from the simulation results) in the
step duration of all UAVs at any time step k is at most 2 X
in the designed paths. To compensate for the variance, the
UAV speed may be reduced in real-world implementation to
ensure synchronization while guaranteeing collision avoid-
ance. In our experimental work (Scherer et al. 2015), we
ensured collision avoidance by varying neighboring drones’
flight altitudes. We also assume that all drones synchronize
their clocks at the start of the mission, and that the clock drift
during the mission is not significant. After completing the
coverage path, each UAV returns to the BS. The number of
time steps needed from the start of the mission until all UAVs
have returned to the BS is K.

4.1 Coverage phase

At k = 0, M search UAVs forming set U/ take off from the
BS and, upon arriving at the first step in their path pY", they
sense the cell for time 7;. When the target is detected by UAV
m at step k1 in its coverage path (Fig. 3), m is labeled sensing
UAV ‘s’ and is excluded from the set U/. After ki, s loiters
above target location / for continuous monitoring.

The algorithm aims to use time-efficient pre-planned cov-
erage paths for fast discovery of a target located anywhere in
the search area. We define search time tg as:

ki
g = Z Ag. )
k=1
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while following its pre-planned coverage path (solid line). a In SIC+,
the blue UAV comes in range of s at k2 and replans to fly to wo on a new
path (dotted line) as a data mule UAV ry. At k3, the red UAV comes in
range of blue, where red is closer to wp. The UAVs then replan their
paths. Red is the new data mule UAV r,4, and flies on a newly designed

4.2 Connectivity phase

The ensuing connectivity phase uses UAVs in U/ to perform
the inform and monitor tasks. The calculation for this phase
depends on the discovery time step, k1 and discovery drone
s. Algorithm 1 presents how to compute the inform time
77. If at k1, s is in communication range of BS, 7; = 0, and
Algorithm 1 is not performed. The following takes place only
if BS is not informed about the target location at k.

The remaining UAVs in U/ are in general unaware that the
target has been located and thus continue searching. At some
time k», the first of these UAVs comes in range of s. At this
stage, we assume the UAVs to communicate at the search
communication range R.,;;,. There are four ways in which
a UAV m may come in range of s:

1. The two UAVs have a direct or multi-hop communication
link between them when s is labeled.

2. The two UAVs have a direct or multi-hop communication
link between them in the subsequent steps while s hovers
over [ and m is tracing its specified path.

3. The two UAVs are expected to be in range of each other
in the future. If m cannot establish connectivity with s
at this future time step, it assumes that s detected the
target and starts tracing back the path of s until it comes
in contact with s.

G F :
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———>Offline pre-planned search path
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(b) SICQ

inform path, arriving at wy at k4, while blue replans to fly to the closest
QoS waypoint (w1 ) on a monitor path (dashed line). The grey UAV fol-
lows its coverage path, until it comes in range of s, after which it replans
its monitor path to the unoccupied w,. b For SICQ, the pre-planned cov-
erage paths are such that at k3, enough UAVs join the relay set R to
form a QoS chain between s and BS while BS is being informed. Thus,
both red and grey UAVs acquire the system knowledge at k3 and all the
UAVs arrive at their destination waypoints at k4 (Color figure online)

4. If no UAV in U comes in range of s throughout its path,
after returning to the BS, the M — 1 UAVs start following
the path of s until they come in range of s.

Thus at kp, m is labeled relay, removed from the set I/, and
added to a set of relays R (Fig. 3).

After k>, we use an SIC-based enhanced strategy. We mod-
ified SIC (Hayat et al. 2017) to inform BS in the fastest way
through a combination of data ferrying and task handover.
In SIC, a single data mule UAV performs the inform task,
i.e., physically carries the target information to the BS (see
Sect. 2.2). Contrary to that, in the enhanced SIC strategy, the
inform task may be handed over to a different UAV at each
time step, based on the proximity to the BS (Algorithm 1).
Figure 3a illustrates the modification: the blue UAV r is the
first that comes in range of s and hence is assigned the inform
task. It then hands over this task to the red UAV that is closer
to BS. This shortens the inform time compared to the orig-
inal SIC. For clarity, the differences between the strategies
are highlighted in Table 2.

We define a set of final QoS waypoints WV based on the
information in Fig. 2, which represents a monitor path ensur-
ing best possible QoS between the BS and target position.
In this set, wo represents the waypoint closest to the BS, as
shown in Fig. 3. At &y, the state of occupancy of w € W
leads to three path replan cases:
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Table 2 The proposed strategies and their differences

Strategies Optimization

Remarks

SIC (Hayat et al. 2017)

Enhanced SIC Jointly optimizes tg, 77, and t)7 (QoS not considered)
SIC+ Jointly optimizes ts and 7; and then optimizes tyy
SICQ Jointly optimizes tg, 77, and T)

Jointly optimizes tg, 77, and 737 (QoS not considered)

A data mule drone physically flies to carry
out the inform task

The inform tasks is passed to the next
drone closer to the BS

In phase 2, inform task is the priority. The
GA-optimal pre-planned paths do not
ensure QoS path between the target and
BS when BS is informed

A QoS link exists between the target and
the BS as soon as BS is informed about
target location

Algorithm 1: Calculation for inform time t; if d p0 >
1

R:

tInput:/ e{l,....,n},R#0

2 Output: 77 #0

317 < 0;
4 k < ko;
5 repeat
6 choose rg € R closest to wy ;
7 replan p; for next kq time steps for direct flight to wo ;
8 for r € R\ry do
9 if closest unoccupied w € W\wq not claimed by any
other UAV then
\ replan p; to place r at closest w ;
else
10 \ replan p; such that r flies to BS;
end
end
11 k++;
12 for m € U do
13 if d[)Z’l < Rcomm then
| goto joinRelaySet: ;
end
14 for r € R do
15 if d pnpt < Reomm then
| goto joinRelaySet: ;
end
end
end
16 if d pro = Rcomm then
| 1=k—k2
end
until 7; == 0;
17 joinRelaySet:
U <~ U\m;
R <~ RUm;

— Case 1: wo unoccupied. A UAV r, (data mule) closest to
wo is selected from R. It replans its path for the following
time steps towards wo (Algorithm 1, line 7 represented by
a dotted line in Fig. 3). The remaining UAVs in R fly to
the nearest unoccupied waypoints from }V that have not
been claimed by any other (closer) UAVs (Algorithm 1,

@ Springer

line 9, dashed lines in Fig. 3). Thus r € R follow a new
set of paths p;.

— Case 2: wg occupied and w € W\wyp unoccupied. BS has
been informed about the target position. The r € R\ry
replan their paths to place themselves at the nearest unoc-
cupied waypoints from WV in terms of distance (dashed
lines in Fig. 3).

— Case 3: w € W occupied. BS has been informed and
QoS path has been established. All remaining UAVs fly
back to BS.

In the following time step (k = k> + 1), any UAV that
comes in range of s (Algorithm 1, line 13) or any UAV in
R (Algorithm 1, line 15) join R. As new UAVs may join R
at each time step, replanning occurs after each time step if a
new r is closer to any of the unoccupied w € W. Thus a new
rq may be chosen at each time step. As it is necessary for
drones in R to be in communication range of each other to
form arelay link to the BS, it is safe to assume that they share
a global knowledge of the candidates in ‘R and the occupancy
of W. Any new r joining R is updated about this knowledge
by its neighbor drone(s).

For the inform task, the process continues until case 2 is
reached, i.e., BS is informed about / (k4 in Fig. 3), which
happens when r; or any newly joined r comes in range of
BS in the current time step (Algorithm 1, line 16). As shown
in Fig. 3, the inform time is:

ky
= Z Ag.

k=k;

For the monitor task, the replanning continues at each time
step until case 3 is reached. In Fig. 3, the monitor time cor-
responds to:

ks
™ = Z Ag.

k=ky
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Fig.4 Flow chart for connectivity phase calculation and path replanning for SICQ

SIC+ connectivity phase SIC+ optimizes the connectiv-
ity phase tasks sequentially: The inform task is optimized
first, then the monitor task. The inform task requires 7; for
completion, using Algorithm 1. The monitor task follows,
where the best possible route is taken by a UAV to arrive at
its corresponding w € YV only after it acquires the system
knowledge. In Fig. 3a, the grey UAV u comes across s while
on its pre-planned coverage path, and receives knowledge
about R and w € W occupancy. After that, it replans its
shortest path flight to wy.

SICQ connectivity phase In SICQ, the connectivity phase
tasks are optimized jointly. This is illustrated in Fig. 4, which
shows the path replanning and the corresponding 7; and 7y
calculation during the connectivity phase. In Fig. 3b, the cov-
erage paths for SICQ are planned such that both 7; and )
are minimized. As illustrated, r; and r; arrive at w; and wa,
respectively in the same time it takes r to arrive at wg (inform
task). This leads to )y = 0.

4.3 Multi-objective path planning with GA

As discussed in Sect. 2, various optimization tools that
evaluate multi-objective algorithms exist. Being a popular
candidate amongst evolutionary algorithms for such evalu-
ation, we choose GA. Although GA does not explore the
entire search space, it is based on the premise of correla-
tion between the quality of neighboring solutions, resulting
in high-quality solutions in the search space in polynomial
time. Search is extended to non-neighboring solutions by
cross-over between two high-quality parent solutions, which
has been shown to result in high-quality offspring in most
cases (Mitchell 1998). Comparison of various optimization
tools for evaluation of our MOPP algorithm will be the focus
of future work.

In the coverage phase the path planning is done centrally,
but in the connectivity phase, the replanning is done in a
distributed manner. Using GA, the algorithm combines the
phases to generate the pre-planned paths with the goal to
minimize the overall mission time.

The objective function is designed to prioritize coverage
versus connectivity using A. In case of SIC+, only the search

and inform times are tunable with A. The separately opti-
mized monitor time 7y is added to compute the total mission
time tsic+. The objective function for SIC+ is:

tsic+ = E[Ats + (I — V)17 + ;| P, 3

where the expectation is over possible locations of the target
and P is the set of all possible paths. Contrary to this, in
SICQ, t) is included in the tunable connectivity part of the
optimization function, which is given by:

tsicQ = E[(Ats + (1 — A)(z7 + ;i) PI. 4

Since P is a large and discontinuous search space, we use
GA for path evolution and selection. We let P be a population
of a subset of all possible paths and then apply GA operators
to improve the population. We define P = { Py, P2, ... Py}
as the population of size N of GA generated strings of paths,
such that P, = {p), p2, ... pM} represents the nth possible
combination of paths the M UAVs fly for coverage. From the
objective function, it can be seen that GA prioritizes coverage
paths and considers connectivity based on A and communica-
tion demands. Coverage time is compromised only if a lower
Tg leads to higher overall mission time.

Before mission start, the MOPP algorithm is run for a
certain number of iterations on a central BS to pre-plan GA-
optimal search paths (Fig. 5a). The strings consisting of paths
of all the UAVs P, € P are generated as chromosomes. The
resultant set of path strings is evaluated for average ts, 17,
and/or t)s values for all possible target positions (depending
on the chosen strategy). This means that the paths are eval-
uated for (1) the time it takes the drones to fly the waypoint
paths assigned to them, and (2) the time it takes a drone to
establish a (possibly multi-hop) link to the BS from each
waypoint in its path. Minimizing (1) results in each drone
flying a path consisting of consecutive waypoints. Minimiz-
ing (2) results in the drone paths being chosen such that an
instant link from any drone to the BS can be ensured. The path
string with the minimum resultant objective function value
[Egs. (3), (4)] is chosen and used in the subsequent iteration.
Mutation (flip, swap, and slide) and cross-over are employed
to create a new generation of N path strings. Thus, at each
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Fig.5 Block diagram presenting a the central MOPP for planning UAV
paths at BS before mission start and b UAV actions during mission

iteration, only an N-sized population containing the best
chromosomes and their mutations are preserved to be eval-
uated in the next iteration. Partial-mapped crossover (PMX)
is performed between the best chromosome strings and ran-
domly selected chromosomes to expand the search space.
After a chosen number of iterations, the path string (Pr,;,)
with the minimum objective function value (T, Which s the
mission time tsic+ for SIC+ and ts1cq for SICQ) becomes
the final MOPP string to be used as pre-planned coverage
paths by UAVs during mission (Fig. 5b). UAVs follow these
paths to perform the search task, and upon target detection,
replan their paths in a distributed manner as described in
the previous subsection. The replanned paths ensure that the
inform and monitor tasks are performed in minimum time
for the specific target position.

5 Results and discussion

We perform simulations for the algorithm analysis. Deriv-
ing a closed form solution to Egs. (3), (4) is a complex task
due to the large number of parameters and constraints. The
algorithm is simulated for 10 to 15 runs, each over 1000 iter-
ations, with a GA-generated path population size N = 80.
We determine the parameter values for N and number of iter-
ations with the help of a preliminary algorithm analysis. The
results show that no signification improvement is reported for
number of iterations larger than 1000. Moreover, N = 80
provides a rich set of initial solutions. A larger population
size does not improve results, as has been proven in litera-
ture (Chen et al. 2012). The simulations are performed over
a 10 x 20 cells area. The maximum number of hops to pro-
vide the worst-case QoS in this area is four, so we run the
simulation using M > 4 UAVs.! The algorithm is evaluated

! In case M is smaller than the minimum number of UAV's needed for
communication path establishment in the area, i.e., there are regions in
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for A = {0, 0.01, 0.25, 0.5, 0.75, 0.99, 1}, where 0 and 1 are
the extreme values, and 0.01 and 0.99 illustrate how a small
weight assigned to coverage or connectivity shortens the cor-
responding phase. We analyze the duration of the mission t
including its decomposition into the three tasks and the path
quality, both as a function of A and M.

5.1 Duration of tasks and overall mission (average
values)

Figure 6 shows the impact of A on the task times tg, 77, T,
and their sum 1 for three different values of M. In all cases, tg
decreases and t; increases with increasing A; in some cases,
Ty increases slightly with A. The connectivity phase of SICQ
tends to be shorter than that of SIC+; especially the monitor
task is concluded faster.

For low UAV density, none of the three tasks dominates
the system behavior. The inclusion of the monitor task in
the optimization does not affect rg, even with small A, but
accelerates the overall mission.

Increasing the UAV density makes the search task domi-
nate the system in both strategies. By increasing A from O to
0.01, i.e., by slightly increasing the weight of coverage, the
search can be significantly accelerated without prolonging
the inform and monitor tasks, which in turn results in a sig-
nificantly shorter mission time. By further increasing A, the
search task is further shortened, but with only small gains for
A beyond 0.5. The search cannot be accelerated by increasing
the UAV density beyond a certain threshold. In our setup, this
threshold is eight UAVs. We choose A = 0.5 and M = 8 as
benchmark parameters in terms of search time for our setup.

5.2 Comparison of average mission duration with
related work

To illustrate the benefits of incorporating communication as a
mission goal rather than as a constraint, we compare MOPP
to related work, namely to the communication-constrained
short horizon algorithm (SH, with deadlocks) and the short
horizon cooperative algorithm (SHC, avoiding deadlocks)
(Scherer and Rinner 2017). All algorithms are simulated with
four UAVs in the same setup as in the paper at hand. For a
fair comparison, MOPP is operated with full weight on con-
nectivity (A = 0), its monitor task is not taken into account,
and the energy limitations considered in Scherer and Rinner
(2017) are ignored. We analyze the average time that passes
from the start of the mission to informing the BS about the
target position. We find that SIC+ is about 33 % faster than

the area with no direct connection (single or multi-hop) to the BS, we
can deploy an existing delay tolerant strategy for the connectivity phase.
However, for the existing QoS analysis, such cases are not considered.
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SH and about 64 % faster than SHC; SICQ is about 23 %
faster than SH and 59 % faster than SHC.

5.3 Duration of tasks and overall mission
(distributions)

Figures 7, 8 and 9 show the effect of the UAV density on
the duration of each task for all target positions. Figures 7
and 8 show inform and monitor times with A = 0.5 averaged
over 10 runs. The BS is located in the upper left corner. These
heatmaps illustrate that there is a certain dependency between
the task times and the distance from the BS. However, certain
targets close to the BS may suffer more from longer task
durations than distant targets, since the algorithm aims to
optimize the task times and the overall mission time over
all possible target positions. This can be witnessed in the
distribution of the inform time using SIC+ in Fig. 7afor M =
4 and Fig. 8a for M = 8. The resulting pre-planned paths aim
to minimize the mission time over all target positions, with a
certain guarantee in terms of the worst case task completion
time in a specific area, given a UAV density.

Both strategies improve their average inform time when
increasing the number of UAVs from M = 4 (Fig. 7) to
M = 8 (Fig. 8). Furthermore, SIC+ outperforms SICQ in
terms of inform time, i.e., the inform task suffers from the
joint optimization of the monitor task. However, the gain

in the monitor time is more significant than the loss in the
inform time. This is very prominent in case of M = 4, where
the worst case monitor time for SIC+ is about 10 times that
of SICQ; the SICQ monitor time is shortened by 90% at the
expense of a 33% longer inform time (Fig. 9b, c).

An increase in UAV density also improves the average
monitor time, the worst case monitor time of SIC+ is about
10 times lower with M = 8 than with M = 4. SICQ offers an
improvement of up to 21% and 90% for M = 8 and M = 4,
respectively. The search time for both SIC+ and SICQ have
the same distribution for a certain UAV density (Fig. 9a).
This is supported by the plots of Fig. 6a, b.

Figure 9 can be used to compare the performance of the
two strategies in a scenario with a fixed number of UAVs or a
bound on the task times. Figure 9a shows that independent of
the strategy, more UAVs result in faster search task comple-
tion. The effect of the choice of strategy is more significant
for connectivity tasks. As shown in Fig. 9b, for M = 4, the
BS is informed about the target location with 80% proba-
bility in four time steps (SIC+) or six time steps (SICQ).
The inform time shortens significantly with M = 8 for both
strategies, and SIC+ still outperforms SICQ (with 80% prob-
abilty, BS is informed about the target position in one time
step for SIC+ and two time steps for SICQ). Thus, if the time
to inform the BS is of critical importance, SIC+ should be
the strategy of choice. However, if it is also desirable to con-
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Fig.7 Time taken for connectivity phase tasks over the considered area
for M =4 and 2 = 0.5

tinuously monitor the target, SICQ can ensure establishing a
QoS path with 100% probability in five time steps, for both
M = 4 and M = 8 (Fig. 9c). Even though SIC+ performs
much better with M = 8 than with M = 4 UAVs, it still
performs worse than SICQ for M = 4.

In conclusion, although we witness a minor improvement
in search time beyond M = 8 and 1 = 0.5, as mentioned in
Sect. 5.3, the connectivity phase tasks mainly benefit from a
higher UAV density, which leads to better network connec-
tivity.

5.4 Path analysis
Let us finally analyze the connection quality of the paths

obtained at the time of target detection. The quality of the
coverage path in terms of the following connectivity tasks
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Fig.8 Time taken for connectivity phase tasks over the considered area
for M =8 and 1 = 0.5

depends highly on the network connectivity, which is affected
by the UAV density and A.

Figure 10a shows the likelihood that a communication
path exists between [ and BS as soon as the target is discov-
ered with varying A. On average, this likelihood improves
with the UAV density. With high enough UAV density and
a more densely connected network (with A < 0.5), BS is
informed about the target position immediately upon discov-
ery. With more weight on coverage, the likelihood of a link
to BS upon target discovery diminishes. This likelihood is
higher for SICQ than for SIC+. Even with large UAV den-
sity, SIC+ may result in UAVs spreading over the area, and
the sensing UAV may not immediately encounter a relay
UAV. In comparison, SICQ keeps UAVs more connected;
for M = 12, the BS is informed immediately upon target
discovery, independent of target position in our setup.
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Figure 10b shows the likelihood of a QoS communication
path between target and BS upon target detection. For high
UAV densities (M > |W)]), the likelihood that an SIC+ path
to BS at target detection is a monitor path reduces. Hence,
even though on average SIC+ informs the BS faster (see
Fig. 6), the probability of a monitor path existing at the time
of the target detection is higher for SICQ for all A values.

6 Conclusions

This article proposed and analyzed two UAV path (re)-
planning strategies to optimize coverage and connectivity
in search and rescue missions. Both strategies can be tuned
to prioritize coverage over connectivity and vice versa.
For missions consisting of three tasks—search, inform, and
monitor—the SICQ strategy jointly optimizes all tasks,
whereas SIC+ first optimizes search and inform, followed
by the monitor task.

We illustrated that joint optimization leads to better results
than sequential optimization, without significantly compro-
mising any of the tasks. For a small number of UAVs, we
observed an improvement in mission completion time when
more weight is assigned to the connectivity-related tasks. For
a large number of UAVs, it is more beneficial to give more
weight to the coverage-related search task. As more tasks
are performed using SICQ during the same mission time as
compared to SIC+, especially for low UAV density, we can
conclude that SICQ leads to better resource utilization. How-
ever, if informing the ground personnel is of highest priority,
SIC+ should be used. SICQ offers much better performance
if target tracking and monitoring is necessary. SICQ outper-
forms SIC+ in terms of the quality of the search paths in
terms of connectivity-related tasks.
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