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Abstract
Consider the problem of planning collision-free motion of n objects movable through contact with a robot that can
autonomously translate in the plane and that can move a maximum of m ≤ n objects simultaneously. This represents
the abstract formulation of a general class of manipulation planning problems that are proven to be decidable in this paper.
The tools used for proving decidability of this simplified manipulation planning problem are, in fact, general enough to handle
the decidability problem for the wider class of systems characterized by a stratified configuration space. These include, e.g.,
problems of legged and multi-contact locomotion, bi-manual manipulation. In addition, the approach described does not
restrict the dynamics of the manipulation system modeled.

Keywords Manipulation systems · Decidability · Stratified controllability

1 Introduction

The problem of planning collision free motion for a free-
flying single-body robot in environments populated by static
obstacles has been widely studied in the past decades and
can be considered today well understood. In this paper we
consider a generalization of this basic problem by allowing
the presence of movable obstacles, i.e., objects in the envi-
ronment that the robot can move by “grasping” them, while
avoiding collisions with all the obstacles and objects.

The problem of motion planning in the presence of mov-
able obstacles was first addressed in Wilfong (1991), where
the decidability is proven for the case of discrete grasps. This
problem was further generalized in Alami et al. (1989) to the
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so-called manipulation planning problemwhere the movable
obstacles are considered as objects to be moved to reach a
goal position. In that paper the authors present an algorithm
for the case of discrete placements and grasps. This is the for-
mulation briefly described in Chapter 11 of Latombe’s book
(1991). Decidability of the problem in the case of continu-
ous grasps and placements was shown in Dacre-Wright et al.
(1992) considering one movable object.

While Berg et al. (2010) provides an efficient probabilis-
tically complete algorithm in the case of several movable
obstacles, the decidability problem, i.e., the existence of an
exact algorithm that decideswhether a solution exists in finite
time, remained open even in the case of two movable objects
as also mentioned in Karagoz et al. (2004).

In this paper we prove that the manipulation planning
problem is decidable for a robot that can freely translate
in the plane and manipulate up to m ≤ n objects simulta-
neously, with n the total number of movable objects. The
objects can move only if they are in contact with (“grasped”
by) the robot. The proof is based on a cell decomposition of
the collision-free contact configuration space, a refinement of
the cells through a properly defined projection/lifting proce-
dure, and on the reduction property. This property establishes
the equivalence of two types of paths: namely, paths continu-
ously satisfying the contact constraint (hereafter called paths
in contact or contact paths) and manipulation paths, along
which the objects either translate rigidly with the robot as a
single object (transfer paths) or remain in a fixed position
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while the robot moves freely (transit path). To prove that
the reduction property holds for the considered manipulation
model we exploit the configuration space structure and inves-
tigate the controllability of the system based on the stratified
controllability notion Goodwine and Burdick (2001).

The decidability procedure for this simplified case of
manipulation planning problem uses methodological tools
which are abstract enough to allow handling a more general
class of manipulation planning problems.

The result, presented here, lays the basis for answering
important questions such as under which conditions motion
in contact can be reduced to a manipulation path, how to
efficiently constructmanipulation graphs related tomany dif-
ferent problems (climbing, walking,multi-contact planning),
and how to determine the rate of convergence of probabilistic
planners for the manipulation of multiple objects. It is worth
emphasizing that our main goal is to provide a versatile deci-
sion algorithm, and therefore we do not give any specific
planning algorithm.

This paper is an extension of our previous work Vendit-
telli et al. (2015) in which initially we had only proved the
decidability for 3 disks. A strongly related approachwas later
proposed in Deshpande et al. (2016), stating a more general
result than the one in Vendittelli et al. (2015). In the present
paper, we show that the method in Vendittelli et al. (2015) is
general enough to consider an arbitrary number of movable
objects with arbitrary shape and discuss the general charac-
teristics of the approach which permits dealing with other
classes of planning problems.

The work, presented here, differs from the close contri-
bution in Deshpande et al. (2016) mainly in the approach
that relies on (a) the decomposition of the composite con-
figuration space and (b) the definition of a control model
for the robotic manipulation system. This approach enjoys
several advantages: namely, (i) it leads to easy-to-check con-
ditions for decidability; (ii) it decouples the projection and
lifting procedure performed on the unconstrained composite
configuration space from the controllability properties of the
manipulation system; this separation allows one to decide
planning problems also for manipulation systems charac-
terized by non-constant distributions; (iii) it can naturally
encode kinematic constraints in the system dynamics; (iv) it
considers also the case in which the robot can manipulate a
maximum of objects m < n, where n is the total number of
manipulable objects in the workspace.

Beyond the decidability procedure, this work contributes
to the analysis of the manipulation planning problem struc-
ture in an accessible way, providing tools for analysing the
decidability of robotic manipulation systems.

The paper is organized as follows. The next section for-
malizes the problem after defining the configuration space
and its connectivity through manipulation paths. Section 3
analyses the controllability properties of the manipulation

Fig. 1 Scenario of the considered manipulation planning problem dis-
cussed here

system. Section 4 establishes the conditions under which
paths in contact can be reduced to manipulation paths. Sec-
tion 5 illustrates the main steps for the construction of the
manipulation graph. Section 6 opens perspective about the
generalization of the results to other manipulation planning
problems and finally, Sect. 7 concludes the paper.

2 Problem formulation

Consider the scene in Fig. 1: the “robot” R can translate
autonomously in a polygonal (or semi-algebraic) environ-
ment populated byfixed obstacles and n objectsO1, O2, . . . ,

On that R can move by establishing a contact with them.
More specifically, the objects O1, O2, . . . , On translate
rigidly with the robot when in contact with it; otherwise,
they are considered as fixed obstacles.

2.1 Configuration space

The configuration spaces of the robot and the objects are
defined as:

• CR = R2, the configuration space of the robot;
• COi = R2 the configuration space of Oi , i ∈ 1, . . . , n.

The combined configuration space is obtained as C =
CR × CO1 × CO2 × · · · × COn = R2(n+1) and, accordingly,
a configuration q ∈ C is described by the (n + 1)-tuple
q = (qR, qO1

, qO2
, . . . , qOn

), where qR ∈ CR , qOi
∈ COi ,

i ∈ 1, . . . , n.
The collision-free configuration space Cfree is obtained

by removing from C the set of inadmissible configurations:

• qR such that the robot is in contact with static obstacles
or overlaps with either static or movable obstacles;

123



Autonomous Robots (2021) 45:679–692 681

• qOi
, i ∈ 1, . . . , n such that Oi overlaps with the static

obstacles, the robot or with Oj , j �= i . Note that contact
between objects and obstacles is allowed.

2.2 Configuration space paths andmanipulation
paths

Configuration space paths may or may not include contacts.
To move the objects, however, the robot must be in contact
with the objects. In the (composite and unconstrained) con-
figuration space C any motion in contact is allowed.

Paths of interest in C can be categorized according to the
two motion modalities:

• robot free motion: this is a path in C characterized by the
absence of contact between the robot and the objects;

• contact motion: this is a path in C constrained by the
condition that the robot is in contact with at least one
object; along the path the robot position and the positions
of the objects relative to the robot can change.

The paths described above might or might not be feasible.
It is the dynamics of the manipulation system that defines the
characteristics of grasping and, hence, of the feasible robot-
object motion.

In the following developments we consider only manip-
ulation by rigid grasp. Therefore, not all the configuration
space paths are feasible in our setting. Feasible motions cor-
respond to paths of two types:

– transfer paths along which the robot grasps at least one
object and moves rigidly with it (the objects not grasped
remain in a fixed position); along these paths the relative
configurations between robot and objects in contact do
not change.

– transit paths along which the robot moves alone and the
objects remain in fixed positions.

A sequence of transit and transfer paths is called a manipu-
lation path.

2.3 Configuration space connectivity through
manipulation paths

The maximum numberm of objects that the robot can simul-
taneouslymanipulate affects the structure of C induced by the
contact constraints. In this section we illustrate the structure
of C in terms of the submanifolds defined by the contact con-
straints and their interconnection through transit and transfer
paths.

Figure 2 shows representative configurations in each sub-
manifold for the cases n = 2 and m = 2 or m = 1,

Fig. 2 Structure of C induced by the contact constraints and intercon-
nection of the contact submanifolds through transit and transfer paths.
The case illustrated in a corresponds to n = 2 and m = 2, while in b it
is considered n = 2 and m = 1

respectively illustrated in Fig. 2a, b. The embedding configu-
ration space C has dimension 6 and foliates with the position
of the movable objects. In particular, leaves of dimension 2
correspond to fixed positions of the two objects. Transit paths
belong to one of these leaves. A representative configuration
in this manifold is shown at the top of Fig. 2a. Manipulation
paths across the leaves may require leaving the manifold.

Configurations on the second row (from top) of Fig. 2a
represent the single-contactmanifoldwhich has dimension 5.
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The leaves of interest for the problem of interest have dimen-
sion 3 and correspond to fixed positions of the object which
is not in contact with the robot. Manipulation paths across
the leaves (change of the position of the object not in contact)
require leaving the submanifold.

The double-contact submanifold, represented by the con-
figurations on the third row of Fig. 2a, has dimension 4 and
foliates with the relative position of the contact points. The
leaves of interest have dimension 3 and 2 and correspond
respectively to one or both the points of contact being fixed.
Manipulation paths across the leaves (change of the contact
point) require leaving the submanifold.

Finally, the triple-contact submanifold has dimension 3, it
foliates with the position of the contact points and the leaves
have dimension 2. Manipulation paths across the leaves
require leaving the submanifold.

This last submanifold is not present in the structure of C
when m = 1 as illustrated in Fig. 2b. However, our solu-
tion requires considering also this submanifold of C to prove
decidability, as will be illustrated in what follows.

In general, the structure of C depends both on the number
n of movable objects and on m, the maximum number of
objects that the robot can move at the same time.

As will be illustrated in Sect. 3.3, the “manipulability”
properties associated with the above described submanifolds
are actually transversal to this geometric structure anddepend
on the controllability of the underlying manipulation system
(see Sect. 3.2).

2.4 Themanipulation planning problem

Given the definitions and analysis in the previous sections,
we can formulate the following problem.
Manipulation planning problem Assigned an initial config-
uration qs ∈ Cfree and a goal configuration qg ∈ Cfree, find
a sequence of transit and transfer paths joining qs to qg , if it
exists.

To prove that this problem is decidable we adopt the same
approach as Dacre-Wright et al. (1992). First we study the
problem of reducing configuration space paths belonging to
the contact submanifolds represented in Fig. 2 to manipula-
tion paths. Then, we determine a cell decomposition of the
contact space. Finally, we construct the manipulation graph
whose connected components characterize the existence of
solutions to the manipulation problem defined above. In case
m < n we remove some nodes and the corresponding arcs
from the manipulation graph.

The first part of our approach consists in answering the
following question: is it possible to reduce any collision-free
configuration space path describing motion of the robot in
contact with at least one object to a (finite) sequence of transit
and transfer paths? Answering this question requires study-
ing the local controllability of the dynamic system that is

possible to associate with the manipulation model. The anal-
ysis is described in the following section and makes use of
the result by Goodwine and Burdick Goodwine and Burdick
(2001) providing sufficient conditions for controllability of
kinematic control systems on stratified configuration spaces.

This part of our approach shares with Laumond et al.
(1994) the idea of first determining the manifold of the
“unconstrained” (i.e., unaware of the manipulation system
dynamics) configuration space where the solution path could
exist and then prove that the paths in this manifold can
be reduced to manipulation, i.e. feasible, paths. In other
words, both the approaches rely on the combination of an
algebraic/geometric method to find a solution path and on
the local controllability of the, possibly constrained, system
under study. The core components related to the specificity
of the problem at hand, however, are the projection/lifting
procedure of Sect. 5 and the proof of Theorem 1, together
allowing to establish decidability of the manipulation plan-
ning problem.

3 Controllability of themanipulation system

To answer the first part of the manipulation planning prob-
lem, we define here the simple kinematics describing the
manipulation system underlying the planning problem under
consideration. This system has a stratified configuration
space and we use the result in Goodwine and Burdick (2001)
to establish its local controllability.

3.1 Controllability definitions

This section recalls the controllability definitions of interest
to prove decidability of the manipulation problems of inter-
est. Given an open set V ⊆ M , where M is the manifold
describing the state space, let RV (x0, T ) be the set of states
x f such that there exists u : [0, T ] → U that steers the
control system from x(0) = x0 to x(T ) = x f and satisfies
x(t) ∈ V for 0 ≤ t ≤ T , where U is the set of admissible
control inputs. Define the set of states reachable up to time
T as

RV (x0,≤ T ) =
⋃

0<τ≤T

RV (x0, τ ). (1)

Definition 1 (Small Time Local Controllability) A smooth
analytic system is small time locally controllable (or STLC)
if RV (x0,≤ T ) contains a neighborhood of x0 for all neigh-
borhoods V of x0 and T > 0.

A more suited notion of controllability for proving decid-
ability is the so-called local–local controllability (LLC)
introduced in Haynes and Hermes (1970).
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Definition 2 (Local–Local Controllability) A smooth ana-
lytic system is local–local controllable (or LLC) from x0
if ∀ε > 0 ∃ δ(ε) > 0 such that for all admissible states
x, ||x − x0|| < δ(ε) there exists admissible control u :
[0, T ] → U , producing the state trajectory x(t), t ∈ [0, T ]
with

x(t1) = x0, x(t2) = x and ||x(t) − x0|| < ε, ∀t ∈ [t1, t2].
(2)

LLC requires that the trajectory to reach points in the
neighborhood of a given state x0 is local. The time, how-
ever, is not specified (or bounded) in advance. For systems
with bounded inputs STLC implies LLC Celikovsky and
Nijmeijer (1997), while for driftless systems (which is the
case considered in this paper) the two properties are equiva-
lent.

3.2 Controllability on stratified configuration spaces

The definition of STLC above is generalized in Goodwine
and Burdick (2001) to include the case of stratified systems.
We briefly recall here the main definitions and properties of
stratified configuration spaces and the stratified controllabil-
ity property that we prove to hold in our case.
Stratified configuration manifold (Definition 2.2 in Good-
wine and Burdick 2001) Let M be a manifold (possibly with
boundary), and n functions Ψi : M 	→ R, i = 1, . . . , n be
such that the level sets Si = Ψ −1

i (0) ⊂ M are regular sub-
manifolds ofM , for each i , and the intersectionof anynumber
of the level sets, Si1i2...im = Ψ −1

i1
(0)∩Ψ −1

i2
(0)∩ . . . Ψ −1

im
(0),

m ≤ n , is also a regular submanifold of M . Then M and
the functions Ψi , define a stratified configuration space. The
level sets Si , i = 1, . . . , n, and their intersections SI , where
I is an arbitrary multi-index of length m ≤ n, are referred to
as the strata of the configuration manifold.

The driftless systems defined on stratified configuration
manifolds are described on each stratum, or on strata inter-
sections, by equations of motion characterized by smooth
vector fields and the only discontinuities present in the equa-
tions of motion are due to transitions on and off the strata or
their intersections.
Stratified controllability (Definition 3.2 in Goodwine and
Burdick 2001) A stratified system is stratified controllable
in the stratum SI from x0 ∈ SI if RV (x0,≤ T ) contains a
neighborhood of x0 in SI for all neighborhoods V ⊆ SI of
x0 and T > 0, where RV (x0,≤ T ) is defined by Eq. (1) with
V ⊆ SI .
Stratified controllability (Proposition 4.4 in Goodwine and
Burdick 2001) If there exists a nested sequence of submani-
folds at the configuration x0

x0 ∈ Sp ⊂ Sp−1 ⊂ · · · ⊂ S1 ⊂ S0 = M

where the subscript is the codimension of the submanifold,
such that the associated involutive distributions satisfy

p∑

j=0

−
ΔS j |x0 = Tx0M

and each
−
ΔS j has constant rank for some neighborhood Vj ⊂

S j , of x0, then the system is stratified controllable from x0 in
M .

Stated differently, if the closure of the involutive distribu-
tions associated to each submanifold in the nested sequence
intersect transversely then the system can flow in any direc-
tion in M . Intuitively, this controllability concept allows to
prove that any path in contact in the composite configuration
space of the robot and the movable objects can be reduced
to a sequence of transit and transfer paths, i.e., a path in the
stratified configuration space of the manipulation system.

3.3 Stratified controllability of themanipulation
system

To use the stratified controllability concept for proving that a
contact path can be transformed into a manipulation path, we
consider ambient manifolds and stratifications defined by the

contact submanifolds. In particular, there exist n p =
(
n
p

)
,

p = {1, . . . ,m}, ambient submanifolds Mnp given by the
combined configuration space of the robot and the p objects
in contact. The dimension of each ambient submanifold is

equal to dim(Mnp ) = 2 + 2p and it contains

(
p

p − i

)
sub-

manifolds of codimension p− i , i = {0, . . . , p− 1} defined
by all the possible contact combinations of the p objects
with the robot. Note that these submanifolds are leaves of
the combined configuration space C of the robot and all the
n objects.

The stratified controllability property is easily verified to
hold on each of these ambient manifolds, while it is not veri-
fied on submanifolds of C of dimension greater than 2+ 2p.
Hence, the considered manipulation system is stratified con-
trollable on all the leaves of C defined by the submanifolds
Mnp . How to build the nested sequence of submanifolds pro-
viding stratified controllability is the subject of what follows.

Denote by x = (xR, yR, xOc1
, yOc1

, . . . , xOcp
, yOcp

)T , a
configuration of themanipulation system formed by the robot
and p movable objects. Set the maximum number of objects
that the robot can move at the same time equal to p. The
equations of motion on each stratum are determined by con-
sidering that R can only translate in the plane and the objects
can be moved when in contact with R with a stable grasp.
The control system underlying this manipulation model can
be written in the form
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ẋ = gSi1 u1 + gSi2 u2, (3)

where u1, u2 are the robot cartesian velocities considered as
the system inputs and gSi1 , gSi2 are the input vector fields that
have a different expression on each substratum. In particular,
in S0 = C we have

gS0
1 = (1, 0, 0)T , gS0

2 = (0, 1, 0)T ,

where the first two components of the vector fields determine
the motion of the robot and are invariant on all the strata.
In S0 they describe the free motion of the robot alone on
a leaf of C that depends on the position of the objects. The
remaining components have been grouped in vectors of zeros
of dimension p − 2.

On the single-contact manifolds C1 the input vector fields
have the same first two components, the (i + 2)-th entry of
gC11 and the (i + 3)-th entry of gC12 , i ∈ 1, . . . , p, equal to 1,
the remaining components equal to zero. Flowing along these
vector fields amounts to moving the object in contact while
staying on a leaf that depends on the position of the objects
that are not touched by the robot. Since all the single-contact
manifolds have codimension 1, S1 will be equal to either one
of them in the sequence of nested submanifolds. This con-
trol will however implicitly assume that the position of the
other objects will remain constant, i.e., the system is flowing
on a leaf of the single contact manifold. Hence, if the sys-
tem is stratified controllable, it will be only possible to prove
that any path in contact on a leaf of S1 can be reduced to a
manipulation path. In fact, we need this local controllability
to guarantee that a collision free path in continuous contact
can be reduced to a manipulation path that is contained in a
neighborhood of the original contact path. Complete decid-
ability study requires the analysis of the manipulation graph
connectivity.

The vector fields describing the motion on the subsequent
strata can be defined iteratively by setting the components
corresponding to the coordinates of the objects in contact
equal to 1 and all the remaining components equal to zero.
As noted above, the first two components of each vector
field do not change across the strata and only one stratum
for each codimension will be considered in the sequence of
nested submanifolds. Analogously to the single contact case,
this implies that the reduction property, or the possibility to
reduce a collision-free path to a manipulation path, is only
valid on a leaf of each substratum S j , j ∈ 1, . . . ,m. Note
that, in our setting, a substratum S j collects all the contact
submanifolds of codimension j defined by the contact of the
robot and j of the n movable obstacles.

As an example, assuming that n = m = 2, considering
the unique ambient submanifold Mnp with n = p = 2, on
the single-contact manifolds C1, composing the stratum S1,
the input vector fields in (3) have the expressions

gS11 = (1, 0, 1, 0, 0, 0)T , gS12 = (0, 1, 0, 1, 0, 0)T

or

gS11 = (1, 0, 0, 0, 1, 0)T , gS12 = (0, 1, 0, 0, 0, 1)T .

On the double-contact manifold S2 = C2, in case of con-
tact with the objects O1 and O2, it is

gS21 = (1, 0, 1, 0, 1, 0)T , gS22 = (0, 1, 0, 1, 0, 1)T .

On this stratum the objects move with the robot without
changing the points of contact.

It is easy to verify that the stratified controllability propo-
sition holds by choosing as involutive distributions

−
Δ S2 = span (gS21 gS22 )
−
Δ S1 = span (gS11 gS12 )
−
Δ S0 = span (gS01 gS02 )

where gS11 and gS12 can have either one of the expressions
provided above.

Figure 3 illustrates the stratification of the configuration
space induced by the contact constraints in the case n = m =
2. By virtue of the controllability property described above,
any continuous path in contact with the robot in S2 can be
reduced to a manipulation path.

Considering then as ambient manifold one of the two sub-
manifolds Mnp with n = 2 and p = 1 defined by the object
in contact with the robot. The preceding construction can be
adapted to prove stratified controllability on each of these
submanifolds that are leaves of the complete configuration
space defined by the robot and the two movable objects.
Hence, a path in contact in each leaf of S1 can be reduced
to a manipulation path that possibly goes through strata of
lower codimension.

Until here we are not considering obstacles, hence the
existence of a manipulation path depends locally on the con-
trollability property. We take the hypothesis that the free
configuration space of the robot without considering the
objects is an open (same as the hypothesis H in Dacre-Wright
et al. 1992). Then, any collision-free path in contact can be
reduced to a collision-free manipulation path. Intuitively, if
the system is controllable, the “maneuvers” involved in the
manipulation path can be made as small as desired so as
the manipulation path remains in the neighbourhood of the
contact path.

The following statement summarizes and generalizes the
above arguments.

Proposition 1 Consider the general case n ≥ m and the
ambient manifold Mnm . Let S0 define, as before, the foliation
of Mnm where only the robot moves and the objects are in a
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Fig. 3 Stratification of the configuration space induced by the robot-
objects contact constraints in the case n = m = 2.Note how the relevant
contact submanifolds needed to prove controllability are determined by
the contact configurations between the robot and the objects

fixed position. Sort the m objects as i1, . . . , im and consider
the sequence of nested submanifolds

Sm ⊂ Sm−1 ⊂ · · · ⊂ S1 ⊂ S0

where S j indicates the submanifold characterized by the
robot in contact with the objects i1, . . . , i j and the remaining
objects i j+1, . . . , im in a fixed position. Then, if x0 ∈ Sm, the
system is stratified controllable from x0 in Mnm .

Proof The idea is to apply the result of (Goodwine and Bur-
dick 2001, Proposition 4.4). Let us set again

gS0
1 = (1, 0, 0)T , gS0

2 = (0, 1, 0)T ,

with
−
Δ S0 = span (gS01 gS02 ). For j = 1, . . . ,m, let us

denote by e1j ∈ R
2+2m the canonical vector with 1 in the

(2 j+1)-th entry and 0 in all other entries and by e2j ∈ R
2+2m

the canonical vector with 1 in the (2 j + 2)-th entry and 0 in
all other entries, i.e.

e1j = (0, 0, . . . , 0︸ ︷︷ ︸
2 j

, 1, 0, 0, . . . , 0︸ ︷︷ ︸
2m−2 j+1

)T

e2j = (0, 0, . . . , 0︸ ︷︷ ︸
2 j+1

, 1, 0, 0, . . . , 0︸ ︷︷ ︸
2m−2 j

)T

The input vector fields associated to the sequence of sub-
manifold S j and the involutive distributions can be computed
recursively as follows:

g
S j
1 = g

S j−1
1 + e1i j , g

S j
2 = g

S j−1
2 + e2i j ,

and
−
Δ S j = span (g

Sj
1 g

Sj
2 ). It is then clear that the property

m∑

j=0

−
ΔS j |x0 = Tx0Mnm

holds true, this providing stratified controllability. 
�
The stratified controllability propertywill be used to prove

decidability by showing that if a solution exists it will either
lie on a leaf of the free configuration space defined by a
fixed position of the objects, i.e., the solution does not imply
manipulation of the objects, or it passes through the submani-
folds defined by the contact constraints between the robot and
the objects. On each leaf of these submanifolds the reduction
property holds, then a manipulation path exists if start and
goal configurations can be connected through collision-free
transit paths and paths in contact.

4 Reduction property

The aim of this section is to show that any collision-free path
in contact on a leaf of one of them−1 strata or on the stratum
Sm can be reduced to a sequence of admissible maneuvers,
i.e., a collision-free manipulation path.

Consider then a finite length, collision-free path P ∈ S j

(more specifically, on a leaf of S j if j = 1, . . . ,m − 1, or
on Sm) from a given start configuration xstart ∈ R

2+2 j , j =
1, . . . ,m to a final configuration xgoal ∈ R

2+2 j . Since P is
admissible, all the configurations along the path are such that
the robot is only in contact with the objects, and each object
is in contact with the robot only. Assume no contact between
objects or with the obstacles occurs (some comments on how
to move beyond such assumption are provided further on).

The following Proposition 1 provides a sufficient condi-
tion for reducibility of a path in contact.

Theorem 1 Any path in contact P on any leaf of a stratum
Sj , j = 0, . . . ,m such that along P no object/object nor
object/obstacle contact occurs, can be reduced to a manipu-
lation path.

Proof Consider a configuration x along the path P . Deter-
mine first the set NR(x) of configurations reachable from x
by the robot through collision-free paths without consider-
ing the objects. NR(x) is clearly an open neighbour of the
projection xR of x on R2 and includes all the robot transit
paths that are not in collision with static obstacles.

Consider then the set N1,i (x), i = 1, . . . , j of configu-
rations reachable from x by the robot through collision-free
paths in contact in S1 without considering the j − 1 objects
that are not in contact with the robot. Each N1,i (x), i =
1, . . . , j is an open neighbourhood of the projection x1,i of
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the configuration x on the S1,i stratum reachable by paths
in contact with the i-th object, including transfer paths, that
do not touch obstacles. Lift each N1,i (x) to R2+2 j , by con-
sidering all the robot and object configurations in N1,i (x)
that do not overlap, i.e., remove the contact constraint while
preserving admissibility. This is an open neighbourhood of x
reachable by all the transit paths that are not in contact with
obstacles and do not overlap with the i-th object and by all
the paths in contact with the i-th object, including transfer
paths, that do not touch obstacles.

Iterate the process by determining the set Nk,i (x), i =
1, . . . ,

( j
k

)
of configurations reachable from x through colli-

sion-free paths in contact in Sk,i without considering the j−k
objects that are not in contact with the robot. Each Nk,i (x),
i = 1, . . . ,

( j
k

)
is a neighbour of the projection xk,i of the con-

figuration x on the Sk,i stratum. Lift each Nk,i (x) to R2+2 j

with the procedure illustrated before. This is an open neigh-
bourhood of x reachable by all the transit paths that are not in
contact with obstacles and do not overlap with the k objects
and by all the paths in contact with i ∈ {1, . . . , k} objects,
including transfer paths, that do not touch obstacles.

The process terminates on S j leading to the determina-
tion of the setN j (x), of configurations reachable from x by
the robot through collision-free paths in contact in S j . The
set N j (x) is an open neighbourhood of x by construction.
Lift N j (x) to R2+2 j . This is an open neighbourhood of x
reachable by all the transit paths that are not in contact with
obstacles and do not overlap with the j objects and by all
the paths in contact with the i ∈ {1, . . . , j} object, including
transfer paths, that do not touch obstacles.

Let us define now a polishing operation on the lifted
sequence of neighbourhoods. Such operation corresponds
to progressively eliminate from the lift of NR(x) to R2+2 j

the closure of the set of configurations in R2+2 j that have
been found to be not admissible during the lifting ofNk,i (x),
k = 1, . . . , j , i = 1, . . . ,

( j
k

)
to R2+2 j . The polished lift-

ing of NR(x) to R2+2 j is then an open neighbourhood of x
reachable by robot transit configurations that are not in con-
tact with obstacles and do not overlap with any object and by
admissible paths in contact, including transfer paths.

The intersection of this neighbourhood of R2+2 j with all
the strata Sk,i , k = 0, . . . , j , generates the neighbourhoods
Ñk,i (x), k = 0, . . . , j , i = 1, . . . ,

( j
k

)
Goodwine and Bur-

dick (2001).
Determine then the disk of maximum radius εx con-

tained in the smallest neighbourhood belonging to the family
Ñk,i (x), k = 0, . . . , j , i = 1, . . . ,

( j
k

)
then lift it to the R2+2 j

space where it is a ball Bεx (x) with radius ε centered in x .
Being P a compact set and εx a continuous function of x ,
there exists ε > 0 such that ε = min{x∈P} εx . By virtue of
the stratified controllability of Proposition 1 and using con-
tinuity of P , there exists δ = δ(ε) > 0 such that for each
configuration x along the path there always exists a config-

uration x ′ on the path such that ||x − x ′|| < δ(ε) and the
manipulation path from x to x ′ is always contained in Bε(x).

The set of all the ballsBδ(x), x ∈ P , constitutes a covering
ofP . SinceP is compact, it is possible to get a finite sequence
of configurations (xi )1≤i≤k (with x1 = xstart, xk = xgoal),
such that the balls Bδ(xi ) cover P .

To complete the proof, consider a point yi,i+1 ∈ P
at the intersection Bδ(xi ) ∩ Bδ(xi+1). Between xi and
yi,i+1 (respectively xi+1 and yi,i+1) there is an admissible
manipulation path that does not escape Bε(xi ) (respectively
Bε(xi+1)).

Then there is an admissible path between xi and xi+1 that
does not escapeBε(xi )∪Bε(xi+1); this path is then collision-
free. The sequence (xi )1≤i≤k is finite and we can conclude
that there exists a collision-free admissible path between xstart
and xgoal. 
�

If the objects are allowed to touch the obstacles (a realistic
case), and hence it is not possible to define an open neighbour
around some or all the configuration of a path in contact P
on a stratum S j , j = 0, . . . ,m, then it is still possible to
prove that a sufficient condition is that for any configuration
x along the path there exist an open set in∈ R

2+2 j containing
x and a segment of the path from x with non-zero length.

Finally, if the objects can also touch each other along
segments of the path, then in the reduction procedure their
motion should be handled as the motion of a single object.

The proof in these last cases presents complex technicali-
ties that are not of practical use for real robotic manipulation
systems for which the control-based tools adopted to define
the decision procedure are more relevant and easy to use,
e. g., in defining the properties that a robotic manipulation
system should have for decidability purposes.

5 Building themanipulation graph

The remaining key issue involve building a geometric data
structure that accounts for the obstacles presence and ulti-
mately for the decidability of the manipulation problem.

5.1 Cell decomposition and refinement

We propose here an extension of the manipulation graph as
it has been introduced in Dacre-Wright et al. (1992) for the
case of a single movable object, i.e., n = m = 1. In that
case the admissible (i.e., not in collision with static obstacles
nor overlapping the object to move) contact configurations
between the robot and the object were represented by the
class GRASP. The nodes of the manipulation graph were
then given by the connected components of GRASP where
the controllability, and hence reduction, property is easily
shown to hold.

123



Autonomous Robots (2021) 45:679–692 687

Fig. 4 Example of GRASP classes with 2 objects: GRASPi , i = 1, 2
represents all the configurations in Cfree such that the robot is in contact
with the object Oi

In the case of nmovable objects and amaximum ofm ≤ n
objects movable at the same time by the robot, it is necessary
to introduce n p classes GRASPΦn p

, p = {1, . . . ,m}, and to
build themanipulation graph over the connected components
of these classes (see Fig. 4 for a graphical illustration).

Each class GRASPΦn p
represents the configurations in

Cfree such that the robot is in contact with the p objects cor-
responding to one of the n p combinations also defining the
ambient manifolds in Sect. 3.3 within which the stratified
controllability holds.

We define, hence, Φn p as the string of length p consisting
in one of the n p combinations of p from the n objects. The
position of the objects not included inΦn p can change within
the class. To distinguish the different n p combinations we
introduce the notation Φn p,i , i = {1, . . . , n p}. When only
the length of the string Φn p is relevant the index i is not
specified and we do not make a distinction between the n p

combinations.
The reduction property shown in the previous section does

not apply on the whole connected components ofGRASPΦn p

but inside each leaf of the foliation of GRASPΦn p
that keeps

constant the position of the obstacles that are not in contact
with the robot: any path inside these leaves can be reduced to
a sequence of transit and transfer paths. These are, for exam-
ple, leaves of dimension 3 in the single contact manifolds
schematically represented in Fig. 2a for the case n = m = 2.

The key questions are then: (i) how to determine the con-
nected components of eachGRASPΦn p

, and (ii) how to build
a manipulation graph on which it is possible to decide for the
existence of a manipulation path.

To answer the first question consider that each class
GRASPΦn p

is by definition a contact submanifold of Cfree of
dimension 2(1+n)− p, p = {1, . . . ,m}. If there exists a cell
decomposition of the 2(1+ n)-dimensional space Cfree, then

Fig. 5 Example of GRASP classes with 2 objects: the contact space
is decomposed by retraction on the boundary

this cell decomposition induces, by retraction on its bound-
ary, a cell decomposition of the (2(1+ n) − p)-dimensional
contact submanifolds (up to some potential singularities
whose analysis goes beyond the scope of the present paper,
see Schwartz 1983). Then, such a cell decomposition leads to
a straightforward characterization of the connected compo-
nents of each GRASPΦn p

. The first question is then reduced
to the existence of an algorithm that provides a cell decom-
position of Cfree. A cylindrical decomposition can be used to
this aim, as proposed in Schwartz (1983).

Building the manipulation graph is the second issue to be
addressed. In particular, we need a suitable adjacency rela-
tionship between the cells of the classes GRASPΦn p

. Note
that each cell in the classGRASPΦn p

includes configurations
that can be joined by elementary collision-free paths. These
elementary paths, however, consist in the coordinatedmotion
of robot and objects, including thosewhich are not in contact.
The configuration space is unconstrained by definition, that
is, it has been constructed without considering that to change
the position of an object it is necessary to move in contact
with the robot. Hence, only the elementary paths that remain
in the same leaf of a connected component of GRASPΦn p

are guaranteed to be reducible to collision-free manipula-
tion paths by retracting the cell decomposition of Cfree on its
boundaries, as outlined in Fig. 5.

Then, we need to refine the cell decomposition of the con-
nected components of each GRASPΦn p

by considering their
projections along the directions of the foliations generated
by: (i) transit paths (the robotmoves alone), (ii) transfer paths
of type p (the p objects are moved by the robot while the
remaining n − p do not move).

Note first that the projection of a given cell C1 onto a
cell C2 induces a decomposition of C2 into several cells.
The projection of a GRASPΦn p,i

cell decomposition along
the direction of its foliations onto a GRASPΦn p+1

(as in
Fig. 6) gives rise to a decomposition of this last class into
multiple cells. This decomposition is further refined by pro-
jecting the cell decomposition of eachGRASPΦn p, j

such that
the length of the string Φn p,i ∪ Φn p, j is equal to p + 1
onto GRASPΦn p+1

. The initial cell decomposition of classes
GRASPΦn p,i

andGRASPΦn p, j
can then be refined by “lifting”

123



688 Autonomous Robots (2021) 45:679–692

Fig. 6 Example of GRASP classes with 2 objects: foliation in GRASPi
is obtained through transfer paths of type i with i = 1, 2 (so that the
object O3−i does not move), and the cells ofGRASPi are projected onto
GRASP1 ∩ GRASP2 along the directions of the respective foliations

Fig. 7 Example ofGRASP classes with 2 objects: the decomposition is
further refined by lifting the cells ofGRASP1∩GRASP2 along the direc-
tions of foliations. These cells are the bases of two cylinders containing
cells of GRASP1 and GRASP2, respectively

all cells in GRASPΦn p+1
along the foliations of GRASPΦn p,i

and GRASPΦn p, j
. Such lifting procedure, as displayed in

Fig. 7, yields an additional and finer cell decomposition in
the classes GRASPΦn p,i

and GRASPΦn p, j
that is inherited

from the cell decomposition at their boundary interface. The
class GRASPΦn p+1

is then decomposed in elementary cells
of which some are at the basis of two cylinders containing
respectively cells of GRASPΦn p,i

and GRASPΦn p, j
.

The cell decomposition of GRASPΦn p+1
may however

need to be further refined. The complete cell refinement
is obtained by incrementally projecting cells of GRASPΦn p

on cells of GRASPΦn p+1
, p = 1, . . . ,m − 1, along the

foliations induced by transfer paths of type n p. Then each
cell of GRASPΦnm−i

is lifted to the class GRASPΦnm−i−1
,

i = 0, . . . ,m − 2. The cells generated by this refinement
procedure and belonging to at least one cylinder constitute
the nodes of the manipulation graph.

5.2 Adjacency

In order to move from one node of the manipulation graph
to another, the corresponding cells must be adjacent, in the
sense that a manipulation path connecting them must exist
and be feasible. We then introduce the following adjacency
relation: two cells in a classGRASPΦn p

are adjacent by trans-

Fig. 8 Example ofGRASP classes with 2 objects: two cells inGRASPi ,
i = 1, 2, are adjacent (by transfer paths) if and only if they have a
common frontier and they belong to a same cylinder

fer paths if and only if they have a common frontier and they
belong to at least one same cylinder.

If GRASPΦn p
belongs to a contact manifold of minimum

dimension, i.e., p = m, and it is n = m then adjacency is
given by the existence of a common frontier between two
cells. In fact, in this submanifold, any path in contact is
equivalent to a manipulation path due to the stratified con-
trollability property that, in this case, holds on C.

We can then introduce the following recursive definition
of adjacency by transfer paths (see also Fig. 8):

Two cells belonging to two different classes GRASPΦni
and GRASPΦn j

are adjacent by transfer paths if and only
if their projections on GRASPΦni ∪Φn j

along the respective
foliations, induced by transfer paths, intersect cells of the
class GRASPΦni ∪Φn j

which are adjacent by transfer paths.
Note that the recursion terminates if m = n because in the
GRASPΦn class the adjacency is given by the existence of a
common frontier between cells.

Finally, consider the adjacency by transit paths, i.e., paths
along which the robot is not in contact with any object.
The main idea is the same as before. It is simpler because
we have to consider only the foliation induced by transit
paths in the robot free space. The leaves of such foliation
are 2-dimensional. We consider the cell decomposition of
each GRASPΦn p

after the previously described cell refine-
ment. We add an edge between two cells c1 and c2 belonging
respectively to GRASPΦni

and GRASPΦn j
if and only if the

projection of either one of the two cells onto the other along
the foliation by transit paths is not empty.1

5.3 Decidability

Wrapping up, the manipulation graph nodes are cells of the
S j strata refined through the projection and lifting process
described before; adjacency in the contact space is provided
by transfer paths between the refined cells; adjacency in the

1 Note that we are implicitly assuming that the robot dynamics is sym-
metric.
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Fig. 9 Example of a manipulation problem: the robot R can move up
to the three objects a, b, and c (left) at the same time to achieve a
manipulation task. The collision free path connecting two configura-
tions of GRASPa and including the autonomous motion of b (right) is
an admissible path within GRASPa but not necessarily a manipulation
path

robot free space is provided by transit paths between the
refined cells.

To prove decidability the graph is always constructed by
considering m = n. In case m < n, the nodes correspond-
ing to classes GRASPΦn p

, p > m, are removed from the
graph together with all adjacency relations between cells
that are based on the adjacency of GRASPΦn p

cells. This
will, of course, change the manipulation graph connectiv-
ity and problems requiring the simultaneous manipulation of
all the movable objects will be correctly reported to be not
solvable.2

The cell decomposition and the adjacency relationships
provided in Sects. 5.1 and 5.2 , in a similar way to the
cases treated in Dacre-Wright et al. (1992) and Siméon et al.
(2004), allow us to establish the decidability of the problem
as summarized in the following statement.

Theorem 2 There exists a manipulation path between two
configurations in the free space if and only if these configu-
rations retract on two cells belonging to the same connected
component of the manipulation graph.

5.4 Example: n = m = 3

Consider the case of n = 3 movable objects and a robot
that can move up to m = 3 objects together to achieve the
planning task. The scenario is sketched in Fig. 9(left).

In this case we have the following classes: GRASPi with
i = {a, b, c}, GRASPab, GRASPac, GRASPbc, GRASPabc,
where the index denotes the object in contact with the robot.

The retraction of the cylindrical decomposition of the 8-
dimensional configuration space on its boundary induces a

2 Note that, if the projection of a cell on a lower dimensional contact
manifold is empty, then the lifting process does not take place and adja-
cency may only be provided by transition through higher dimensional
contact submanifolds or on a same leaf of a contact submanifold.

Fig. 10 To connect an initial and a desired configuration of GRASPa it
is first necessary to establish a contactwithb (left), take b to a convenient
collision free configuration, i.e., move withinGRASPab, and then reach
the goal. Along this paths motion in contact is allowed

cell decomposition of the (8-p)-dimensional (p = 1, . . . , 3)
contact submanifolds and this decomposition characterizes
the connected components of each of the above listed classes
GRASPΦn p

, where Φn p = {a, b, c, ab, ac, bc, abc}. To
refine the cell decomposition of each GRASPΦn p

proceed
as follows:

1. merge the projections of GRASPa cell decomposition
along the direction of its foliations (corresponding to con-
stant positions of the objects b and c) ontoGRASPab; this
gives rise to a decomposition of this last class into many
cells; these cells can be reached by collision free paths in
contact with a that belong to the leaves of GRASPa ; it is
not guaranteed however that all the configurations in these
cells can be reached by collision free paths in contact with
b; this is guaranteed by a cell refinement illustrated in the
next step;

2. repeat the analogous projection for GRASPb onto
GRASPab; this further refines the decomposition of this
last class after the projection of the first step; the cells in
GRASPab that appear to be at the basis of two cylinders
containing cells of GRASPa and GRASPb can be reached
by collision free paths respectively in contact with a and
b; any pathwithin these cells belonging to a same leaf (i.e.,
the object c remains in a same position) can be reduced
to a collision free manipulation path; Fig. 10 illustrates
through an example the adjacency by transfer path in class
GRASPa ; to guarantee that any path within a cell in this
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class is collision free it is however necessary to refine the
decomposition as illustrated below;

3. execute the steps analogous to 1. and 2. to refine the
decomposition of GRASPac and GRASPbc;

4. merge sequentially theprojections ofGRASPab,GRASPac

and GRASPbc along their respective foliations onto
GRASPabc; this generates a decomposition of this last
class into many elementary cells;

5. lift each elementary cell in GRASPabc to GRASPab,
GRASPac and GRASPbc along their respective foliations;
each elementary cell in GRASPabc is at the basis of
two cylinders containing cells of either GRASPab and
GRASPac respectively or GRASPab and GRASPbc or
GRASPac and GRASPbc; these cells are nodes of the
manipulation graph;

6. lift each elementary cell in GRASPab, GRASPac and
GRASPbc, obtained through refinement in the previous
step, to GRASPa , GRASPb and GRASPc along their
respective foliations; the cells in GRASPa , GRASPb and
GRASPc resulting from this refinement and belonging to
at least one cylinder are nodes of the manipulation graph;
the cell refinement is then completed.

6 Generality of the approach

To avoid formal complications, we have illustrated the deci-
sion process by making reference to a specific manipulation
system. The approach, however, is general enough to be
applied to anymanipulation system dynamics, any shape and
any number of robots and objects. To support this generality
claim, consider first the following synthetic description of
the decision procedure.

1. Verify stratified controllability of the manipulation sys-
tem.

2. If the system is stratified controllable, build the manipu-
lation graph as described in Sect. 5:

(a) based on a cylindrical decomposition of Cfree, deter-
mine the connected components of each class
GRASPΦn p

, p = {1, . . . ,m}, m = n;
(b) refine the cell decomposition of each GRASPΦn p

through appropriate projections and lifting opera-
tions;

(c) connect cells within each class GRASPΦn p
and

between classesGRASPΦni
andGRASPΦn j

which are
adjacent by transfer paths;

(d) connect cells which are adjacent by transit paths;
(e) if m < n, remove the nodes corresponding to classes

GRASPΦn p
, p > m, together with all arcs corre-

sponding to adjacency relations between cells that
are based on the adjacency of GRASPΦn p

cells.

3. Search the manipulation graph for a solution; return fail-
ure if it does not exists.

Note first that the use of a cylindrical decomposition as
proposed in Schwartz (1983) to determine the connected
components of the composite free configuration space allows
robot, obstacles, objects and environment of any shape, pro-
vided that they posses a semi-algebraic geometry. The chosen
decomposition also allows to decompose the free configura-
tions for multiple robots and objects. On the other hand, the
stratified controllability test inGoodwine andBurdick (2001)
can be repeatedly applied to multiple nested sequences of
strata. If the top stratum in each sequence is different (as
would be the case ofmultiple robots), then the test determines
controllability for the union of the top strata. In addition, the
test can be used with robots of any kinematic architecture.
In principle, also the nature of the contact could be included
in testing the controllability. In this case, however, we need
to define other kinds of adjacencies in addition to adjacency
by transfer and transit paths characterising the dynamics of
a rigid grasp. Hence, we argue that it is possible to build the
manipulation graph for obstacles of any shape, in 2D and 3D
workspaces, withmultiple robots, possiblymulti-articulated.

7 Conclusion

We have proposed in this paper a decision procedure for the
problem of planning the motion of systems with stratified
configuration space. The main contribution is the develop-
ment of the decision algorithm, and no specific path planner
is considered in the paper. Manipulation, climbing, walking,
legged or multi-contact locomotion planning fall in the class
of motion planning problems that may be handled with the
presented approach.

The decision process relies on the cylindrical decompo-
sition of the composite (i.e., robot and movable objects)
free configuration space and the construction of a manip-
ulation graph whose nodes are cells in the composite free
configuration space. Cell refinement and adjacency is deter-
mined through a projection/lifting process on leaves of the
contact configuration space. Within each cell in these sub-
manifolds, paths in contact can be reduced to manipulation
paths remaining in the free configuration space due to the
stratified controllability of the manipulation system.

Although illustrated for a particular manipulation prob-
lem, the tools and approach adopted are general enough
to include a much wider class of problems as discussed in
Sect. 6.
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