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Abstract
Disturbance observer (DOB) based controller performs well in estimating and compensating for perturbation when the
external or internal unknown disturbance is slowly time varying. However, to some extent, robot manipulators usually work
in complex environment with high-frequency disturbance. Thereby, to enhance tracking performance in a teleoperation
system, only traditional DOB technique is insufficient. In this paper, for the purpose of constructing a feasible teleoperation
scheme, we develop a novel controller that contains a variable gain scheme to deal with fast-time varying perturbation, whose
gain is adjusted linearly according to human surface electromyographic signals collected from Myo wearable armband. In
addition, for tracking the motion of operator’s arm, we derive five-joint-angle data of a moving human arm through two
groups of quaternions generated from the armbands. Besides, the radial basis function neural networks and the disturbance
observer-based control (DOBC) approaches are fused together into the proposed controller to compensate the unknown
dynamics uncertainties of the slave robot as well as environmental perturbation. Experiments and simulations are conducted
to demonstrated the effectiveness of the proposed strategy.

Keywords Disturbance observer · Motion capture · Radial basis function neural networks · Teleoperation · Variable gain
control

1 Introduction

Robot teleoperation is a kind of advanced technology in
which human operator/operators remotely control the far-end
robot manipulator through computer intermediary (Sheridan
1995), and it plays an important role in healthcare, industrial
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production, rescue and aerospace. One of the most popu-
lar teleoperation methods is the master-salve scheme where
the operator controls the master device directly to command
the slave mobile robots and robotic manipulators (Luo et al.
2019; Yang et al. 2016; Veras et al. 2012).

The technology of robot control has developed rapidly
in the past decades (Liu et al. 2008; Yuan and Chen 2013),
and plenty of sensors are employed in teleoperation system
for capturing human motions, such as inertial measurement
units (IMUs), vision sensors (e.g. Kinect) (Schwarz et al.
2012; Xu et al. 2018), haptic devices (Phantom Omni). In
Yuan and Chen (2013), multiple wearable IMU sensors were
used to determine the limb joint motions and spatial location
of the human operator without external additional devices to
define the global frame. InVeras et al. (2012), to help the peo-
ple with disability to perform daily tasks, a control system
was proposed to teleoperate a robot manipulator in real-time
by PhantomOmni. However, since the device is cumbersome
and cannot be carried along by the operator, it is applicable to
few teleoperation scenarios. In Schwarz et al. (2012),with the
depth data collected by a Kinect sensor, a method of tracking
human operator’s full-body pose was developed. However,
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we cannot track the movements of the human operator when
the operator is out of the sight of the Kinect sensor or when
there is an obstacle between the operator and the Kinect sen-
sor. In Xu et al. (2016), a robot manipulator was able to track
the operator’s arm motion validly and effectively by position
control when there is no external force applied on the robot.
However, in practical applications, the robotic manipulator
is often subjected to uncertain external disturbance. When
perturbation is applied on the robot, large errors will appear
in the tracking task.

To deduce the effect of disturbance, researchers put for-
ward many methods for different kinds of disturbance in
various systems, e.g. a hybrid scheme consisting of an itera-
tive learning composite anti-disturbance structure to handle
model uncertainties and link vibration of manipulators in
Qiao et al. (2019), a distributed adaptive fuzzy algorithm
to cope with system nonlinear uncertainties in Sun et al.
(2019), a cerebellarmodel articulation controller to tackle the
effect from parameter uncertainties and external disturbance
in free-floating space manipulators (FFSMs) (Li et al. 2019),
considering time delay or its effect as system uncertainties or
disturbance to be addressed in Wang et al. (2002), designing
linear filter to settle the admissible parameter uncertainties
in Wang and Qiao (2002). Among these techniques in the
scholar society, disturbance observer (DOB) is an efficient
and widely-used technology in improving the tracking per-
formance. TheDOB technology is proposed byOhnishi et al.
(1996), and, due to the robustness, it is able to be intuitively
adjusted in a desired bandwidth, which plays an important
role in robust control (Sariyildiz and Ohnishi 2015). What is
more, since its efficiency in compensating the influence of
disturbance and model uncertainties, it has been widely used
in robotics, industrial automation and automotive (Yang et al.
2012; Chow and Cheung 2013). In Iida and Ohnishi (2004),
DOB was first applied in teleoperation system by attenu-
ating the influence of disturbance. Disturbance observer is
able to compensate for the model uncertainties by estimat-
ing external disturbance (Eom et al. 2001; Chen and Chen
2010). A novel nonlinear disturbance observer (NDOB) for
robotic manipulator was proposed in Chen et al. (2000), and
the effectiveness of the NDOBwas demonstrated by control-
ling a two link robotic arm. A three-link robotic manipulator
was controlled by NDOB in Nikoobin and Haghighi (2009),
which was the extension of Chen et al. (2000), and the stabil-
ity of the NDOB was verified by Lyapunov’s direct method.
In Chen et al. (2014), a scheme with adaptive fuzzy track-
ing ability was designed to multi-input and multi-output
(MIMO) non-linear systems under the circumstances with
unknown non-symmetric input saturation, system uncertain-
ties and external disturbance. DOBC owns the advantage of
simplicity and the ability of compensation for model uncer-
tainties. However, when the dynamic model is coupled with

fast-time-varying perturbation, it is not adequate to make up
for all uncertainties or disturbance.

To tackle the problems concerning robot dynamics uncer-
tainties, the human limb’s stiffness transfer schemes and
adaptive control techniques have been utilized in Yang et al.
(2006), Ajoudani et al. (2012), whereas human limb’s stiff-
ness transfer and adaptive control might not do well in
transient performance or cannot address the influence result-
ing from unparameterizable external disturbances through
parameter adaptation algorithm. To overcome the high-
frequency perturbation, in Li et al. (2016b), the authors
proposed the control strategy that integrated robot automatic
control and human operated impedance control using stiff-
ness byDOBbased adaptive control technique.However, this
method does not take advantage of the motion skills of the
human, and the movement of telerobot is not able to be con-
trolled. In Zhang et al. (2016), to control the variable stiffness
joints robot, the DOB based adaptive neural network control
is proposed.

In this paper, the main contributions lie in:

(i) A novel variable gain control scheme in teleoperation
is proposed, in which the Myo wearable armband is
employed to collect human arm’s surface electromyo-
graphic (sEMG) signals to generate suitable control gain
as well as to collect human arm’s motion to produce the
desired trajectory for tele-robot to follow (Xu et al. 2016).
In this way, the stiffness and the dexterity of human
arm can be transferred to the tele-robot. Through this
approach, humanoperator can easily tune the control gain
by adjusting his forearmmuscle strength, according to his
judgment on whether a high or low gain is needed under
current teleoperation task.

(ii) An integration of radial basis function neural networks
(RBFNN) algorithm and DOB theory is formulated, by
which the one of the main part of the controller is
constructed, whose function is to minimize the influ-
ence of the potential adverse effect brought by the
system dynamics uncertainties or the perturbation from
external environment or internal friction, sensormeasure-
ment noise, etc.. Through the introduction of integral
Lyapunov–Krasovskii function, the system stability is
guaranteed.

In the following sections, we show the proposed teleoper-
ation system configuration in Sect. 2, in which the usage
of Myo armbands and the mapping from operator’s arm
motion to the slave robot’s 5 joint angles are illustrated.
We then introduce the proposed controller in Sect. 3, where
we develop the variable gain control scheme according to
human arm sEMG signals and derive a novel combination
of the RBFNN algorithm and the DOB theory. We show the
experiments, simulations and the corresponding results in
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Fig. 1 The structure of the whole system

Sect. 4. Finally, we summarize our contributions and outline
the future work in Sect. 5.

2 Teleoperation system configuration

A brief structure of the proposed control system is shown in
Fig. 1. The two Myo armbands worn on operator’s arm (one
on upper arm and the other on forearm as shown in Fig. 5)
work independently and generate their own rotating data (a
group of quaternions) as operator moves his arm, which can
be then transferred tomaster computer via bluetooth commu-
nication technique. By combining two groups of quaternions
collected from the built-in IMU ofMyo armbands, we derive
5 joint angles data in real time, which is considered to be the
raw reference trajectory for a tele-robot (namely the slave
robot) to follow. At the meanwhile, the sEMG signals are
collected from 8 sensors of every armband to adjust the con-
trol gain according to certain rule (discussed in the Sect. 3).

2.1 Introduction of the structure of a human upper
limb

There are seven degrees of freedoms (DOFs) in a human
upper limb, containing three DOFs in the shoulder joint,
two in the elbow joint and two in the wrist joint. The kine-
matic model of an upper limb can be depicted in Fig. 2
in accordance with the standard Denavit-Hartenberg (DH)
model (Craig 2009). Though it is said to be able to capture
7 joint angles via two Myo armbands (Xu et al. 2016), in
this paper, we only employ 5 joints (3 in shoulder and 2 in
elbow) to demonstrate the proposed scheme, and the 5 joints
DH parameters are shown in Table 1 (Ding and Fang 2013),
where L1 and L2 represent the lengths of the operator’s upper
arm and forearm, respectively.

2.2 Motion capture

First of all, to capture motion of human arm for teleopera-
tion, we need a rotationmatrix derived from a unit quaternion
(Hamilton 1848) produced by each armband in every sam-
pling time, presenting in the form of (1), then, combine two

Fig. 2 DHmodel of a human arms (including shoulder joints and elbow
joints only)

Table 1 Standard DH
parameters of kinematics model
for human arm

i θi di ai αi

1 0◦ 0 0 90◦

2 90◦ 0 0 90◦

3 −90◦ L1 0 90◦

4 180◦ 0 0 90◦

5 90◦ L2 0 90◦

armbands data together to compute the joint angles for robot
manipulator.

q = q0 + q1 i + q2 j + q3k (1)

According to Rodrigues’ rotation formula, we derive a
rotation matrix relevant to every quaternion.

R =
⎡
⎣
1 − 2q22 − 2q23 2q1q2 − 2q0q3 2q1q3 + 2q0q2
2q1q2 + 2q0q3 1 − 2q21 − 2q23 2q2q3 − 2q0q1
2q1q3 − 2q0q2 2q2q3 + 2q0q1 1 − 2q21 − 2q22

⎤
⎦ (2)

Secondary, since armbands work independently to each
other, after they randomly starting up at a random place, one
armband does not know the pose of the other armband. There-
fore, the primary task, is to establish the relation between two
armbands. Seen from Fig. 3a, we can formulate (3), unify-
ing a whole coordinate system for the two rotation matrix
indicating two armband poses.

(a) Knowing their randomly start-up coordinate OU0 and
OF0, representing the initial coordinate of the armband worn
on upper arm and forearm, respectively; (b) Recording one of
their real-time poses RU0 and RF0 with a certain arm motion
at a certain sampling time; (c) Knowing their poses RU1

and RF1 regarding to their start-up coordinates; (d) Then,
we obtain the two important rotation matrices RU2 and RF2,
which take certain poses RU0 and RF0 as their initial coordi-
nate frames

RU2 = RU1R
−1
U0 , RF2 = RF1R

−1
F0 (3)
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Fig. 3 a Unify two armbands’ coordinate frames. b Description for 5
joint angles generated by Myo armbands

By now, the two rotation matrices are still disconnected
but can be unified to one coordinate frame basing on (4).
Then, the armband poses on forearm (R∗

F2) takes OU2 as the
reference coordinate frame.

R∗
F2 = RT

U2RF2 (4)

Then, according to Craig (2009), the Euler angles are
derived as

β = arctan(−rU31,
√
r2U11 + r2U21) (5)

α = arctan(rU21/cosβ, rU11/cosβ) (6)

γ = arctan(rU32/cosβ, rU33/cosβ) (7)

η = acos(rF∗11) (8)

ε = acos(rF∗33) (9)

where r represents an element of a rotation matrix, its sub-
script “U” and “F” denoting RU2 and R∗

F2 respectively and
subscript numbers “ij” (i, j = 1, 2, 3) means the element posi-
tion in thematrix; besides,meanings of thoseGreek alphabets
are shown in Fig. 3b. By exploiting differential theory, the
corresponding velocities and accelerations of the 5 joints are
derived.

2.3 sEMG signals and control gains

There are eight built-in electrodes in everyMyo armband and
every channel of the eight produces a sEMG signal value in
every sampling time.We integrate the N channels values into
one by summing them up, and adopt their average, as (10)
describes.

u(k) = 1

N

N∑
i=1

|ui (k)| (10)

where N ≤ 8, k represents sampling time and ui is the real-
time sEMG value. Due to measurement noise, we employ a
sliding window filter, as described in (11), to gain a smoother
curve.

u f (k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

k

∑k
j=0 u( j), k < w,

1

w

∑k
j=k−w u( j), k ≥ w.

(11)

where u f (k) is the filtered sEMG value, w is the width of
the sliding window filter.

According to Potvin et al. (1996) and Han et al. (2015),
supposing that sEMG equals to electromyographic (EMG),
we obtain the muscle activity a(k)

a(k) = eAu f (k) − 1

eA − 1
(12)

where A is a coefficient chosen from interval (-3, 0). To
Ensure the stability of the system, the range of the control
gain can be constrained to be (Gmin , Gmax ). Then, the linear
relation between sEMG signals and the control gain can be
established as (13) shown.

G(k) = Gmin + (Gmax − Gmin)
(a(k) − amin)

(amax − amin)
(13)

3 Variable gain control scheme based on
DOB and RBFNN

As it is known, to obtain a precise non-linear dynamicsmodel
of a robot manipulator is nearly impossible. Even if an accu-
ratemodel is obtained at the first time, daily usage of the robot
will damage its accuracy due to abrasion in joints, ageing of
parts, etc., which are hardly measurable. In addition, when
robot manipulator carries out tasks, for instance, loading
heavy objects, grabbing an alive animal with dynamic move-
ment, or working in a temperature-fluctuating environment,
etc., the trajectory tracking performance of the manipulator
can be affected. Therefore, we proposed an effective scheme
to resist and compensate for these uncertainties and distur-
bances.

Generally, the dynamics model of a series robot manipu-
lator can be expressed in Lagrange Dynamics Equation (14),

M(θ)θ̈ + C(θ, θ̇ )θ̇ + G(θ) + fint = τ − fext (14)

where θ , θ̇ and θ̈ ∈ Rn×1 represents joint angles, velocities
and accelerations of a series robot manipulator, M ∈ Rn×n is
the inertia matrix, C(θ, θ̇ )θ̇ ∈ Rn×1 is Coriolis and centrifu-
gal torque, G(θ) ∈ Rn×1 denotes gravitational force, fint
and fext are internal and external disturbance respectively
and τ ∈ Rn×1 is the motor torque vector.
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Then it can be transformed into a state-space equation

⎧⎨
⎩
ẋ1 = x2
ẋ2 = M−1 [F(x) + d(t) + τ ]
y = x1

(15)

where x1 = [θ1, θ2, . . . , θn]T , x2 = [θ̇1, θ̇2, . . . , θ̇n]T ,F(x) =
−C(θ, θ̇ )θ̇ − G(θ), d(t) = − fint − fext .

From the above equations, we can conclude that to execute
a mission with high quality, obtaining an accurate dynamics
model, precisely measuring the disturbance are inevitable.
However, due to difficulties mentioned before, to be feasi-
bly, we need to try another way. That is the purpose of the
paper: designing a controller combining the adaptive neural
network scheme and the DOB technology to approximate the
influence caused by dynamics uncertainties and disturbance,
which is discussed in the following subsections.

Before that, we do some preliminary formulation.
We define Md ∈ Rn×n as a diagonal matrix with diag-

onal elements mdii (x) > 0, which represents parts of the
dynamics-model and can be easily obtained but has no need
for high precision. Then, there must exits an unknownmatrix
ΔM making equation Md +ΔM = M . Considering (15), we
have

Md ẋ2 = (M − ΔM )ẋ2
= (M − ΔM )M−1[F(x) + d(t) + τ ]
= τ − ΔMM−1τ + (I − ΔMM−1)d(t)

+ (I − ΔMM−1)F(x)
= τ + g(τ ) + r(d) + F(x)

(16)

where g(τ ) = −ΔMM−1τ , r(d) = (I − ΔMM−1)d(t) and
F(x) = (I − ΔMM−1)F(x).

Remark 1 Generally, according to the saturation of system
input, the motor torque of a normal robotic or mechani-
cal system are assumed to be bounded, therefore, g(τ ) =
−ΔMM−1τ is considered bounded.

Assumption 1 The unknown internal and external distur-
bance d(t) is assumed to be bounded, namely there exists
an unknown positive constant dm making d(t) ≤ dm.

Then, we define another item, filtered tracking error si
Slotine et al. (1991):

si =
(
d

dt
+ λi

)n−1

ei

= e(n−1)
i + C1

n−1λ
1
i e

(n−2)
i + C2

n−1λ
2
i e

(n−3)
i

+ · · · + λn−1
i ei , i = 1, 2, . . . , n.

(17)

In (17), Cb
a denotes mathematical combination, lambda =

diag[λ1, λ2, . . . , λn] with λi (i = 1, 2, . . . , n) being posi-

tive constant to be designed, and e = [e1, e2, . . . , en] with
ei = xi − xdi . It is easy to confirm ei converges to 0 with si
converging to 0. Moreover, the “n” represents the state-space
dimension, and to be specifically, n = 2 in this paper as we
have only two state x1 and x2. Therefore, we have

s = ė + λe (18)

and

ṡ = ë + λė
= ẋ2 − ÿd + λė
= M−1

d [τ + g(τ ) + r(d) + F(x)] + ν

(19)

with ν = −ÿdi + λė.

3.1 Introduction of integral Lyapunov–Krasovskii
function

Before introducing the designed controller, referring to Li
et al. (2016a), we firstly present an integral Lyapunov–
Krasovskii (20), to facilitate the design of the controller later,
which is capable in avoiding singularity problem of a con-
troller.

V1 = sT Mϑ s (20)

where Mϑ = ∫ 1
0 ϑMα dϑ = diag

[∫ 1
0 ϑMαi i (xi ) dϑ

]
,

with Mα = Mdα = diag[Mdiiαi i ]n×n . And the matrix
α = diag[α11, α22, . . . , αnn]. To be simple for analyz-
ing, we define α11 = α22 = · · · = αnn . And the xi
is defined as xi = [xT1 , xT2 , . . . , xTn−1, xn1, xn2, . . . , ϑsi +
ζi , . . . , xnm]T ∈ Rnm , with ζ = y(n−1)

di − ξi and ξi =
λi1e

n−2
i + · · · + λi,n−1ei . ϑ is an independent scalar to xi ,

including s and ζ . It is important to choose suitable Md and
α such that Mdiiαi i > 0. Then we can write

V1 =
m∑
i=1

s2i

∫ 1

0
ϑMαi i (xi , ϑsi + ζi ) dϑ (21)

Applying the symmetric nature of Mα and Mϑ , the partial
derivation of (20) with respect to time can be derived

V̇1 = sT
[
2Mϑ ṡ +

(
∂Mϑ

∂s
ṡ
)
s +

(
∂Mϑ

∂x
ẋ
)
s

+
(

∂Mϑ

∂ζ
ζ̇

)
s
]

(22)
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with
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Mϑ

∂s
ṡ = diag

[
1∫
0

ϑ
∂Mαi i

∂si
ṡi dϑ

]

∂Mϑ

∂x
ẋ = diag

[
1∫
0

ϑ
∑n

j=1
∂Mαi i
∂x j

ẋ j dϑ

]

∂Mϑ

∂ζ
ζ̇ = diag

[
1∫
0

ϑ
∂Mαi i

∂ζi
ζ̇i dϑ

]

(23)

For

diag

[∫ 1

0
ϑ

∂Mαi i

∂si
si dϑ

]
=

∫ 1

0
ϑ2 ∂Mα

∂ϑ
dϑ, (24)

we derive

sT
(

∂Mϑ

∂s
ṡ
)
s = sT

(
[ϑMα] |10 − 2

∫ 1

0
ϑBαdϑ

)
ṡ

= sT Mα ṡ − 2sT Mϑ ṡ (25)

For

diag

[∫ 1

0
ϑ

∂Mαi i

∂ζi
si dϑ

]
=

∫ 1

0
ϑ

∂Mα

∂ϑ
dϑ, (26)

and ζ̇i = −νi , we have

sT
(

∂Mϑ

∂ζ
ζ̇

)
s = sT

(
−

∫ 1

0
ϑ

∂Mα

∂ϑ
dϑ

)

= −sMαν + sT (27)

Then,

V̇1 = sT Mα ṡ − sT Mαν

+sT
[(

∂Mϑ

∂x
ẋ
)

+
∫ 1

0
Mανdϑ

]
. (28)

Substituting ṡ with (19), we obtain

V̇1 = sT MαM
−1
d [τ + g(τ ) + r(d) + F(x)]

+sT
[(

∂Mϑ

∂x
ẋ
)
s +

∫ 1

0
Mανdϑ

]
(29)

Utilizing the symmetric property of α, Md and Mdα, the
following equation makes sense.

MαM
−1
d = MdαM

−1
d = α (30)

Applying (30), we have

V̇1 = sTα [τ + g(τ ) + r(d) + F(x) + Θ] (31)

where

Θ =
∫ 1

0
ϑ

(
∂Md

∂x
ẋ

)
sdϑ +

∫ 1

0
Mdνdϑ (32)

with

∂Md

∂x
ẋ = diag

⎡
⎣

n∑
j=1

∂Mdii

∂x j
ẋ j

⎤
⎦ (i = 1, 2, . . . , n) (33)

3.2 Controller design

The controller design can be divided into two parts. Refer-
ring to Zhang et al. (2016), for one, the DOB technology
is employed to estimate the internal or external unmeasur-
able uncertainties and disturbance; for the other, the RBFNN
is applied to approximate the residual uncertainties of the
robot manipulator. Firstly, we define D̂ as the estimation of
unknown disturbance D, with

D̂ + D̃ = D = g(τ ) + r(d) (34)

where D̃ is the estimation error.
Secondly, Applying RBFNN to approximate the rest

unknown dynamics uncertainties, we define

F(x) + D̃ = −WT S(X) (35)

whereW is the NN weight and S(X) is the radial basis func-
tion output, which is supposed to be bounded ||S(X)|| ≤
Smax with input X = [xT1 , xT2 ]T . For the radial basis func-
tion, we choose Gaussian function

Si (X) = exp

[
−(X − ci )T (X − ci )

b2i

]
(36)

with ci = [ci1, ci2, . . . , ci,m] is the center and bi is the width
of the Gaussian function. In general, theoretically, RBFNN
has the ability to smoothly approximate all continuous func-
tion. However, here in practice, errors always occur during
updating weight and we define it to be

W̃ = Ŵ − W (37)

with Ŵ is the updating weight in real time.
Then, we can write

Md ẋ2 = τ + D − WS (38)

To complete the formulation of DOB, an auxiliary equa-
tion is designed as

z = D − K x2 (39)
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with K = KT > 0 is diagonal matrix and all its elements
are positive constants.

Considering (38), we calculate the derivative of z regard-
ing to time

ż = Ḋ − K ẋ2 (40)

= Ḋ − KM−1
d

[
τ + D − WT S

]
(41)

Combining Remark 1 and Assumption 1, we assume that
the system disturbance is slowly time varying. Thus, there
must exists an constant dm so as to

||D|| ≤ dm (42)

Therefore, (40) can be updated to be

˙̂z = −KM−1
d

[
τ + D̂ − Ŵ T S

]
(43)

Consequently, the ẑ can be updated as in every sampling
time, and the estimation value of D can be obtained as well

D̂ = ẑ + K x2 (44)

Finally, let us design the DOB and RBFNN based control
law:

τ = −Gαs − D̂ + Ŵ T S(X) − Θ (45)

whereG is the variable control gain partially computed from
(13).

The RBFNN weight updating law is

˙̂Wi = −Γi

[
Si (X)αi i si + δi Ŵi

]
(46)

where Γi ∈ Rn is one of a series of symmetric positive
definite constant matrices and δi is one of a series positive
constants.

Employing the above-mentioned Integral Lyapunov–
Krasovskii Function, we take the following Lyapunov func-
tion as candidate:

V2 = V1 + 1

2
D̃T D̃ + 1

2

n∑
i=1

W̃ T
i Γ −1

i W̃i (47)

With the help of (31), (35) and (46), substituting D,WT S
and τ , the derivative of V2 can be written as

V̇2 = sT
[
−Gαs + D̃ + W̃ S(X)

]

+D̃T ˙̃D +
n∑

i=1

W̃ T
i Γ −1

i
˙̃Wi (48)

Thanks to the following facts

D̃ = D − D̂ = z − ẑ = z̃ (49)

˙̃D = ˙̃z = ż − ˙̂z
= Ḋ − KM−1

d

[
D̃ + W̃ T S

]
(50)

sTα D̃ ≤ sααs
2

+ D̃T D̃

2
(51)

D̃T ≤ D̃T D̃

2
+ ||D̃||2

2
(52)

n∑
i=1

W̃ T
i Si (X)siαi i = sTαW̃ T S(X) (53)

D̃T KM−1
d W̃ T S(X) ≤ ||D̃||2

2
+ KM−1

d S(X)||W̃ ||2
2

(54)

− δW̃ T
i Ŵi = −δ||W̃ ||2i − δW̃ T

i (55)

Wi ≤ −δ||W̃i ||2
2

+ δ||Wi ||2
2

(56)

we derive

V̇2 ≤ −sTα

(
G − 1

2
In×n

)
αs

− D̃T
(
KM−1

d − 2In×n

)
D̃

− δ − KM−1
d Smax

2

n∑
i=1

W̃ T
i W̃i

+ dm
2

+ δ||W ||2
2

(57)

For further proving, we need to choose positive definite
variable gain matrixG, K and δ in order to make the follow-
ing inequalities.

λmin

(
α

(
G − 1

2
In×n

)
α

)
≥

∫ 2

0
ϑλ (Mα) dϑ (58)

KM−1
d − 2In×n > 0 (59)
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Fig. 4 Experimental setup

δ − KM−1
d Smax > 0 (60)

Then, by enlarging the right side of inequality (57), to be
exactly, the first three terms, we can establish

V̇2 ≤ −kV2 + C (61)

with

k = min

(
λmin

(
KM−1

d − 2In×n

)
,
δ − KM−1

d Smax∑m
i=1 Γ −1

i

, 1

)

(62)

C = dm
2

+ δ||W ||2
2

(63)

Bya similarway to solve a differential equation, inequality
(61) can be mathematically “solved” to be

V2 ≤
(
V2|t=0 − C

k

)
e−kt + C

k
(64)

where t denotes time. It is apparent that the right side of

inequality (64) exponentially converge to
C

k
, proving V2 to

be bounded, therefore, s, D̃ and Ŵ are bounded.

4 Experimental study

The flow chart of the whole experimental setup is shown
in Fig. 4. In such framework, we design the following
experiments and simulations to verified the performance of
the proposed teleoperation scheme and the proposed con-
troller. Section 4.1 shows the strategy that human operator
wear two Myo armbands, using them to generate trajecto-
ries and sEMG for the controller to control a tele-robot.
Section 4.2 demonstrates the feasibility of the proposed
controller, including the tacking performance of the pro-
posed controller as well as the functionality of RBFNN in
Sect. 4.2.1 and the effectiveness of the variable gain approach
in Sect. 4.2.2.

Fig. 5 Sample frames which depicts that Baxter’s left arm copies
motions of operator’s left arm, confirming the feasibility of the pro-
posed motion capturing scheme

Fig. 6 a Raw sEMG signals and filtered sEMG signals. bMotion cap-
tured with operator stretching out his arm and drawing circles with his
hand

4.1 Humanmotion capturing and sEMG signals
collecting

In this section, we demonstrate the feasibility of human
motion capturing and human sEMG collecting.

Above all, the wireless hardware, twoMyo armbands, are
worn on human operator’s arm (refer to Figs. 3b, 5) to collect
movements (quaternion) and sEMG signal (eight channels)
data of operator, which are then transferred to the master
computer via Bluetooth technique. These data is processed
in real-time and transformed into the joint position for the
tele-robot manipulator (Baxter) and the gain increment for
the proposed controller.

Firstly,with operatorwearing twoarmbands onupper limb
[one on upper arm and the other on forearm (Fig. 5)], employ-
ing the theory developed in Sect. 2.2, the joint angles are
obtained at the meanwhile when the operator moves his arm.
They are converted to slave computer connecting to Baxter
robot. By employing the left arm of Baxter and command-
ing it to move its first five joints (from shoulder to elbow)
to match the received angles data by executing joint position
control mode, we can intuitively see that the left arm of Bax-
ter follows the human well, referring to Fig. 5, which depicts
that Baxter’s left arm copies motions of operator’s left arm.
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Fig. 7 This is the state of 0 position of all joints of Baxter left arm.
The first two joints are selected as controlled object, while the others
are viewed as disturbance

Secondly, the sEMG signals can be extracted from both
Myos in any channel of the 16. In this experimental study,
for the purpose of simplicity, we recorded sEMG data in one
channel on the Myo on the forearm (the MYO 2 in Fig. 6a),
and the raw and the filtered time-series of sEMG amplitude
are shown in Fig. 6a. This data is then used to estimate human
arm’s muscle activity and transformed into the increment for
the control gain. In Fig. 6a, the human operator tensed (a
little) his arm muscle at around 33 s and tensed (tightly)
and persist for a while from 43 to 48 s, while in the other
time, he remain his arm relax. Apparently, the sEMG signal
are available and controllable: its amplitude climbs up as
the operator tense his muscle and stay to a minor value as
the operator relax his arm. Then, through the formulation in
Sect. 2.3, we obtain the filtered sEMG signal, and then the
variable control gain.

From the above figures and explanation, we see the fea-
sibility for the proposed teleoperation scheme, including a
wireless way for human motion capturing and muscle activ-
ity estimating.

4.2 Tracking performance verification

The tracking performance is verified through the following
experiments and simulations.

In this verification, without loss of generality, we uti-
lized the first two joints of the Baxter robot (“left_s0” and
“left_s1”), while other joints are not considered a part of the
control object but viewed as a payload attached to the joint
“left_s1” as well as disturbance, illustrated in Fig. 7.

4.2.1 Performance of different controllers

In this part, we collected trajectories using the proposed
scheme developed in Sect. 2.2. These trajectories were col-
lected when human operator stretched out his arm and
drew non-regular circles with his hand, depicted in Fig. 6b.
The generated trajectories are shown in Fig. 8a with note
“θ1d” and “θ2d”. Then, we utilized them for the two above-

mentioned joints of the Baxter to track, while other five joints
were forced to keep to 0 position with a widely-used Pro-
portional Derivative (PD) controller. Here, it is important to
point out that the coupling dynamics of the last five links
can be viewed as time varying stochastic disturbance, affect-
ing the tracking performance of the first two joints. It can be
explained by figures from Fig. 8e–i that the last five joints
and links moved and collided sometimes as the first two
links drawing circles, which certainly contributed to couple
dynamical influence “attached” to the first two links. Tra-
jectories were obtained offline and the tracking test were
conducted via the Baxter in the Robot Operating System
(ROS) Gazebo platform.

For the purpose of a proper comparison between our pro-
posed controller and the others, we referred to a traditional
PD controller, which is popularly employed in robot control,
and a PD controller integrated with a NDOB proposed by
Chen et al. (2000).

The selected PD controller is: τ = −K1d ė − K1pe, with
K1d = diag[30, 29] and K1p = diag[225, 220].

The chosen PD controller with NDOB is:

τ = −K2d ė − K2pe − d̂

d̂ = z + p(θ, θ̇ )

ż = −L(θ, θ̇ )z + L(θ, θ̇ )(G(θ, θ̇ ) − T − p(θ, θ̇ ))

G(θ, θ̇ ) = CNDOB + GNDOB

L(θ, θ̇ ) = c

[
1 0
1 1

]
M−1

NDOB

p(θ, θ̇ ) = c

[
θ̇1

θ̇1 + θ̇2

]
(65)

where c = 0.01, K2d = diag[22, 20], K2p = diag[215, 215]
and MNDOB, CNDOB and GNDOB are the first two links
dynamics model of Baxter robot, which can be nominally
obtained through Smith et al. (2016).

As far as to the proposed controller, Md was chosen
as diag[0.05, 0.05], denoting that we did not know much
information about the controlled object model. And other
variables are listed in Table 2. In this part, the sEMG signal
was not yet involved and the control gain stayed constant.

Besides the three controllers mentioned above, to demon-
strate the functionality of the RBFNN in the proposed
controller, we simply remove the RBF item in the proposed
controller (the third item in Eq. (45)) and form another con-
troller to be compared. Hence, four controllers were involved
in this comparison.

The experimental results are shown in Fig. 8. Figure 8a,
b show the desired and the real-time recorded trajectories
and the tracking errors of the four controllers. Figure 8c, d
depict the control outputs and the norm of RBFNN weights.
Figure 8e–i are the positions and torques in joint 3–joint 7,
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Fig. 8 Experimental results of the performance comparison of three controllers

Table 2 Variables of the
proposed controller

Parameters Value Parameters Value

Sampling rate 100 Hz Node centres Combination of θ1(0.1, 0.9), θ2(−0.9,−0.1),
θ̇1(−0.24, 0.24) and θ̇2(−0.24, 0.24)

Control rate 100 Hz λ diag[17.5, 16]
No. of RBF nodes 16 G diag[17.5, 16]
Node variance 1 K diag[0.1, 0.1]
Initial weight 0

which certainly raise constant (the weight of the five links
and joints), time-varying and stochastic (coupling dynamics,
even some collision in joint 4, see Fig. 8f) disturbance to the
controlled object, the first two joints.

Based on these results, especially on Fig. 8a, b, we see two
facts: (i) comparing to the proposed controller, the tracking
trajectory and errors fluctuate more sever when the RBFNN
item is cut off, and (ii) tracking errors keep to minimum
in most time when the proposed controller was employed.

Therefore, we can conclude that: (i) without RBFNN, the
system become less stable, and in anotherwords, theRBFNN
integrated to the proposed controller has the ability to atten-
uate the affect caused by model uncertainties, and (ii) the
proposed controller can perform well even under such a
sever circumstance with hardly measurable disturbance, sur-
passing the PD controller and the PD controller with a
NDOB. This simulation confirms the feasibility of the pro-
pose scheme of integrating the RBFNN algorithm and DOB
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Fig. 9 Disturbance is created through driving the sixth joint to track a
sine curve, while the first two joints are controlled to stay in 0 position

technology in the controller to attenuate the adverse influence
caused by model uncertainties and disturbance.

4.2.2 Effectiveness of variable gain control

Let us imagine a scenario where we need to teleoperate a
robot to rescue a pet and the tele-robot needs to hold it and
put it into a safe box, but the animal is scared and strug-
gling to escape from the robot end effector. In such cases, we
need a strategy to keep the end effector closed to the desired
position under such condition with unknown and fast time-
varying disturbance. Hence, we proposed this variable gain
control scheme. Through this method, we can do it easily:
the control gain can be convenientlymodified by the operator
through tensing or relaxing his arm muscles, which is practi-
cal in robot teleoperation. The following study demonstrates
its effectiveness.

To verify the anti-disturbance performance of the pro-
posed variable control gain scheme, firstly, we collected
sEMG time series. The collected sEMG was employed
offline, simply supposing that the operator began to tense
or relax his arm muscles when he realized the teleoperation
situation required him to modify the control gain. Secondly,
we created different disturbances with different frequencies
and amplitudes through the method depicted in Fig. 9 where
the sixth joint of Baxter is driven to follow a sine wave:
θ6d = nsin(2mπ t); Thirdly, we employed the developed
variable gain method to try to keep the first two joint of
Baxter (in Gazebo) to 0 position under circumstances with
different disturbances.

In this part, the parameters we utilized are the same as
those listed in Table 2 except for those in Table 3

For the part of creating disturbance, we forced the sixth
joint to track a sine wave with different frequencies in a fixed
direction, the 45◦ in Fig. 9. Such direction ensures that this
kind of dynamical disturbance generated by the sixth joint
influences the first two joints.

Table 3 Parameters utilized in variable gain control tests

Parameters Value

Node centers Combination of θ1(−0.4, 0.4),
θ2(−0.4, 0.4), θ̇1(−0.56, 0.56) and
θ̇2(−0.56, 0.56)

G Gmax = diag[30, 28], Gmin = diag[15.5, 15]
A −0.04

N 1

(n, m) in Fig. 9 (± 0.8, 1)

Then we conducted the simulations under different kinds
of circumstances. One result of them is shown in Fig. 10,
while the others are in Table 4.

In every minipage of Fig. 10, we divide the results into
5 stages, which are marked out alternately by two kinds of
gray background colour.

Stage 1 is from0s to 5s and the first two joints are free from
fast-time-varying disturbance. They normally stay to the 0
position, see Fig. 10a. We can see the controller functions
well in such peaceful environment, though the “attached”
static disturbance (payload of the last five joints) never dis-
appears.

Stage 2 is from 5 to 15 s and the fast-time-varying distur-
bance starts, see Fig. 10h, but the sEMG is not yet employed.
We can see the influence of the movement of joint 6 on
joint 1 and joint 2: the tracking errors of joint 1 and joint
2 increase up to around ± 0.6 rad and ± 0.5 rad respec-
tively, see Fig. 10a, b. Though theRBFNNstartsworking, see
Fig. 10f, theDOB is of no use to this kind of fast-time-varying
and asymmetrical disturbance. The asymmetry property of
disturbance can be reflected by the unsymmetrical errors,
which mainly results from the particular movement limit of
joint 4.

Stage 3 is from 15 to 30 s, where the sEMGbegins to work
and the control gainG11 andG22 are lightlymodified because
(suppose) the operator still does not notice the disturbance,
see Fig. 10e, and no changing of the tracking errors of joint
1 and joint 2 can be noticed.

Stage 4 is from 30 to 45 s, and (suppose) the operator
realizes the disturbance and keeps his muscle tensed at the
first time. In this stage, the tracking errors of joint 1 and joint
2 apparently decrease (Fig. 10b) as control gain increases
(Fig. 10e).

Stage 5 is from 45 to 60 s, where the movement of joint
6 keeps going but the control gain moves to another higher
state, which results in the minimum errors in joint 1 and joint
2 among all stages, see Fig. 10a, b.

The other minipages in Fig. 10 without being mentioned
above also describe some information of the procedure, espe-
cially in Fig. 10c, we can see the increase of the controller
outputs (control torques) as sEMG climbs up.
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Fig. 10 Experimental result of the effectiveness of variable gain control based on sEMG

The root mean square errors (RMSE) are also computed:
RMSE1,1 (joint 1, 17.5–27.5 s) = 0.00127, RMSE1,2 (joint
1, 32.5–42.5 s) = 0.00104, RMSE1,3 (joint 1, 47.5–57.5 s)
= 0.00079, and likewise, RMSE2,1 = 0.00120, RMSE2,2 =
0.00103, RMSE2,3 = 0.00080. They, in another aspect, con-
tribute to the verification of the effectiveness of the variable
gain control scheme.

In Table 4, another 12 simulation results are given, in
which all conditions in every single No. are the same to the
aforementioned simulation except for thosemarked out in the
second column. Similarly, all RMSE results reveal the fact
that as the operator tenses his forearm muscles, the tracking
errors of joint 1 and joint 2 tend to decrease, nomatter chang-
ing the disturbances, modifying the control gain intervals or
adjusting different amplitudes of the operator’s arm muscle
sEMG (note: these sEMG series were obtained when opera-
tor regularly relax-tense his arm muscles alike Fig. 10e).

Therefore, we yield a brief summary that the proposed
variable gain control scheme is practical and able to resist
such fast-time-varying disturbance.

5 Conclusion

This paper mainly introduces a novel, simple and possible
scheme for robot teleoperation. By utilizing Myo armbands
in capturing humanmotion and collecting arm sEMGsignals,

human motion can be transferred to a tele-robot manip-
ulator, making it work more flexibly as a human being.
This wireless way has advantages such as being available
to captured human motion anywhere (comparing to those
machine-vision methods that might be blocked by obsta-
cles) and being simpler and more comfortable for operators
(comparing to those EMG-extracted technique that requires
operator to wear complex sensors). In addition, by utilizing
the proposed controller, integrating the DOB technology, the
RBFNN algorithm and the variable gain strategy, the tra-
jectory tracking performance of robot manipulator is fine,
compared to those mentioned controllers. Model dynamics
uncertainty problems are out of account, since the proposed
combination of DOB and RBFNN reduces the reliability of
constructing a precise dynamics non-linear model. And the
variable gain control scheme is practical and verified to be
effective in resisting the fast-time-varying disturbances to
some extent. Experimental and simulation results demon-
strate the merits of the proposed approach which enables the
tele-robot manipulator to copy human arm motions, and to
resist low and high-frequency disturbances.

Though good results in the paper demonstrate the feasi-
bility of the proposed method, we still have a long way to
go to improve the system in the future. For instance, we are
going to find out more suitable ways to generate position,
velocity and acceleration trajectories without using sliding
window filter, for which actually brought about many side
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Table 4 Variable gain control tests results

No. Changed condition RMSE results

RMSE1,1 RMSE1,2 RMSE1,3
RMSE2,1 RMSE2,2 RMSE2,3

1 m = 1.1 0.00135 0.00118 0.00097

0.00126 0.00111 0.00092

2 m = 0.9 0.00111 0.00082 0.00064

0.00105 0.00081 0.00067

3 m = 0.8 0.00082 0.00059 0.00047

0.00074 0.00056 0.00046

4 n = ±1 0.00125 0.00099 0.00084

0.00119 0.00096 0.00086

5 n = ±0.9 0.00126 0.00103 0.00086

0.00122 0.00102 0.00085

6 n = ±0.7 0.00125 0.00100 0.00081

0.00119 0.00098 0.00082

7 Gmax = Gmax + 2 0.00131 0.00099 0.00080

0.00125 0.00096 0.00082

8 Gmin = Gmin − 2 0.00140 0.00109 0.00082

Gmax = Gmax + 2 0.00131 0.00106 0.00087

9 Gmin = Gmin − 2 0.00137 0.00112 0.00087

Gmax = Gmax − 2 0.00130 0.00110 0.00088

10 sEMG series 1 0.00131 0.00124 0.00096

0.00125 0.00120 0.00096

11 sEMG series 2 0.00130 0.00120 0.00097

0.00126 0.00116 0.00095

12 sEMG series 3 0.00129 0.00105 0.00084

0.00123 0.00103 0.00085

effects, such as lagging of the trajectories, and causing the
missing of actual peak values, etc..
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