Skip to main content

Advertisement

Log in

Wind disturbance rejection for unmanned aerial vehicles using acceleration feedback enhanced \(H_\infty \) method

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

One of the most critical issues for unmanned aerial vehicle (UAV) safety and precision flight is wind disturbance. To this end, this paper presents an acceleration feedback (AF) enhanced \(H_\infty \) method for UAV flight control against wind disturbance and its application on a hex-rotor platform. The dynamics of the UAV system are decoupled into attitude control and position control loops. A hierarchical \(H_\infty \) controller is then designed for the decoupled system. Finally, an AF-enhanced method is introduced into the decoupled system without altering the original control structure. The stability of the AF-enhanced \(H_\infty \) method for the UAV system is analyzed and verified using the \(H_\infty \) theory. Two types of wind disturbances—continuous and gusty winds—are considered and analyzed for guiding the AF-enhanced controller design. The results of an experimental comparison between the \(H_\infty \) controller and the AF-enhanced \(H_\infty \) controller against wind disturbances demonstrate the robustness and effectiveness of the proposed method for wind disturbance rejection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Bouabdallah, S., Noth, A., & Siegwart, R. (2004). Pid versus lq control techniques applied to an indoor micro quadrotor. In Proceedings of The IEEE international conference on intelligent robots and systems (IROS) (pp. 2451–2456) IEEE.

  • Chen, C., Gao, H., Ding, L., Li, W., Yu, H., & Deng, Z. (2018). Trajectory tracking control of wmrs with lateral and longitudinal slippage based on active disturbance rejection control. Robotics and Autonomous Systems, 107, 236–245.

    Article  Google Scholar 

  • Chen, M., & Huzmezan, M. (2003). A combined mbpc/2 dof h infinity controller for a quad rotor uav. In AIAA guidance, navigation, and control conference and exhibit (p. 5520).

  • Dai, B., He, Y., Zhang, G., Gu, F., Yang, L., & Xu, W. (2018). Wind disturbance rejection for unmanned aerial vehicle based on acceleration feedback method. In 2018 IEEE conference on decision and control (CDC), IEEE (pp. 4680–4686).

  • De Jager, B. (1994). Acceleration assisted tracking control. IEEE Control Systems, 14(5), 20–27.

    Article  MathSciNet  Google Scholar 

  • Fantoni, I., Lozano, R., & Kendoul, F. (2008). Asymptotic stability of hierarchical inner-outer loop-based flight controllers. IFAC Proceedings Volumes, 41(2), 1741–1746.

    Article  Google Scholar 

  • Gahinet, P., & Apkarian, P. (1994). A linear matrix inequality approach to \(h_\infty \) control. International Journal of Robust and Nonlinear Control, 4(4), 421–448.

    Article  MathSciNet  Google Scholar 

  • Han, J. (2009). From pid to active disturbance rejection control. IEEE Transactions on Industrial Electronics, 56(3), 900–906.

    Article  Google Scholar 

  • Han, J., Wang, Y., Tan, D., & Xu, W. (2000). Acceleration feedback control for direct-drive motor system. In Proceedings 2000 IEEE/RSJ international conference on intelligent robots and systems (Vol. 2, pp. 1068–1074), (IROS 2000), IEEE.

  • Han, J., He, Y., & Xu, W. (2007). Angular acceleration estimation and feedback control: An experimental investigation. Mechatronics, 17(9), 524–532.

    Article  Google Scholar 

  • He, Y., & Han, J. (2007). Acceleration feedback enhanced \(h_\infty \) disturbance attenuation control. In 33rd annual conference of the IEEE industrial electronics society (pp. 839–844), IECON 2007. IEEE.

  • He, Y., & Han, J. (2010). Acceleration-feedback-enhanced robust control of an unmanned helicopter. Journal of Guidance, Control, and Dynamics, 33(4), 1236–1250.

    Article  MathSciNet  Google Scholar 

  • Isidori, A. (2013). Nonlinear control systems. Berlin: Springer.

    MATH  Google Scholar 

  • Kendoul, F., Yu, Z., & Nonami, K. (2010). Guidance and nonlinear control system for autonomous flight of minirotorcraft unmanned aerial vehicles. Journal of Field Robotics, 27(3), 311–334.

    Article  Google Scholar 

  • Kim, K. S., Rew, K. H., & Kim, S. (2010). Disturbance observer for estimating higher order disturbances in time series expansion. IEEE Transactions on Automatic Control, 55(8), 1905–1911.

    Article  MathSciNet  Google Scholar 

  • Kobilarov, M. (2013). Trajectory tracking of a class of underactuated systems with external disturbances. In 2013 American control conference (pp. 1044–1049), IEEE.

  • Lee, D., Kim, H. J., & Sastry, S. (2009). Feedback linearization versus adaptive sliding mode control for a quadrotor helicopter. International Journal of Control, Automation and Systems, 7(3), 419–428.

    Article  Google Scholar 

  • Lee, T. (2015). Geometric controls for a tethered quadrotor uav. In 2015 54th IEEE conference on decision and control (CDC) (pp. 2749–2754), IEEE

  • Lee, T., Leoky, M., & McClamroch, N. H. (2010). Geometric tracking control of a quadrotor uav on se (3). In 2010 49th IEEE conference on decision and control (CDC) (pp. 5420–5425), IEEE.

  • Lee, Y. M., Kang, J. K., & Sul, S. K. (1999). Acceleration feedback control strategy for improving riding quality of elevator system. In Thirty-Fourth IAS annual meeting. Industry applications conference, Conference Record of the 1999 IEEE (Vol. 2, pp. 1375–1379), IEEE.

  • Madani, T., & Benallegue, A. (2006). Backstepping control for a quadrotor helicopter. In 2006 IEEE/RSJ international conference on intelligent robots and systems (pp. 3255–3260), IEEE.

  • Madani, T., & Benallegue, A. (2007). Sliding mode observer and backstepping control for a quadrotor unmanned aerial vehicles. In American control conference (pp. 5887–5892), 2007. ACC’07, IEEE.

  • Mellinger, D., & Kumar, V. (2011). Minimum snap trajectory generation and control for quadrotors. In 2011 IEEE international conference on robotics and automation (pp. 2520–2525), IEEE.

  • Mokhtari, A., Benallegue, A., & Daachi, B. (2005). Robust feedback linearization and g\(h_\infty \) controller for a quadrotor unmanned aerial vehicle. In 2005 IEEE/RSJ international conference on intelligent robots and systems (pp. 1198–1203), IEEE.

  • Ohishi, K., Nakao, M., Ohnishi, K., & Miyachi, K. (1987). Microprocessor-controlled dc motor for load-insensitive position servo system. IEEE Transactions on Industrial Electronics, 34(1), 44–49.

    Article  Google Scholar 

  • Qi, J., Song, D., Shang, H., Wang, N., Hua, C., Wu, C., et al. (2016). Search and rescue rotary-wing uav and its application to the lushan ms 7.0 earthquake. Journal of Field Robotics, 33(3), 290–321.

    Article  Google Scholar 

  • Soule, H. A., & Miller, M. P. (1934). The experimental determination of the moments of inertia of airplanes. Technical Report Archive and Image Library

  • Studenny, J., & Belanger, P. R. (1984). Robot manipulator control by acceleration feedback. In The 23rd IEEE conference on decision and control (Vol. 23, pp. 1070–1072), IEEE.

  • Studenny, J., Belanger, P., & Daneshmend, L. (1991). A digital implementation of the acceleration feedback control law on a puma 560 manipulator. In Proceedings of the 30th IEEE conference on decision and control (pp. 2639–2648), IEEE.

  • Su, J., Chen, W. H., & Yang, J. (2016). On relationship between time-domain and frequency-domain disturbance observers and its applications. Journal of Dynamic Systems, Measurement, and Control, 138(9), 091013.

    Article  Google Scholar 

  • Sun, X. Y., Fang, Y. C., & Sun, N. (2012). Backstepping-based adaptive attitude and height control of a small-scale unmanned helicopter. Control Theory and Applications, 29(3), 381–388.

    Google Scholar 

  • Tomic T (2014) Evaluation of acceleration-based disturbance observation for multicopter control. In Control conference (ECC), 2014 European (pp. 2937–2944), IEEE.

  • Wang, H., & Chen, M. (2016). Trajectory tracking control for an indoor quadrotor uav based on the disturbance observer. Transactions of the Institute of Measurement and Control, 38(6), 675–692.

    Article  Google Scholar 

  • Xiong, J. J., & Zheng, E. H. (2014). Position and attitude tracking control for a quadrotor uav. ISA Transactions, 53(3), 725–731.

    Article  Google Scholar 

  • Xu, B., Wang, D., Zhang, Y., & Shi, Z. (2017). Dob based neural control of flexible hypersonic flight vehicle considering wind effects. IEEE Transactions on Industrial Electronics, 64(11), 8676–8685.

    Article  Google Scholar 

  • Xu, W., Han, J., & Tso, S. (2000). Experimental study of contact transition control incorporating joint acceleration feedback. IEEE/ASME Transactions on Mechatronics, 5(3), 292–301.

    Article  Google Scholar 

  • Yang, S., Li, K., & Shi, J. (2009). Design and simulation of the longitudinal autopilot of uav based on self-adaptive fuzzy pid control. In 2009 international conference on computational intelligence and security (pp. 634–638), IEEE.

Download references

Acknowledgements

This work was supported in part by the National Key Research and Development Program of China under Grant 2017YFC1405401, in part by the National Natural Science Foundation of China under Grant 91748130 and 61821005, and in part by the Youth Innovation Promotion Association under Grant 2018232.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuqing He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A Proof of Theorem 1

Similar to the proof in (Fantoni et al. , 2008), we provide the following proof for Theorem 1. Defining \(h(R, R_d) = [h_x, h_y, \)\( h_z]^T = (R_d - R)\mathbf {e}_3\), and combining it with (4) and attitude error \(e_\Phi \), we obtain

$$\begin{aligned} \left\{ \begin{array}{ll} h_x &{} = c\phi s\theta c\psi + s\phi s\psi - (c\phi _{d}s\theta _{d}c\phi _{d} + s\phi _d s\psi _d) \\ h_y &{} = c\phi s\theta s\psi - s\phi c\psi - (c\phi _{d}s\theta _{d}s\phi _{d} + s\phi _d c\psi _d) \\ h_z &{} = c\phi c\theta - c\phi _d c\theta _d \end{array} \right. \end{aligned}$$
(46)

For \(h_x\) in (46), replacing \([\phi , \theta , \psi ] ^T\) by \([\phi _d + e_\phi , \theta _d + e_\theta , \phi _d + e_\psi ]^T\) and combine the following trigonometric function

$$\begin{aligned} \left\{ \begin{array}{ll} \sin (a+b) &{} = \sin (a) + \sin (\frac{b}{2})\cos (a+\frac{b}{2}) \\ \cos (a+b) &{} = \cos (a) - \sin (\frac{b}{2})\sin (a+\frac{b}{2}) \\ \begin{array}{l} \sin (a)| \le 1 \\ |\cos (a)| \le 1 \end{array}&\end{array} \right. \end{aligned}$$
(47)

Thus, we can obtain,

$$\begin{aligned} |h_x|\le & {} 2\left| s\frac{e_\phi }{2}\right| + \left| s\frac{e_\theta }{2}\right| + 2\left| s\frac{e_\psi }{2}\right| + \left| s\frac{e_\phi }{2}\right| \cdot \left| s\frac{e_\theta }{2}\right| \nonumber \\+ & {} \left| s\frac{e_\theta }{2}\right| \cdot \left| s\frac{e_\psi }{2}\right| + 2\left| s\frac{e_\phi }{2}\right| \cdot \left| s\frac{e_\psi }{2}\right| \nonumber \\+ & {} \left| s\frac{e_\phi }{2}\right| \cdot \left| s\frac{e_\theta }{2}\right| \cdot \left| s\frac{e_\psi }{2}\right| \end{aligned}$$
(48)

Combining the following inequalities into (48)

$$\begin{aligned} \left\{ \begin{array}{l} |a|\cdot |b| \le \frac{1}{2}(|a| + |b|),~for~|a|,~|b| \le 1 \\ |a|\cdot |b|\cdot |c| \le \frac{1}{3}(|a| + |b| + |c|),~for~|a|,~|b|,~|c| \le 1 \\ |\sin (a)| \le |a| \end{array} \right. \end{aligned}$$
(49)

Thus, we can obtain

$$\begin{aligned} |h_x| \le \frac{10}{3}\left| s\frac{e_\phi }{2}\right| + \frac{7}{3}\left| s\frac{e_\theta }{2}\right| + \frac{10}{3}\left| s\frac{e_\psi }{2}\right| \le \frac{5}{3}(|e_\phi | + |e_\theta | + |e_\psi |) \end{aligned}$$
(50)

Similarly, the property of \(h_y\) and \(h_z\) is

$$\begin{aligned} \left\{ \begin{array}{l} |h_y| \le \frac{5}{3}(|e_\phi | + |e_\theta | + |e_\psi |) \\ |h_z| \le \frac{3}{4}(|e_\phi | + |e_\theta |) \end{array} \right. \end{aligned}$$
(51)

With (50) and (51), the norm of \(h(R,R_d)\) satisfies

$$\begin{aligned} \Vert h(R,R_d)\Vert = \sqrt{h_x^{2} + h_y^{2} + h_z^{2}} \le k_1\Vert e_\Phi \Vert \end{aligned}$$
(52)

where \(k_1 \le \sqrt{13}\). For the hex-rotor, we can assume the maximum thrust is \(k_2\); thus,

$$\begin{aligned} \left\| \delta (R,R_d) \right\|\le & {} \left\| \frac{f}{m}\right\| \cdot \Vert h(R,R_d)\Vert \le \frac{k_1 k_2}{m} \Vert e_\Phi \Vert \nonumber \\= & {} \left\| {\left[ O_{3\times 3}~O_{3\times 3}~\sigma I_{3\times 3}~O_{3\times 3} \right] x} \right\| \end{aligned}$$
(53)

where \(\sigma = \frac{k_1 k_2}{m}\).

B Proof of Theorem 2

First, a candidate Lyapunov function of the closed-loop system is chosen as

$$\begin{aligned} V(x) = x^{TPx} \end{aligned}$$
(54)

Then the differential of V(x) is

$$\begin{aligned} \dot{V}(x)= & {} x^T((A+BK)^T)P + P(A+BK))x + \Delta ^TD^{TPx} \nonumber \\+ & {} x^TPD\Delta + \delta ^T(R,R_d)E^{TPx} + x^TPE\delta (R,R_d) \nonumber \\= & {} x^T((A+BK)^TP + P(A+BK))x + x^TC^{TCx} \nonumber \\+ & {} \frac{1}{\gamma ^{2}}x^TPDD^{TPx} + \frac{1}{\lambda }x^T PEE^{TPx} + \lambda \left\| \delta (R,R_d)\right\| ^{2} \nonumber \\- & {} \gamma ^{2}\left\| \Delta - \frac{1}{\gamma ^{2}}D^{TPx}\right\| ^{2} - \lambda \left\| \delta (R,R_d) - \frac{1}{\lambda }E^{TPx}\right\| ^{2} \nonumber \\+ & {} \gamma ^{2}\left\| \Delta \right\| ^{2} - \left\| y\right\| ^{2} \end{aligned}$$
(55)

Combining with (17), we can get

$$\begin{aligned} \dot{V}(x)\le & {} x^T((A+BK)^TP + P(A+BK))x + x^TC^{TCx} \nonumber \\+ & {} \frac{1}{\gamma ^{2}}x^TPDD^{TPx} + \frac{1}{\lambda }x^T PEE^{TPx} + \lambda \left\| \delta (R,R_d)\right\| ^{2} \nonumber \\+ & {} \gamma ^{2}\left\| \Delta \right\| ^{2} - \left\| y\right\| ^{2} \nonumber \\\le & {} x^T((A+BK)^TP + P(A+BK))x + x^TC^{TCx} \nonumber \\+ & {} \frac{1}{\gamma ^{2}}x^TPDD^{TPx} + \frac{1}{\lambda }x^T PEE^{TPx} + \lambda x^TF^TFx \nonumber \\+ & {} \gamma ^{2}\left\| \Delta \right\| ^{2} - \left\| y\right\| ^{2} \end{aligned}$$
(56)

Thus, if (18) is satisfied, then

$$\begin{aligned} \dot{V}(x) \le \gamma ^{2}\left\| \Delta \right\| ^{2} - \left\| y\right\| ^{2} \end{aligned}$$
(57)

which means, for any \(T > 0\), we have

$$\begin{aligned}&\int _0^T\left( \left\| y(t)\right\| ^{2} - \gamma ^{2}\left\| \Delta (t)\right\| ^{2}\right) dt \\&= \int _0^T \left( \left\| y(t)\right\| ^{2} - \gamma ^{2}\left\| \Delta (t)\right\| ^{2} + \dot{V}(x(t))\right) dt + V\left( x(T)\right) \\&\le V\left( x(T)\right) \end{aligned}$$

That is,

$$\begin{aligned} \int _0^T \left\| y(t)\right\| ^{2} \le \int _0^T\gamma ^{2} \left\| \Delta (t)\right\| ^{2} dt + V\left( x(T)\right) \end{aligned}$$
(58)

That means, the system is finite gain \(L_2\)-stable from disturbance \(\Delta \) to outputs y, and the \(L_2\) gain is less than or equal to \(\gamma \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, B., He, Y., Zhang, G. et al. Wind disturbance rejection for unmanned aerial vehicles using acceleration feedback enhanced \(H_\infty \) method. Auton Robot 44, 1271–1285 (2020). https://doi.org/10.1007/s10514-020-09935-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-020-09935-8

Keywords

Navigation