Skip to main content
Log in

RGB-D camera calibration and trajectory estimation for indoor mapping

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

In this paper, we present a system for estimating the trajectory of a moving RGB-D camera with applications to building maps of large indoor environments. Unlike the current most researches, we propose a ‘feature model’ based RGB-D visual odometry system for a computationally-constrained mobile platform, where the ‘feature model’ is persistent and dynamically updated from new observations using a Kalman filter. In this paper, we firstly propose a mixture of Gaussians model for the depth random noise estimation, which is used to describe the spatial uncertainty of the feature point cloud. Besides, we also introduce a general depth calibration method to remove systematic errors in the depth readings of the RGB-D camera. We provide comprehensive theoretical and experimental analysis to demonstrate that our model based iterative-closest-point (ICP) algorithm can achieve much higher localization accuracy compared to the conventional ICP. The visual odometry runs at frequencies of 30 Hz or higher, on VGA images, in a single thread on a desktop CPU with no GPU acceleration required. Finally, we examine the problem of place recognition from RGB-D images, in order to form a pose-graph SLAM approach to refining the trajectory and closing loops. We evaluate the effectiveness of the system on using publicly available datasets with ground-truth data. The entire system is available for free and open-source online.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Basso, F., Menegatti, E., & Pretto, A. (2018). Robust intrinsic and extrinsic calibration of RGB-D cameras. IEEE Transactions on Robotics, 34(5), 1315–1332.

    Article  Google Scholar 

  • Bay, H., Ess, A., Tuytelaars, T., & Van Gool, L. (2008). Speeded-up robust features (SURF). Computer Vision and Image Understanding, 110(3), 346–359.

    Article  Google Scholar 

  • Besl, P., & McKay, N. (1992). A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14, 239–256.

    Article  Google Scholar 

  • Bradski, G. (2000). The OpenCV library. Dr. Dobb’s Journal of Software Tools, 25, 120–125.

    Google Scholar 

  • Burri, M., Nikolic, J., Gohl, P., Schneider, T., Rehder, J., Omari, S., et al. (2016). The EuRoC micro aerial vehicle datasets. The International Journal of Robotics Research. https://doi.org/10.1177/0278364915620033.

  • Dryanovski, I., Jaramillo, C., & Xiao, J. (2012). Incremental registration of RGB-D images. In IEEE International conference on robotics and automation (ICRA).

  • Dryanovski, I., Valenti, R. G., & Xiao, J. (2013). Fast visual odometry and mapping from RGB-D data. In International conference on robotics and automation (Vol. 10031).

  • Endres, F., Hess, J., Cremers, D., & Engelhard, N. (2012). An evaluation of the RGB-D SLAM system. Perception, 3(c), 1691–1696.

    Google Scholar 

  • Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6), 381–395.

    Article  MathSciNet  Google Scholar 

  • Garrido-Jurado, S., Munoz Salinas, R. M., Madrid-Cuevas, F., & Marín-Jiménez, M. (2014). Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recognition, 47(6), 2280–2292. https://doi.org/10.1016/j.patcog.2014.01.005.

    Article  Google Scholar 

  • Geiger, A., Lenz, P., & Urtasun, R. (2012). Are we ready for autonomous driving? The kitti vision benchmark suite. In Conference on computer vision and pattern recognition (CVPR).

  • Google: Project Tango (2014). Retrieved from https://en.wikipedia.org/wiki/Tango_(platform).

  • Henry, P., Krainin, M., Herbst, E., Ren, X., & Fox, D. (2010). RGB-D mapping: Using depth cameras for dense 3d modeling of indoor environments. In RGB-D: Advanced reasoning with depth cameras workshop in conjunction with RSS.

  • Henry, P., Krainin, M., Herbst, E., Ren, X., & Fox, D. (2012). RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments. The International Journal of Robotics Research, 31(5), 647–663.

    Article  Google Scholar 

  • Herrera, D., Kannala, J., & Heikkilä, J. (2010). Joint depth and color camera calibration with distortion correction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(10), 2058–2064. https://doi.org/10.1109/TPAMI.2012.125.

    Article  Google Scholar 

  • James Bowman, P. M. (2017). ROS camera calibration. Retrieved from http://wiki.ros.org/camera_calibration.

  • Jensen, R., Dahl, A., Vogiatzis, G., Tola, E., & Aanæs, H. (2014). Large scale multi-view stereopsis evaluation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 406–413)

  • Karan, B. (2015). Calibration of kinect-type RGB-D sensors for robotic applications. Fme Transactions, 43, 47–54.

    Article  Google Scholar 

  • Kerl, C., Sturm, J., & Cremers, D. (2013). Dense visual slam for RGB-D cameras. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 2100–2106). IEEE.

  • Kerl, C., Sturm, J., & Cremers, D. (2013). Dense visual slam for RGBD-D cameras. In IEEE/RSJ international conference on intelligent robots and systems (pp. 2100–2106). IEEE.

  • Khoshelham, K., & Elberink, S. O. (2012). Accuracy and resolution of Kinect depth data for indoor mapping applications. Sensors, 12(2), 1437–1454. https://doi.org/10.3390/s120201437.

    Article  Google Scholar 

  • Klein, G., & Murray, D. (2007). Parallel tracking and mapping for small AR workspaces. In Proceedings of the 2007 6th IEEE and ACM international symposium on mixed and augmented reality (pp. 1–10). IEEE Computer Society.

  • Kummerle, R., Grisetti, G., Strasdat, H., Konolige, K., & Burgard, W. (2011). g2o: A general framework for graph optimization. In ICRA. Shanghai.

  • Meilland, M., & Comport, A. I. (2013). On unifying key-frame and voxel-based dense visual SLAM at large scales. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 3677–3683). IEEE.

  • Muja, M., & Lowe, D. (2009). Fast approximate nearest neighbors with automatic algorithm configuration. In International conference on computer vision theory and application VISSAPP’09 (Vol. 340, pp. 331–340). INSTICC Press.

  • Mur-Artal, R., & Tardós, J. D. (2017). ORB-SLAM2: An open-source slam system for monocular, stereo, and RGB-D cameras. IEEE Transactions on Robotics, 33(5), 1255–1262.

    Article  Google Scholar 

  • Newcombe, R. A., Davison, A. J., Izadi, S., Kohli, P., Hilliges, O., Shotton, J., et al. (2011). KinectFusion: Real-time dense surface mapping and tracking. In 10th IEEE international symposium on mixed and augmented reality (ISMAR) (pp. 127–136).

  • Nguyen, C.V., Izadi, S., & Lovell, D. (2012). Modeling Kinect sensor noise for improved 3d reconstruction and tracking. In Second international conference on 3D imaging, modeling, processing, visualization and transmission (3DIMPVT) (pp. 524–530). IEEE.

  • Olesen, S. M., Lyder, S., Kraft, D., Krüger, N., & Jessen, J. B. (2012). Real-time extraction of surface patches with associated uncertainties by means of Kinect cameras. Journal of Real-Time Image Processing, 10, 1–14. https://doi.org/10.1007/s11554-012-0261-x.

    Article  Google Scholar 

  • Park, J. H., Shin, Y. D., Bae, J. H., & Baeg, M. H. (2012). Spatial uncertainty model for visual features using a Kinect\(^{TM}\) sensor. Sensors, 12(7), 8640–8662.

    Article  Google Scholar 

  • Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., et al. (2009). ROS: An open-source robot operating system. In International conference on robotics and automation, Figure 1.

  • Rublee, E., Rabaud, V., Konolige, K., & Bradski, G. (2011). ORB: An efficient alternative to SIFT or SURF. In IEEE international conference on computer vision (ICCV) (pp. 2564–2571). https://doi.org/10.1109/ICCV.2011.6126544.

  • Segal, A., Haehnel, D., & Thrun, S. (2009). Generalized-ICP. In Robotics: Science and systems. Seattle, USA.

  • Shi, J., & Tomasi, C. (1994). Good features to track. In IEEE computer society conference on computer vision and pattern recognition. Proceedings CVPR ’94 (pp. 593–600). https://doi.org/10.1109/CVPR.1994.323794.

  • Smisek, J., Jancosek, M., & Pajdla, T. (2011). 3D with Kinect. In IEEE international conference on computer vision workshops (ICCV workshops) (pp. 1154–1160).

  • Steinbrucker, F., Sturm, J., & Cremers, D. (2011). Real-time visual odometry from dense RGB-D images. In IEEE international conference on computer vision workshops (ICCV workshops) (pp. 719–722). https://doi.org/10.1109/ICCVW.2011.6130321.

  • Sturm, J., Engelhard, N., Endres, F., Burgard, W., & Cremers, D. (2012). A benchmark for the evaluation of RGB-D SLAM systems. In Proceedings of the international conference on intelligent robot systems (IROS).

  • Stutz, D., & Geiger, A. (2018). Learning 3d shape completion from laser scan data with weak supervision. In IEEE conference on computer vision and pattern recognition (CVPR). IEEE Computer Society.

  • Teichman, A., Miller, S., & Thrun, S. (2013). Unsupervised intrinsic calibration of depth sensors via SLAM. In Robotics: Science and systems.

  • Wang, Y. M., Li, Y., & Zheng, J. B. (2010). A camera calibration technique based on OpenCV. In 3rd International conference on information sciences and interaction sciences (ICIS) (pp. 403–406).

  • Whelan, T., Leutenegger, S., Salas-Moreno, R., Glocker, B., Davison, A. (2015). Elasticfusion: Dense slam without a pose graph. In Robotics: Science and systems.

  • Zhang, Z. (2000). A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 1330–1334.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jizhong Xiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported in part by U.S. Army Research Office under Grant No. W911NF-09-1-0565, U.S. National Science Foundation under Grants No. IIS-0644127 and No. CBET-1160046, Federal High-Way Administration (FHWA) under Grant Nos. DTFH61-12-H-00002 and PSC-CUNY under Grant No. 65789-00-43.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (doc 22 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Dryanovski, I., Valenti, R.G. et al. RGB-D camera calibration and trajectory estimation for indoor mapping. Auton Robot 44, 1485–1503 (2020). https://doi.org/10.1007/s10514-020-09941-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-020-09941-w

Keywords

Navigation