Skip to main content
Log in

A unified kinematics modeling, optimization and control of universal robots: from serial and parallel manipulators to walking, rolling and hybrid robots

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

The paper develops a unified kinematics modeling, optimization and control that is applicable to a wide range of autonomous and non-autonomous robots. These include hybrid robots that combine two or more modes of operations, such as combination of walking and rolling, or rolling and manipulation, as well as parallel robots in various configurations. The equations of motion are derived in compact forms that embed an optimization criterion. These equations are used to obtain various useful forms of the robot kinematics such as recursive, body and limb-end kinematic forms. Using the modeling, actuation and control equations are derived that ensure traversing a desired path while maintaining balanced operations and tip-over avoidance. Various simulation results are provided for a hybrid rolling-walking robot, which demonstrate the capabilities and effectiveness of the developed methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. In this paper we use the notation \( T_{A,B} \) to describe frame B relative to frame A, or the transformation from frame \( A \) to frame \( B \). This notation is equivalent to \( {}_{B}^{A} T \) used in some books, e.g. (Craig 2018).

References

  • Alamdari, A., Zhou, X., & Koovi, V. N. (2013). Kinematic modelling, analysis and control of highly reconfigurable articulated wheeled vehicles. In Proc. ASME 2013 Int. Design Engineering Technical Conf., pp. 1–6.

  • Bellicoseo, C. D., Jenelten, F., Gehring, C., & Hutter, M. (2018). Dynamic locomotion through online nonlinear motion optimization for quadruped robots. IEEE Robotics and Automation Letters, 3(3), 2261–2268.

    Article  Google Scholar 

  • Boston Dynamics. (2018). https://www.bostondynamics.com/bigdog.

  • Buttner, T., Roennau, A., Heppner, G., Pfotzer, L., & Dillmann, R. (2016). Bio-inspired optimization of kinematic models for multi-legged walking robots. In: 6th IEEE RAS/EMBS Int. Conf. on Biomedical Robotics and Biomechatronics.

  • Cameron, J., Jain, A., Huntsberger, T., Sohl, G., & Mukherjee, R. (2009). Vehicle-terrain interaction modeling and validation for planetary rovers. NASA Jet Propulsion Laboratory Publications 10-15, https://dartslab.jpl.nasa.gov.

  • CMU. (2013). https://www.cmu.edu/homepage/computing/2013/spring/chimp-to-the-rescue.shtml.

  • Cordes, F., Dettmann, A., & Kirchner, A. (2011). Locomotion modes for a hybrid wheeled-leg planetary rover. In Proc. of IEEE Int. Conf. on Robotics and Biomimetics, Vol. 1, pp. 654–659.

  • Craig, J.J. (2018). Introduction to Robotics, Mechanics and Control. London, UK: Pearson Publishers.

    Google Scholar 

  • Cully, A., Clune, J., Tarapore, D., & Mouret, J.-B. (2015). Robots that can adapt like animals”. Nature, 521, 503–507.

    Article  Google Scholar 

  • Dai, J.-M., Liu, T.-A., Lin, H.-Y. (2017). Road surface recognition for rout recommendation. In Proc. IEEE Intelligent Vehicles Symposium, pp. 121–126.

  • Dasgupta, B., & Mruthyunjaya, T. S. (2000). The Stewart latform manipulators: A review. Mechanism and Machine Theory, 35(1), 15–40.

    Article  MathSciNet  MATH  Google Scholar 

  • Fujita, T., & Sasaki, T. (2017). Development of hexapod tracked mobile robot and its hybrid locomotion with object-carrying. In IEEE Int. Symp. on Robotics and Intelligent Sensors.

  • Gonzales de Santos, P., Estremera, J., & Garcia, E. (2003). The SILO4-A true walking robot for comparative study of walking machines techniques. IEEE Robotics and Automation Magazine, 10(4), 23–32.

    Article  Google Scholar 

  • Gonzales, R., & Iagnemma, K. (2018). Slippage estimation and compensation for planetary exploration rovers. Journal of Field Robotics, 35, 564–577.

    Article  Google Scholar 

  • Gonzales, A., & Zielinska, T. (2012). Postural equilibrium criteria concerning feet properties for bi-ped robots. Journal of Automation, Mobile Robotics & Intelligent Systems, 6(1), 22–27.

    Google Scholar 

  • Grand, C., BenAmar, F., Plumet, F., & Bidaud, P. (2000). Stability control of a wheel-legged mini-rover. In Proc of Int. Conf. on Climbing and Walking Robots.

  • Iagnemma, K., Rzepniewski, A., Dubowsky, S.,Huntsberger, T., Pirjanian, P., & Schenker, P. (2000). Mobile robot kinematic reconfigurability for rough-terrain. In Proceedings of the SPIE Symposium on Sensor Fusion and Decentralized Control in Robotic Systems III.

  • Jehanno, J-M., Cully, A., Grand, C., and Mouret, J-B. (2014). Design of a wheel-legged hexapod robot for creative adaptation. World Scientific Publishing, 20(6).

  • Kelly, A. (2012). A vector algebra formulation of mobile robot velocity kinematics. In Proc. 2012 Int. Conf. Field and Service Robots.

  • Kelly, A., & Seegmiller, N. (2015). Recursive kinematic propagation for wheeled mobile robots. International Journal of Robotics Research, 34(3), 288–313.

    Article  Google Scholar 

  • Khusainov, R., Shimchik, I., Afanasyev, I., & Magid, E. (2016). 3D Modelling of biped robot locomotion with walking primitives approach in Simulink environment. Lecture Notes in Electrical Engineering, 383, 287–304.

    Article  Google Scholar 

  • Makovsky, A., Ilott, P., & Taylor, J. (2009) Mars Science Laboratory Telecommunications System Design. Pasadena, California: Jet Propulsion Laboratory. https://descanso.jpl.nasa.gov/DPSummary/Descanso14_MSL_Telecom.pdf (retrieved April 2018).

  • Morell, A., Tarokh, M., & Acosta, L. (2013). Solving the forward kinematics problem in parallel robots using Support Vector Regression. Engineering Applications of Artificial Intelligence, 26(7), 1698–1706.

    Article  Google Scholar 

  • Muir, P. F., & Neuman, C. P. (1991). Kinematic modeling of wheeled mobile robots. Journal of Robotic Systems, 44(2), 281–340.

    Article  Google Scholar 

  • Nakamura, N. (1991). Advanced Robotics-Redundancy and Optimization, Chapter 4. Addison-Wesley.

  • NASA. (2019). Walk and roll robot. https://ntts-prod.s3.amazonaws.com/t2p/prod/t2media/tops/pdf/GSC-TOPS-43.pdf. Accessed January 2019.

  • Omer, R., & Fu, L. (2010).An automatic image recognition system for winter road surface condition classification. In IEEE Int. Conf. Intelligent Transportation Systems, pp. 1375–1379.

  • Ortiz, J. S., Aldás, J. V., & Andaluz, V. H. (2017). Mobile manipulators for cooperative transportation of objects in common. In Y. Gao, S. Fallah, Y. Jin, & C. Lekakou (Eds.), Towards autonomous robotic systems. TAROS 2017. Lecture Notes in Computer Science (Vol. 10454). Berlin: Springer.

    Google Scholar 

  • Qian, Y., Almazan, E. J., & Elder, J. H. (2016). Evaluating features and classifiers for road weather condition analysis. In IEEE Int. Conf. Image Processing (ICIP), pp. 4403–4407.

  • Rajagopalan, R. (1997). A generic kinematic formulation for wheeled mobile robots. Journal of Robotic Systems, 14(2), 77–91.

    Article  MATH  Google Scholar 

  • Reid, W., Prez-Grau, T. J., Goktogan, A. L., & Sukkarieh, S. (2016). Actively articulated suspension for a wheel-on-Leg rover operating on a Martian analog surface. In IEEE Int. Conf. Robotics and Automation, pp. 5596-5602.

  • Ryu, S.-K., Kim, T., Bae, E., & Lee, S.-R. (2014). Algorithms and experiments fpor vision-based recognition of road surface. Journal of Emerging Trends in Computing and Information Science, 5(10), 739–745.

    Google Scholar 

  • Shao, X.-S., Yang, Y.-P., & Wang, W. (2012). Ground substrate classification and adaptive walking through interaction dynamics for legged robots. Journal of Harbin Institute Technology, 19(3), 100–108.

    Google Scholar 

  • Shin, D. H., & Park, K. H. (2001). Velocity kinematic modeling for wheeled mobile robots. In Proceedings 2001 IEEE International Conf. Robotics and Automation, Vol. 4, pp. 3516–3522.

  • Shkolnik, A., & Tedrake, R. (2007). Inverse kinematics for a point-foot quadruped robot with dynamic Redundancy Resolution. In IEEE International Conference on Robotics and Automation, Rome.

  • Siegwart, R., Lamon, P., Estier, T., Lauria, M., & Piguet, R. (2002). Innovative design for wheeled locomotion in rough terrain. Robotics and Autonomous Systems, 40, 151–162.

    Article  Google Scholar 

  • Smith, J., Sharf, I., & Trentini, M. (2006). Paw: A hybrid wheeled-leg robot. In Proc. of IEEE Int. Conf. on Robotics and Automation.

  • Tarokh, M. (2007). Real time forward kinematics solutions for general Stewart platforms. In IEEE Int. Conf. Robot. Autom., pp. 901–906.

  • Tarokh, M., Ho, H., & Bouloubasis, A. (2013). Systematic kinematics analysis and balance control of high mobility rovers over rough terrain. Journal of Robotics and Autonomous Systems, 61, 13–24.

    Article  Google Scholar 

  • Tarokh, M., & Lee, M. (2009). Systematic method for kinematics modeling of legged robots on uneven terrain. International Journal of Control and Automation, 2(2), 9–17.

    Google Scholar 

  • Tarokh, M., & McDermott, G. (2005). Kinematics modeling and analysis of articulated rovers. IEEE Transactions on Robotics, 21(4), 439–454.

    Article  Google Scholar 

  • Tarokh, M., & McDermott, G. (2007). A systematic approach to kinematics modeling of high mobility wheeled rovers. In Proc. IEEE Int. Conf. Robotics and Automation, pp 4905–4910.

  • Tarokh, M., McDermott, G., Hayati, S., & Hung, J. (1999). Kinematic modeling of a high mobility Mars rover. In Proc. IEEE Int. Conf. Robotics and Automation, pp. 992–998.

  • Tarokh, M., McDermott, G., & Mireles, L. (2006). Balance control of articulated rovers with active suspension. In Proc. 8th IFAC-IEEE Symposium on Robot Control, Vol. FrP-2.1-2, pp. 1–6.

  • Tsai, M.S., Shiau, T. N., & Tsai, Y. J. (2003). Direct kinematic analysis of a 3-PRS parallel mechanism. Mech. Mach. Theory, 38, 71–83.

    Article  MATH  Google Scholar 

  • Winkler, A. W., Bellicoso, C. D., Hutter, M., & Buchli, J. (2018). Gait and trajectory optimization for legged systems through phased-based end- effector parameterization. IEEE Robotics and Automation Letters, 3(3), 1560–1567.

    Article  Google Scholar 

  • Winkler, A. W., Farshidian, F., Pardo, D., Neunert, M., & Buchli, J. (2017). Fast trajectory optimization for legged robots using vertex-based ZMP constraints. IEEE Robotics and Automation Letters, 2(4), 2201–2208.

    Article  Google Scholar 

  • Wu, A. A., Huh, T. M., Mukherjee, R., & Cutsosky, M. (2016). Integrated ground reaction force sensing and classification for small legged robots. IEEE Robotics & Automation Letters, 1, 1125–1132.

    Article  Google Scholar 

  • Ylonen, S., & Halme, A. (2002). Further development and testing of the hybrid locomotion of Workpartner robot. In Proc of Int. Conf. on Climbing on Walking Robots (CLAWAR).

  • Yuan, J., & Hirose, S. (2004). Research on leg-wheel hybrid stair-climbing robot, zero carrier. In IEEE Int. Conf. on Robotics and Biomimetics.

  • Zhang, S., Hu, Y., Xing, Y. (2016). Modified kinematic models for wheel-legged robot considering the rolling effect during leg-support phase. In Proc. 36th Chinese Control Conf.

  • Zhao, H, Wu, H., & Chen, L. (2017). Road surface recognition based on SVM optimization and image segmentation processing. Hindawi Journal of Advanced Transportation, Article ID 6458495, pp. 1–21.

  • Zhong, G., Deng, H., Xin, G., & Wang, G. (2016). Dynamic hybrid control of a hexapod walking robot: Experimental verification. IEEE Transactions on Industrial Electronics, 63(8), 5001–5011.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Tarokh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarokh, M. A unified kinematics modeling, optimization and control of universal robots: from serial and parallel manipulators to walking, rolling and hybrid robots. Auton Robot 44, 1233–1248 (2020). https://doi.org/10.1007/s10514-020-09929-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-020-09929-6

Keywords

Navigation