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Abstract
Forty years ago the notion of configuration space (C-space) revolutionised robot motion planning for rigid and articulated
objects. Despite great progress, handling deformable materials has remained elusive because of their infinite-dimensional
shape-state space. Finding low-complexity representations has become a pressing research goal. This work tries to make a
tiny step in this direction by proposing a state representation for textiles relying on the C-space of some distinctive points.
A stratification of the configuration space for n points in the cloth is derived from that of the flag manifold, and topological
techniques to determine adjacencies in manipulation-centred state graphs are developed. Their algorithmic implementation
permits obtaining cloth state–space representations of different granularities and tailored to particular purposes. An example
of their usage to distinguish between cloth states having different manipulation affordances is provided. Suggestions on how
the proposed state graphs can serve as a common ground to link the perception, planning and manipulation of textiles are also
made.

Keywords Configuration space · Deformable objects · Cloth state · Topological representation · Stratification

1 Introduction

Robot manipulation in human environments is an important
research field that in recent years has experienced tremen-
dous progress. Impressive results have been obtained among
the many open problems pinpointed a decade ago (Kemp
et al. 2007), such as humanoid whole-body reaching, mobile
manipulation and human–robot collaboration. Research has
focused on core capabilities as grasping everyday objects,
carrying and placing them, as well as robot hand-over to or
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by a person. An important limitation is that the target objects
have been —almost exclusively— rigid ones.

Indeed, non-rigid objects —textile items in particular—
pose many additional challenges with respect to rigid object
manipulation, such as difficult perception, complexity in
modelling the object and predicting its behaviour, and the
many uncertainties hindering motion planning to reach a
desired outcome. Despite these difficulties, the manipulation
of clothing items is nowadays gaining attention in the robotics
community due to the rise of assistive and service robotics
(Torras 2016). As clothing items pervade human environ-
ments, automating their versatile manipulation would have a
large impact on society, in sectors ranging from healthcare to
clothing industry. The key problem underlying all these dif-
ficulties is that, whereas handling a rigid object only changes
its pose, namely 6 parameters (the configuration space is
the well-known R

3 × SO(3)), the manipulation of a textile
object takes place in a shape-state space which is poten-
tially infinite-dimensional. This huge dimensionality jump
prevents the extension of the techniques developed for rigid
objects (for perception, planning, learning andmanipulation)
to textile ones, and calls for a radically different approach.
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2 Related work

The extension of available techniques consists of modelling
cloth as a finite element mesh and applying both physics
simulation and motion planning algorithms for closed-loop
multi-articulated objects. This is appropriate for render-
ing where realistic appearance is sought, and impressive
advances have taken place recently in the computer vision
and computer graphics communities (Pumarola et al. 2018;
Bai et al. 2016), but robot manipulation has not benefited
so far from them, because of its substantially different final
aims. In the graphics context, the goal can be among others
to render the dressing of a human body, representing with
accuracy the clothing as offsets from the body (Ma et al.
2019; Guan et al. 2012; Pons-Moll et al. 2017), as well as to
estimate with precision the clothing pose based on generative
models for 3D shapes using topology (Hilaga et al. 2001).

For these approaches, rendering precision is important,
while for robot manipulation, local details such as wrinkles
and accurate position can be overlooked in favour of properly
determining the macro-state the cloth is in. By macro-state
wemean a set of cloth configurations that can bemanipulated
in the same way, i.e., that have similar grasping affordances.

In the robot manipulation community there is a long-
standing general agreement that “low complexity represen-
tations for the deformable objects should be the objective”
(Smith et al. 2012) and some attempts to use topological con-
structs to this end have been made, using writhe matrices,
winding numbers and Laplacian coordinates for topology-
based representations (Ivan et al. 2013; Yuan et al. 2019),
as well as loops detection (Pokorny et al. 2013) and topol-
ogy coordinates for representing human pose as captured
by a motion capture system (Koganti et al. 2017), but also in
combinationwith deep learning approaches (Yan et al. 2020).

Further along this line, we propose to characterise cloth
macro-states, called just ’states’ in what follows, using com-
binatorial topology techniques. Inspired by previous works
on the topological representation of robot configuration
spaces (Canny 1988; Torras et al. 2006), we consider a set
of significant points in the cloth and rely on the process of
stratification to decompose the configuration space (C-space)
of such points into manipulation-wise meaningful states, as
well as to derive their adjacencies.

The outcome is a succinct manipulation-oriented cloth
state representation in the form of a graph that permits encod-
ing actions as probabilistic state transitions and then applying
the powerful probabilistic task planning machinery devel-
oped within the AI community (Geißer et al. 2019; Canal
et al. 2019). Another potential advantage is the simplifica-
tion of perception, since states can be recognised without
accurately recovering the cloth configuration, and only local
features relevant for grasping need to be located.

The paper is structured as follows. In Sect. 3 we use the
notion of stratification to study the topological space of con-
figurations of points, focussing first on the case of 4 points.
We investigate how such stratification can be obtained using
the algebraic condition givenby the alignment of three points.
This allows us to assign to each configuration of n points a
concise “label” and ensure that those with different label are
effectively separated by the stratification in different strata.
We also provide an explicit algorithm to construct such strat-
ification for the case n < 7. We proceed then, in Sect. 4,
to investigate the complexity of the stratification and how to
simplify it. This can be efficiently done using its topological
properties and the action of the symmetric group Sn , defining
the state of a configuration of points as a collection of one or
more strata. Thanks to such states, we can investigate how
the points of amesh are distributedwith respect to some fixed
ones (for example the corner ones in a rectangular textile) and
compare different mesh poses based on the state-distribution
of their points.

3 Configuration space of a textile rectangle
using n points

Given a rectangular cloth on a planar surface, we could con-
sider it as a surface embedded inR

3 with no self-intersection.
Unfortunately, considering the different configurations of
such surface and studying their space bears difficulties. On
the already complex space of all possible surfaces with same
area and no self-intersections, we need to impose also con-
straints such as gravity force and cloth stiffness. In order to
simplify, we consider instead the cloth as a set of n points on
the real plane R

2 and the space of all possible configurations
of them,Con fn(R2). This space belongs to the far more gen-
eral family of configuration spaces of points on manifolds,

Con fn(X) = {
(p1, . . . , pn) ∈ Xn|pi �= p j for i �= j

}
.

Such spaces are interesting topological objects and both their
homotopy type and homological properties have been studied
by several authors. In Arnold (1969) some results regarding
the homotopy type ofCon fn(X) are obtained, assuming X is
of dimension 2, while the real homotopy type of Con fn(X),
when X is a smooth projective variety, was independently
computed by Kriz (1994) and Totaro (1996). In Cohen et al.
(1976) under the assumption X = R

n , the homology of
Con fn(X) is computed and, in particular, it is proved that
Con fn(Rn) is the classifying space of the n-strand pure braid
group.

Since our aim is to distinguish states based on the types
of robot manipulations they permit, we will investigate how
such space can be subdivided into meaningful regions, each
one formed by several configurations of n points. The proce-
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Fig. 1 The points p1 and p2 are fixed, while p4 has to be inside the
grey circle, of radius d (Color figure online)

dure introduced here allows us to assign to any configuration
of points a binary vector, whose length depends on the num-
ber of points considered. In this way we can group together
configurations with the same vector representation and in
addition we will be able to plan which regions of C-space we
need to “visit” if we want to move from one state to another.

To obtain such structure for Con fn(R2) we will employ
the notion of stratification of a topological space. The idea
behind such notion is to decompose topological spaces of
dimensionm into smooth parts of dimensionm, such that the
boundary between any two of them is a subspace of dimen-
sionm−1. As we can iterate such process at each dimension
0 ≤ k ≤ m, the stratification assumes the form of a filtra-
tion, ∅ ⊆ X1 ⊆ X2 ⊆ · · · ⊆ Xm = Con fn(R2), where
each Xi is the union of disconnected smooth parts, called
strata of dimension i and the boundary, called singularity of
dimension i − 1, between two strata belongs to Xi−1. The
structure of a stratification can be quite complex, however for
simple cases one can visualise it clearly. Consider 4 points
in the plane, as in Fig. 1, such that p1 and p2 are fixed and
||p4 − p1|| ≤ d.

Their C-space is a solid torus, product of a disk, encod-
ing the position of p4, and a circle, encoding the angle of
p1 p2 and p3 p4, and it is clearly contained in Con f4(R2).
Its stratification can be seen in Fig. 2 , where we use align-
ment between points to define singularities.

Our first step towards the construction of a stratification
for Con fn(R2) is to investigate the simplest non-trivial case
of n = 4, which will prove to be essential in the treatment
of the general case. For both this case and the general one
the main idea consist in identify as singularity a subspace of
Con fn(R2), where three points are aligned, so that, in the
highest dimensional strata no triple of point can be aligned.
We will show that such alignment is defined by an algebraic
condition (a null determinant) and it provides us with a con-
cise way to encode the different strata (as vectors of signs
of determinants). This property allows us to determine eas-
ily the corresponding stratum (or singularity) of any point
configuration. We also introduce a constructive way, Algo-
rithm 1, to build such stratification when n < 7 in a finite
number of steps.

3.1 C-space of a textile rectangle using 4 points

For the case n = 4 we will rely on the stratification of the
flag manifold of RP

2,Flag(3). The elements ofFlag(3) are

Fig. 2 On the top we can see four disconnected 3D strata of the C-
space, obtained by cutting the torus with the 2D singularities. These
are two disks (in purple on the bottom), which correspond to p3 ∈
p1 p2, and one annullus (in light green on the bottom), corresponding
to p4 ∈ p1 p2. On the bottom picture we show also the 1D singularities
(in black) and two 0D singularities (in yellow). The former correspond
to p1 = p4 (a circle) and p3 p4 = p1 p2 (two segments). The latter
correponds to the case when both p4 = p1 and p3 p4 = p1 p2 (Color
figure online)

Fig. 3 Stratification ofFlag(3) into Bruhat cells, where a link indicates
that one is in the boundary of the other. The label of each stratum
describes if and how any of its flags V intersects with V ∗, e.g. for any
flag in v − l∗ it is true that v ∩ l∗ �= ∅

the sets {v, l} with v a point and l a line in RP
2 such that

v ∈ l. If we fix a flag {v∗, l∗}, call it reference flag, we are
able to construct a stratification ofFlag(3) that encodes the
possible pose of any flag with respect to the reference one.
The strata corresponding to such stratification are Bruhat
cells, as shown in Hiller (1982); Monk (1959). The resulting
stratification can be seen in Fig. 3, we refer the reader to
Milnor and Stasheff (1975) for a more detailed description.

Consider the points p1, p2, p3 and p4 in R
2 as points in

the projective plane, by adding 1 as last projective coordinate.
We define V ∗ = {p1, p1 p2} as reference flag and consider
the flag V = {p3, p3 p4}. Note that, in an abuse of language,
we are denoting pi both the point in RP

2 and the one in R
2.

Each stratum in Fig. 3 of dimension at most 2 corresponds
to some point alignment. For example if V is in the stratum
v − l∗ then {p1, p2, p3} are aligned, both in R

2 and RP
2.
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This means that we can induce a stratification of Con fn(R2)

using the one of Flag(3). In particular, any alignment of
pi , p j , pk can be seen as a pure algebraic condition on the
points coordinates, given by the singularity of the determi-
nant di, j,k = |pi p j pk |. The sign of such determinant will
depend on the clockwise or counter-clockwise position of
the ordered triple (pi , p j , pk). Because the determinant is a
continuous map onto R, if two configurations p and q differ
by one and only one determinant sign, say di, j,k , then we
know that any continuous path from one configuration to the
other has to cross the singularity loci of di, j,k .

The stratification in Fig. 2 can be interpreted using the
Flag(3) stratification. Considering the reference flag V ∗ =
{p1, p1 p2} and V = {p4, p4 p3}, we have that the annu-
lus, singularity of dimension 2, corresponds to v − l∗. Inside
it we have v − v∗, which is the singularity of dimension 1,
displayed as a black circle. Finally, the singularities of dimen-
sion 0, displayed as yellow points, are v−v∗, l−l∗. Actually,
there are 2 determinants that we are not considering, namely
d1,3,4 and d2,3,4. The singularity surfaces are more difficult
to visualize and would lead to a much finer stratification.

Given any configuration of 4 points in R
2 we can map it

continuously to R
4, assigning to each coordinate the deter-

minant value of d1,2,3, d1,2,4, d1,3,4 and d2,3,4, respectively.
The singularity locus of a determinant can be seen either as
an alignment of three points, as a flag intersection, or also as a
hyperplane inR

4 corresponding to one coordinate equal to 0.
If we consider R

4 minus the coordinate hyperplanes, xi = 0
for i = 1, . . . 4, we obtain 16 disconnected smooth regions,
each one containing points with same coordinates signs, that
is, corresponding to configurations of points with same deter-
minant signs. The reader should be aware however that such
mapping is not one-to-one More than one configuration can
be mapped to the same point in R

4, as the determinants are
invariant under R

2-isometries.
The counter-image of these regions of R

4 are the highest
dimensional strata of the stratification ofCon fn(R2) and they
correspond to the subsets of all configuration with identical
determinant signs. We can then uniquely associate to each
stratum the label of the determinant signs sequence of any
configuration of points in it, that is, a binary vector with 4
entries.

Note that each configuration in Fig. 4 would require in
principle different robot manipulations for a folding task,
e.g., using the taxonomy in Borràs et al. (2020), we would
use point-tableplane sliding for the spread out configuration;
point-point pick-up for the corner in the middle of the cloth;
point-gripperplane sliding for the overfolded cloth, so as to
turn it out.

These labels will not only tell us how to group “similar”
configurations but also how “different” two configurations
are. For example, we can count howmany signs, resp. singu-
larities, a continuous path from one configuration to another

Fig. 4 Three different configurations of the 4 corner points of a rectan-
gular textile, wherewe coloured in grey the back side.All configurations
belong to different strata, (+ + + +), (+ + − +) and (− − − −),
respectively, from left to right (Color figure online)

Fig. 5 Let d1,2,3 be positive, as in the figure. The region on the lower
left corner (coloured in green) is the only one in common between the
regions in which d1,2,4 is negative (left of p1 p2, coloured in yellow)
and the ones in which d2,3,4 is negative (below p2 p3, coloured in blue).
In this region also d1,3,4 is negative (Color figure online)

will change, resp. cross. The reader cannowsee that forn < 4
such approach would be trivial. In the case of n = 3 we get
only two strata, corresponding to p3 being on the right/left
of the line p1 p2. If n = 1, 2 then it is clear we cannot even
define any determinant.

In the case n = 4, the maximum number of strata we
could obtain is 24 = 16, however using the determinants
expressions, we derive the following algebraic equation

d1,2,3 + d1,3,4 = d1,2,4 + d2,3,4.

It is straightforward to see that it is impossible that either
d1,2,3 and d1,3,4 are positive and d1,2,4 and d2,3,4 are neg-
ative or vice versa. We can verify it explicitly considering
the regions obtained assuming 3 points fixed, say p1, p2 and
p3, and d1,2,3 either positive or negative. The former case is
showed in Fig. 5.

Another consequence of such equation is that, if a config-
uration of points belongs to a stratum with odd number of
minuses in its label, then there exists one point lying inside
the triangle spanned by the others. We will call from now
on such strata internal, otherwise we call them external. A
graph of the adjacencies between the strata is shown in Fig. 6.
We refer the reader to “Appendix A” for a thorough study of
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Fig. 6 Representation of Con f4(R2), with strata adjacencies indicated
by links between different sign sequences. We used cyan ellipses to
denote external strata and red rectangles for internal ones (Color figure
online)

such relationships with respect to theFlag(3) stratification
for the case n = 4.

3.2 C-space of a textile rectangle using n points

We can apply a similar procedure and obtain a similar defini-
tion of stratum for the general case of n points, however some
issues regarding the admissibility of sign sequences need to
be addressed.

As n increases, the number of flags and their position with
respect to each other becomes more difficult to encode and
a description based on it would make less clear the structure
of the space. To avoid it we will employ only the determi-
nants to detect changes between configurations. We know

that given n points we have k =
(
n
3

)
different triples of

points, that is, k possible determinants. We can map any con-
figuration of n points to a point (x1, . . . , xk), where each
xi corresponds to the determinant of a particular triple of
points. We know that each coordinate hyperplane, xi = 0 for
i = 1, . . . , k, corresponds to a singularity, that is, a determi-
nant equal to zero, and the determinants are again continuous
functions. We can then define a stratum of Con fn(R2) as the
set of all configurations of n pointswith the same determinant
sign sequence, and represent singularities between strata by

null determinants, or equivalently by the alignments of three
points. Such strata will correspond to regions of R

k after
removing all coordinate hyperplanes. From now on, we con-
sider the determinants ordered with lexicographic order on
their indices with the constraint that for k = 3, . . . , n, the

first

(
k
3

)
ones are those of {p1, . . . , pk}.

Even if we are able to encode each configuration of points
as a sign sequence, we do not have a priori a way to determine
if a sign sequence is admissible. This is an essential step of our
study, becausewewant to be able, not only to group “similar”
configurations, but as well navigate such stratification. For
example if we want to find the optimal way to move n points
from one configuration to another belonging to a different
stratum, we might need to know which are the allowable
paths, that is, which strata we can visit.

Suppose that n−1points are fixed andwewant to study the
regions in which the arrangement of lines spanned by pairs of
these points divideR

2. Note that, thesewould represent strata
of Con fn(R2), with identical determinant signs for the fixed
n − 1 points. This approach together with the knowledge of
the stratification of Con fn−1(R

2) would allow to construct
the stratification of Con fn(R2). Line arrangements, both in
the real and projective planes, have been studied extensively
in various contexts, see Grünbaum (1972) and references
therein. Several authors have worked on how to bound the
number of regions, triangles or polygons (Roudneff 1986;
Strommer 1977; Simmons 1973). In Aichholzer et al. (2018),
the authors consider the problem of characterising geomet-
ric graphs using the order type of their vertex set. Using the
notion of minimal representation of a graph, they identify
which edges prevent the order type from changing via con-
tinuous deformations of the graph. Even if this approach is
the closest to ours, to our knowledge in the literature there is
not a detailed study of the adjacency relations ofCon fn(R2).
In particular there is not a study that tells us exactly which
determinant signs sequence is admissible and which is not.
We present here an iterative technique to construct the strat-
ification of Con fn(R2).

The adjacency of two strata σ, τ can be seen as the
possibility of nullifying one and only one determinant via
continuous movement of a configuration p in σ to another q
in τ . So if, given any stratum σ , we are able to detect with a
deterministic test which determinants can or cannot be nulli-
fied, we are effectively identifying which strata are adjacent
to σ . We can iteratively apply such test to these strata and,
as Con fn(R2) is connected (Cohen et al. 1976), we would
recover all the existing strata. For any n ≥ 3 there exists
always a configuration p∗ such that each determinant sign
of any triple of points is positive, namely when the points
are placed to form a convex n-gon and they are in counter-
clockwise order. In other words, there is always a stratum
σ ∗ whose sign sequence is formed only by positive signs
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and that can be always used as starting point in such iterative
process to find the strata ofCon fn(R2).Wewill now proceed
to explain how we can rigorously describe such test.

We know that the symmetric group Sn acts onCon fn(R2)

via point permutations. That is, if we have p = {pi }ni=1, a
configuration of n points, then the induced action of g, call
it fg , is defined as fg(p) = {pg(i)}ni=1. Note that fg is an

automorphism of Con fn(R2), as f −1
g = fg−1 , furthermore

it is also an automorphism of the singularity loci, as the sin-
gularity of a matrix does not change when we permute its
rows. The action of g on the sign sequences can be easily
deduced. Let σ be the stratum of p and g ∈ Sn , then the
sign of dg(i),g( j),g(k) of the stratum τ = g · σ to which g · p
belongs is the same, resp. opposite, of di, j,k if the signature
of (g(i), g( j), g(k)) is positive, resp. negative. From nowon,
we will study the adjacency between σ and τ that differs by
the sign of d1,2,3, otherwise we can reduce to such case via a
permutation of Sn . In what follows, we assume w.l.o.g. that
σ has d1,2,3 with positive sign. In other words, the adjacency
test for σ is reduced, via a suitable permutation, to establish
if the determinant d1,2,3 can be nullified. Such property is
equivalent to the existence of the following map.

Definition 1 (Crossing map) Let p be a configuration in

Con fn(R2) and consider for 1 ≤ i ≤ n the continu-
ous map Hi : [0, 1] → R

2, such that Hi (0) = pi . We call
H = ⊗n

i Hi a crossing map for p, if

• H(t) ∈ Con fn(R2) for t ∈ [0, 1] ;
• du,v,w(H(t)) �= 0 for (u, v, w) �= (1, 2, 3) and t ∈

[0, 1];
• d1,2,3(H(0)) · d1,2,3(H(1)) < 0;
• ∃! t ∈ (0, 1) such that d1,2,3(H(t)) = 0.

The existence of a crossing map for p ∈ σ , a continuous

path in Con fn(R2), is equivalent to the existence of τ , a
stratum with sign sequence identical to that of σ but for the
d1,2,3 sign. It is clear now that such existence for a p ∈ σ is
equivalent to the adjacency test forσ wewere looking for.We
present here two theorems that allow us to determine if and
when a crossing map exists. Such theorems are constructive,
that is, we show also how we move continuously a point (or
more if needed) to change only one determinant sign. We
know that any triple of not-aligned points in R

2 divide it in
7 open regions (Fig. 7), which are essential for the following
discussion.

We are now ready to state the following.

Theorem 1 Let p be a configuration of points in Con fn(R2),
if there exists a point pi ∈ p in the self-dual region then there
does not exist a crossing map for p. Similarly, if there exist
two points p j , pk in two regions that are not dual, such map
does not exist either.

Fig. 7 The lines spanned by a triple of non-aligned points p1, p2, p3
divideR

2 in 7 regions. These can be split in three couples of dual regions
and a self-dual region, here visually divided by colour and pattern. Each
dual couple is formed by an external region and an internal one, as any
point belonging to the former, resp. the latter, together with p1, p2, p3,
forms an external, resp. internal, sign sequence. The self-dual region
consists of one internal region (Color figure online)

Proof See “Appendix B”. �
The idea behind this theorem is that ifwewant to nullifyd1,2,3
we need to align p1, p2, p3, without aligning any other triple
in the process. For example if a point pk is inside the triangle
spanned by these three points it is clear that aligning them
would result in aligning all 4 of them.

As the sign sequence is invariant among all configurations
of points in the same stratum σ , we have the following.

Corollary 1 Let σ and τ be two sign sequences that differ
by only one sign, namely that of d1,2,3, positive for σ and
negative for τ . If there exists a k �= 1, 2, 3 such that the σ -
subsequence relative to indices (1, 2, 3, k) is (++−+) then
σ and τ are not adjacent. Similarly, if there exists j, k �=
1, 2, 3 such that the σ -subsequences relative to (1, 2, 3, j)
and (1, 2, 3, k) are different and not dual, then σ and τ are
not adjacent either.

The following result tells us when instead it is possible to
change sign, that is when the adjacency exists.

Theorem 2 Consider p ∈ Con fn(R2) such that Theorem 1
is not satisfied. Suppose that for any pair 4 < i, j ≤ n it
is true that either pi and p j belong to the same region and
the tuple (p1, p3, pi , p j ) has an even number of minuses or
they are in a dual couple and the tuple (p1, p3, pi , p j ) has
an odd number of minuses. Then there exists a crossing map
for p.

Proof See “Appendix B”. �
When Theorem 2 is satisfied we can construct explicitly a
crossing map so that all points but p2 are fixed and p2 moves
along the line p4 p2. In terms of strata adjacency we have
the following corollary.

Corollary 2 Let σ, τ , be two sign sequences that differ by only
one sign, namely the one of d1,2,3. Suppose that for any pair
4 < i < j when the 4-tuples (1, 2, 3, i) and (1, 2, 3, j) are
equal, resp. dual, we have that the sign subsequence relative
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to (1, 3, i, j) is external, resp. internal. Then σ and τ are
adjacent strata.

Note that, when two signs sequences differ only by one sign,
they need to be adjacent, which means that, if they are not,
either one or both are not present as strata inCon fn(R2). It is
true that Theorem2 is a necessary and sufficient condition for
strata adjacency when n < 7, but this is not true for higher n.
When n < 7 there is only one pair such that 4 < i < j ≤ n,
that is, i = 5 and j = 6. This means that all points are
involved: p1, p2 and p3 determine the dual regions of the
plane and p4 determines the crossing map for p2, permitted
by the position of p5, p6. For the case n ≥ 7 the conditions in
Theorem2 involve subsets of p and not all of them.When it is
not satisfied, there might exist other ways to move p2 across
the line p1 p3, that is, a crossing map for p, for example
moving more than one point.

The adjacency test between a stratum σ with positive sign
d1,2,3 and τ = H1,2,3(σ ), the one with identical determinant
signs but d1,2,3, follows, where we denoted the duality rela-
tionship by ‖ and its negative by ∦. In the next section we

Algorithm 1: Adjacent
Input : Sign sequence σ

Output : Boolean

foreach 4 ≤ j < k ≤ n do
σ j ← signs of (p1, p2, p3, p j );
σk ← signs of (p1, p2, p3, pk);
if σ j = (+ + −+) then

return False

if σk = (+ + −+) then
return False

if (σ j �= σk) ∧ (σ j ∦ σk ) then
return False

foreach 4 < j < k ≤ n do
σ j ← signs of (p1, p2, p3, p j );
σk ← signs of (p1, p2, p3, pk);
σ j,k ← signs of (p1, p3, p j , pk);
if (σ j = σk) ∧ (σ j,k is external) then

return True

if (σ j ‖ σk) ∧ (σ j,k is internal) then
return True

return False

will describe how to effectively compute the sign sequences
admissible in Con fn(R2)when n ≤ 6 and how this structure
can then be applied effectively to describe the “state” of the
cloth.

4 Implementation and results

In this section we will demonstrate how Theorem 1 and
Theorem 2 can be implemented in a finite algorithm that

returns the stratification of Con fn(R2). We will show that
the number of existing strata increases significantly with the
number of points, and to consider such approach, as it is, for
a mesh of hundreds of points would be unfeasible, both for
the construction of the stratification and its practical use. We
propose here to group different strata in macro-states, called
just states from now on, using both symmetric relationships
and topological properties of the stratification. We will show
that using this revised approach we can assign to a mesh on
hundreds of points a discrete distribution over such states,
allowing us to distinguish between different cloth poses.

In Sect. 3 we showed that the combination of Theorem 1
and Theorem 2 can be used to determine the existence of a
crossing map. Algorithm 1 assess the adjacency of a stratum
σ with respect the singularity of d1,2,3. We know that the
action of Sn allows to swap any triple (i, j, k) with (1, 2, 3),
so thismeans that existence of any adjacencywith respect to a
given di, j,k can be determined after permuting some indices.

We present now two further algorithms: Algorithm 2
where we combine Algorithm 1 and the action of Sn on
Con fn(R2) to determine all adjacencies of a stratum, and
Algorithm 3 where, from a chosen stratum σ , we search
existing adjacencies iteratively to obtain all existing strata
in Con fn(R2).

Algorithm 2: Reachable
Input : Sign sequence σ

Output : Sign sequences adjacent to σ

Y ← ∅;
foreach 1 ≤ i < j < k ≤ n do

g ← (i, 1) · ( j, 2) · (k, 3);
α ← g · α;
if α has d1,2,3 negative then

α ← (1, 2) · α;

if Adjacent (α) then
Y ← Y ∪ {Hi, j,k(σ )};

return Y

After applying Algorithm 2 to any σ we obtain a set of
existing strata, to which we can reapply Algorithm 2. This
iterative application of Algorithm 2 can be done a finite num-
ber of times, as the number of all possible sign sequences
is finite. Thanks to the connectedness of Con fn(R2), it is
also true that we cannot miss any existing strata, if we
iterate enough times. Algorithm 3 encodes such iterative
process, assuming that the starting stratum is σ ∗, with all
positive determinant signs, obtained placing n points as ver-
tices of a convex n-gon and in counter-clockwise order.
Thanks to Algorithm 3 we are able to recover the structure
of Con fn(R2) and, with it, also the number of strata, that
is, sign sequences, present. As we can see in Table 1, the
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Algorithm 3: C-Space
Input : σ ∗ stratum of Con fn(R2)

Output : Configuration space Con fn(R2)

i ← 0;
Xi = {σ ∗};
while Xi �= ∅ do

Xi+1 ← ∪
σ∈Xi

Reachable(σ)\ i∪
j=0

X j ;

i ← i + 1;

X = i∪
j=0

X j ;

return X
-

Table 1 The number of strata of Con fn(R2) is displayed together with
their topological properties considering their adjacency graph

n Strata Adjacencies Degrees

3 2 1 (1)

4 14 24 (3,4)

5 264 600 (4,5)

6 11904 30240 (2, 3, 4, 5, 6, 7, 9, 10)

Fig. 8 Three different configurations of the 4 corner points of a rectan-
gular textile, wherewe coloured in grey the back side.All configurations
belong to different strata, but they are the same with respect to the Sn
action. These configuration require in principle different robot manip-
ulations, for example if the goal is folding or unfolding (Color figure
online)

number of strata increases rapidly, and it is expected to rise
quadratically in terms of n (Strommer 1977).

As we are aiming to deal with meshes with hundreds of
points, considering the strata as representating cloth poses, it
might be computationally challenging as their number grows
dramatically. To overcome such problem, we will show how
to group different strata, and so configurations entailing simi-
lar robotic manipulations, in states. In Cohen et al. (1976) the
action of Sn on Con fn(Rn) is studied and, in particular, we
obtain that the quotient of this action gives us the unordered
configuration space of n points. In terms of our stratification,
such action induces an identification between configurations,
and so between strata,whose determinant signs coincide after
a permutation of the point labels, {1, . . . , n}. An example of
different configurations belonging to the same Sn-state is dis-
played in Fig. 8.

Such action however does not always preserve faithfully
the adjacency relationships, as it can happen that two strata in
the same Sn-equivalence class are adjacent. From our point

Table 2 Number of Sn-states and ∼σ -states in Con fn(R2)

n Sn − states σ ∗ − states

3 1 2

4 2 5

5 3 23

6 20 150

of view, such possibility should be avoided, as a general rule.
It implies that there exists a state containing a singularity
loci, as two adjacent strata belong to it. We acknowledge the
possibility that for a particular goal, the practitioner might
allow it, if that singularity loci is not relevant for the particular
task or goal sought.

Each stratum is labelled with a binary vector of determi-
nant signs and we can measure the distance between two
strata with the Hamming distance. It measures how many
different determinant signs they have, or equivalently the
number of singularity loci to be crossed to continuouslymove
from one stratum to the other. The following equivalence
relation ensures that no pair of adjacent strata belongs to the
same state.

Definition 2 (∼σ -States)Given a stratum ofCon fn(R2), call
it σ , we say that two strata τ1 and τ2 belongs to the same
state if they are equally distant from σ w.r.t. the Hamming
distance and they are in the same Sn-state. We will denote
such equivalence relation as τ1 ∼σ τ2.

It is easy to see that given two adjacent strata it is impossible
for them to be inside the same state, as they will always have
different sign distances from σ . It can be shown explicitly
that, for different σ , the number of ∼σ -states might change.
To avoid confusion and be coherent in the choice of such
σ we will assume from now on that σ = σ ∗, that is, the
stratum with correspondent sign sequence formed by only
positive signs. Table 2 shows the number of Sn-states and
∼σ -states for n < 7.

For any two states we can define a distance between them
as the minimum Hamming distance between two strata in
each state, which will always be greater than 0 if the states
are different. We will say then that two states are adjacent if
such distance is 1, as it implies that there exists at least two
adjacent strata, one in each state.

As in each state we can have one or more strata, to
avoid confusion, from now on we label each state using the
sign sequence of one of them. As choice of label we con-
sider the lowest sign sequence in the lexicographic order,
assuming + < −. In Fig. 9 we can see the S

5-states of
Con f5(R2), using the labelling just explained,wherewe con-
nected together states that are adjacent.

As anticipated such states do not always preserve
adjacencies. Consider the sign sequence τ = (+ + + + +
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Fig. 9 Adjacency graph of the S5-states using lexicographic order for
the choice of labels

Fig. 10 Adjacency graph of the σ ∗-states of Con f5(R2) using lexico-
graphic order for the choice of labels

+ + + − −), which is in Con fn(R2). We know that τ can-
not be in A = (+++++++++−−−) otherwise it would
be its label and so it has to be in B = (+++++++++−).
This means that in B we have two adjacent strata, as the label
of a state corresponds to a stratum in it. For the∼σ -states this
does not happen, thanks to their definition, even if they are a
refinement of the Sn-states, as to be∼σ -equivalent two strata
need to be Sn-equivalent. We show their adjacency graph in
Fig. 10.

We know that the stratum with all negative signs always
exists, as it is obtained displaying the points in clockwise

order. Its distance from σ is exactly

(
n
3

)
. This means that

the number of ∼σ -states for Con fn(R2) is at least

(
n
3

)
.

Again, even using states for representing C-space, instead of
the stratification, their number for a mesh with hundreds of
points becomes computationally challenging.

To avoid such challengewepropose to consider instead the
distribution of states for the subsets of m points in the mesh,

Fig. 11 For the same mesh of a rectangular cloth with ∼ 700 points on
the top, we plot on the bottom the distribution of Sn-states (on the left)
and the ∼σ -states (on the right) using different colours for the internal
points based on their associated states (Color figure online)

assuming the 4 corner points always in these subsets. As
the case of m = 5 is the simplest and visual considerations
can be made quite clearly, we will focus first on this case
and only after show its generalisation. The cloth simulations
presented here are obtained synthetically using a Blender
simulator (Sánchez-Riera et al. 2010).

Aswe are considering subsetswithm points (with 4 corner
points always present) there exists a one-to-one matching
between each subset and the (internal) point of the mesh. We
can then associate the Sn-state, or ∼σ -state, of this subset
to its unique internal point and vice versa. This allows us to
show in a clear fashion how the distribution of states varies
from different cloth meshes. In Fig. 11 we show how this
distribution can change when using different states, Sn-states
and ∼σ -states.

It is clear that we are dividing the mesh cloth in differ-
ent “zones”, each one associated to a different state, and so
having more states could imply obtaining more zones for the
same mesh. We refer the reader to “Appendix C” for more
particular state definitions. They are presented with a discus-
sion on the differences with the Sn-states and ∼σ -states, as
well as on the possible uses for the practitioner. It is impor-
tant to note that the definition of state we propose can be
adapted to different needs from the user, as well as different
goals. For example the coarsening of the states, that is, of
the grouping of strata in Con fn(R2), can be tuned and focus
can be put or reduced on different states depending on their
relative importance for the task at hand.

Given amesh, we canmap its state-zones to a vector inR
k ,

with k the number of states considered, simply assigning to
the i th-coordinate the number of internal points associated
to the i th state. In other words, given a mesh of n points,
we are assigning to it a vector that encapsulates the state
distribution of its points. The reader should bear in mind that
this procedure can be also viewed in terms of configurations
of n points. We are effectively projecting a configuration
in Con fn(R2) to n − 4 copies of the state-decomposition of
Con f5(R2). Then, the state decomposition ofCon fn(R2) can
be obtained by identifying strata with identical Con f5(R2)-
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Fig. 12 We consider the distribution of points in S5-states for different
cloth meshes. The distribution of points in each Sn-state, a vector inR

3,
is displayed for each mesh as a histogram. For brevity we indicate state
(+ + + + + + + + +−) with A, state (+ + + + + + + − −−) with
B and state (+ + + + + + + + ++) with C

Fig. 13 A confusion matrix between different mesh poses using the
heat function to represent low distance values (in red) and high ones
(in blue). We can see that the similarity decreases for this particular
example as the corner is moved across and out of the initial rectangle
area (Color figure online)

state distribution with respect to such projection. Examples
of such identification follow in Fig. 12.

This state distribution can be considered as a vector
in the Euclidean space R

k , so one could also identify
“close” enough state-distribution vectors with respect to the
Euclidean distance.We show in Fig. 13 how this distance can
be able to encode such similarities and differences.

If we want to generalise this approach for m > 5 we
should bear in mind that the association with the internal
points will be impossible, that is, a “zone” decomposition of
themesh clothwould bemeaningless.Wewill be considering

all

(
n − 4
m − 4

)
subsets of m − 4 internal points, so we cannot

associate uniquely a state to a point. However, given a mesh
cloth of n points such that the 4 corner points are given and
a state definition, we can again associate to it a vector in R

k

where k is the number of states in Con fm(R2). This allows
us to see any cloth mesh as a vector in an Euclidean space
and measure distances between different meshes, and addi-
tionally it gives also a way to decompose Con fn(R2) into
regions on the basis of their associated vectors.

5 Conclusion

We have proposed an approach to represent the state of tex-
tiles in a global, coarse way useful for robot manipulation. It
is well founded in topological grounds, as it relies on the con-
figuration space (C-space) of distinctive points in the cloth,
whose combinatorial structure is derived from the stratifica-
tion of theflagmanifold.Moreover, two theorems,Theorem1
andTheorem2, defining conditions for adjacency inC-space,
havebeenproved.Their algorithmic implementation inAlgo-
rithm 3 permits to derive the decomposition of the C-space
of a rectangular cloth with different granularities dependent
on the particular goal sought.

More concretely, we proved in Sect. 3 how to deter-
mine computationally the adjacency relations of the strata
in Con fn(R2) for n ≤ 6 and we are currently working on
more general techniques for n > 6. Note that this doesn’t
limit the number of points used to determine the state of
cloth, since all points in the cloth mesh can be used to this
end (Fig. 11).

Such topological characterisation of cloth state represents
a key element for the development of a theory of cloth
manipulation based on computational topology and machine
learning, that we are undertaking, as well as its implemen-
tation in the mobile manipulation robots servicing in our
assisted living facility.

The cloth representation, as a distribution of states, will
be used to link perception and planning. As shown in Sect. 4,
using a state classification, the practitioner can obtain a subdi-
vision of a rectangular cloth into state-induced “zones”. This
could make way for a robot visual recognition of different
global states of the cloth, depending on the amount of points
in each zone (Fig. 13). Future works would include apply-
ing deep learning to cloth state recognition from images,
by generating training instances using a physical simulator
and labelling them with our proposed state encoding. Since,
for the training instances we have the meshes (ground truth)
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Fig. 14 Example of subpath of cloth meshes and distribution of Sn-
states, that would appear in a graph of states and transitions to plan the
folding of a towel, using the taxonomy of Borràs et al. (2020)

with which the images have been generated, we can exactly
obtain the state-distribution vectors of the mesh poses with
our algorithms.

On the manipulation planning side, characterising the
states of textile objects and the feasible transformations
under given actions in a compact operational way (i.e.,
a graph-encoding manipulation-oriented states and transi-
tions), would permit probabilistic planning of actions that
ensure reaching a desired cloth configuration despite low-
accuracy perceptions. In this direction, a framework to
characterise and systematise grasps, manipulation primitives
and tasks for the versatile handling of clothes by robots has
been proposed (Borràs et al. 2020). Tasks are represented
as sequences of manipulation primitives, which yield state
changes. We envisage to map these changes to transitions in
our state graph. A toy example of this approach is displayed
in Fig. 14.

In this paper we have only considered static cloth states
and envisaged their usage in manipulations where cloth
dynamics can be neglected. Other authors have studied

recently how to learn dynamics of deformable objects and
fluids (Li et al. 2019) and in a reinforcement learning
context Jangir et al. (2020) distinguishing between static
and dynamic cloth manipulation tasks. These approaches,
together with our state-subdivision in zones of the cloth,
could determine efficiently the effect of a grasp by prop-
agating the long-range influence among cloth particles, as
in Mrowca et al. (2018), and consequently enabling us to
determine the state-distribution after the grasp as well as to
predict, under dynamical effects, the optimal path between
two different state-distribution vectors in R

k .
In sum, we believe that the proposed topological repre-

sentation of clothmacro-state is a promising element towards
effectively closing the perception-action loop in clothmanip-
ulation.
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long as you give appropriate credit to the original author(s) and the
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intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
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A Adjacency study

In this appendix, we investigate further the adjacency rela-
tions of the stratification of Con fn(R2). We proceed first
introducing the concept of affine flag and the corresponding
stratification ofFlagA(3), subset of affine flags inFlag(3).
Thanks to this stratification and the symmetric action of S4

on Con f4(R2) we are able to provide a matching between
the singularities ofFlagA(3) and those of Con f4(R2). This
allows us to determine how the singularity, that is, alignment
of three points, between two strata has to be crossed, in terms
of the relative position of such points.

In Sect. 3 we show how the stratification of Con f4(R2)

can be obtained using the Flag(3) one. This is done after
mapping each point to RP

2 and then considering the pair of
flags these projective points determine. These flags are affine
flags, as both the point v and the line l in each of them does
not belong to the line at infinity z = 0. In other words, affine
flags are those flag that can be projected in the affine plane
R
2. The set of all such flags, indicated with FlagA(3), can

be stratified using the stratification ofFlag(3), see Fig. 2. If
Xi is the set of i-dimension strata ofFlag(3) then we define
the set of i-dimensional strata ofFlagA(3) as the connected
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Fig. 15 Stratification of FlagA(3) induced by the one of Flag(3),
where stratum signs indicates how the affine flags in it are placed with
respect to the reference one, V ∗

components of Xi∩FlagA(3). It can happen that, when inter-

sected withFlagA(3), a stratum ofFlag(3) is disconnected
into two connected components. To distinguish them in such
cases, we annotate their label with a + or − sign depending
on the placement of V and V ∗ with respect with each other,
see Fulton (1997); Hiller (1982). The resulting stratification
is displayed in Fig. 15.

For the singularities v − l∗ and l − v∗, the difference
between the two connected components is the following. If
one consider the flag as V ∗ = {p1, p1 p2} then (v − l∗)+ is
formed by all those flags V = {v, l} such that v ∈ l∗ and the
vectors p2 − p1 and v − p1 are concord, otherwise we are
in the singularity (v − l∗)−. Similarly happens for the two
connected components of l − v∗.

Any stratum in Con f4(R2) can be associated to a stra-
tum of FlagA(3), modulo the definition of V and V ∗ with
respect to p1, p2, p3 and p4. For example, the stratum with
label (+ + ++) is ∅+ when we consider V ∗ = {p1, p1, p2}
and V = {p3, p3, p4}.Wewill show next howwe can associ-
ated to any singularity ofCon f4(R2) between adjacent strata
a singularity of FlagA(3). Thanks to the action of S4 on
Con f4(R2), such characterisation can be easily determined.

A permutation g ∈ S4 induces on Con f4(R2) the map fg
such that it sends any configuration p to one determined by

{pg(i)}4i=1, permuting accordingly the points. The map fg is
an automorphism of Con f4(R2) and when restricted to the
singularity loci, it remains an automorphism, as the singu-
larity of a determinant does not change under permutation.
The reader should bear in mind that this does not imply that
fg is an automorphism when restricted to each singularity
alone. Without loss of generality we can focus only on the
maps induced by the permutations (1, 2), (2, 3) and (3, 4),
as they generate the entire S4. As explained before the sin-
gularities (v − l∗)± and (l − v∗)± can be expressed in terms
of “concordant” or not alignment of three points. We can
track the effect of permutation on such alignments and so
we can detect how a permutation g will change any singu-
larity ofFlagA(3), again assuming V and V ∗ are previously
defined. In Fig. 16 we show how the alignment changes via
permutations, denoting by i − j − k the alignment where p j

Fig. 16 We show the effect of each basis element, ei = (i, i +1), of S4
on the alignments of any three points. Any possible alignment of three
points is reached using a finite composition of the basis elements

Fig. 17 We show the effect of each basis element, ei = (i, i +1), of S4
on the alignments of any three points, in terms ofFlagA(3) singularities

belongs to the segment of pi and pk , identifying i − j − k
with k − j − i .

We consider the following flags

• V1 = {v1, l1} with v1 = p1 and l1 = p1 p2;
• V ∗

1 = {v∗
1 , l

∗
1 } with v∗

1 = p3 and l∗1 = p3 p4

and

• V1 = {v2, l2} with v2 = p2 and l2 = p2 p1;
• V ∗

2 = {v2, l2} with v∗
2 = p4 and l∗2 = p4 p3.

Note that, given two adjacent strata σ and τ , with connecting
singularity i − j − k, their images, under the action of any
g ∈ S4, will still be adjacent and g(i) − g( j) − g(k) will
correspond to the singularity between them. We can then
rewrite Fig. 16 in terms of the singularity ofFlagA(3).
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Fig. 18 Representation of Con f4(R2), with strata adjacencies in terms
of singularities ofFlagA(3), using the pair of flags V ∗

1 , V1 and V ∗
2 , V2.

We used cyan ellipses to denote external strata and red rectangles for
internal ones (Color figure online)

Using Fig. 17 and knowing that the connecting singularity
of (++++) and (−+++) is 1−2−3, or also (v1−l∗1 )+, we
candetermine the “type” of any singularity between two adja-
cent strata, that is, the corresponding singularity ofFlagA(3),
as follows (Fig. 18).

It is easy to check that each possible singularity, (vi −l∗i )±
and (li − v∗

i )
±, is present in the stratification of Con f4(R2)

showed in Fig. 15. In particular we have that any stratum
has always at least one singularity in terms of V1, V ∗

1 and
one V2, V ∗

2 , which should convince the reader that we need
both pairs. We leave the study of singularities with lower
dimension, that is, associated to vi − v∗

i and (li − l∗i )±, for
the future.

B Proofs of Theorems 1 and 2

In this section we will prove Theorem 1 and Theorem 2 in
details, using the notion of dual regions, as in Fig. 7, to test
if there exists a crossing map between two strata, see Defini-
tion 1.

For any crossing map H , the configurations H(0) and
H(1) belong to adjacent strata. We can assume then that the
configuration H(0) = p, is such that p1 = (0, 0), p2 =
(1, 0) and p3 = (0, 1). This can be achieved via f : R

2 →
R
2 with

p �→ f (p) =
(
x2 − x1 x3 − x1
y2 − y1 y3 − y1

)−1

(p − p1). (1)

Note that f does not change the sign of any determinant. In
addition we can assume that H1 is constant over t , that is
H1(t) ≡ (0, 0). If not, we apply to each Hi : [0, 1] → R

2

the translation −H1 : [0, 1] → R
2. The map H − H1

is also a crossing map, because for any t the configura-
tion q = {Hi (t) − H1(t)}ni=1 has identical sign sequence to
{Hi (t)}ni=1. In addition, at any t the configuration q has
q1 = (0, 0).

Similarly we assume that p2 belongs to the positive x-
semiaxis. If not, we apply now a suitable rotation with centre
the origin, such that for any t the point H2(t) is mapped to
the positive x-semiaxis. Again we have a crossing map, as
rotations are sign-preserving isometries, and clearly for any
t the image of p2 with respect to such map is on the positive
x-semiaxis. One can alternatively assume that p3 is on the
positive, or negative, y-semiaxis instead. Furthermorewe can
assume that H2(t) ≡ (1, 0), via an homogeneous dilation at
each t ofR

2 with centre the origin and dilation factor y2 > 0,
which ensures that the sign sequence does not change. If we
suppose that p3 is constantly on the positive y-semiaxis, we
can similarly assume H3(t) ≡ (0, 1).

In the following proof of Theorem 1, wemake use of these
assumptions, that w.l.o.g. extremely simplify the proof. For
brevity, to denote the determinant of the image of points
pi , p j and pk under H , we will write di, j,k(t) when the
context is clear

Proof Suppose there exists pi ∈ p in the self-dual region
(cf. Fig. 7) and H is a crossing map. As the sign sequence
of H(0) is (+ + −+), H(1) has sign sequence (− + −+),
which is impossible as it is not an admissible sequence of
Con f4(R2).

For i = 1, . . . , n let Hi (t) = (xi (t), yi (t)) and suppose
there exist two points p j , pk in two not dual regions. Thanks
to our assumptions on H , we have d1,2,3(t) = y3(t), and,
because H is a crossing map, we have that for some t0 it is
true that y3(0) > y3(t0) = 0 > y3(1). Denoted by σs(t), for
s = j, k, the sign sequence of the points H1(t), H2(t), H3(t)
and Hs(t), we can analyse each possible case.

Case 1. Consider σ j (0) = (++++). If σk(0) is (++−−)

or (+ + +−), we have the following inequalities.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 < d1,2, j = y j (t)

0 < d1,2,k = yk(t)

0 < d2,3, j (t) = d1,2,3(t) − y j (t) + x3(t)y j (t)

0 > d2,3,k(t) = d1,2,3(t) − yk(t) + x3(t)yk(t).
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then
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 < y j (t0)

0 < yk(t0)

0 < −y j (t0) + x3(t0)y j (t0) ⇒ x3(t0) > 1

0 > −yk(t0) + x3(t0)yk(t0) ⇒ x3(t0) < 1.

This is a contradiction.
Case 2. Suppose σ j (0) is (+++−) and σk(0) is (+−++),

or σ j (0) is (+ + ++) and σk(0) is (+ − ++). In
both cases we have the following inequalities.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 < d1,2, j (t) = y j (t)

0 > d1,2,k(t) = yk(t)

0 < d1,3, j (t) = x3(t)y j (t) − y3(t)x j (t)

0 < d1,3,k(t) = x3(t)yk(t) − y3(t)xk(t).

then
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 < y j (t0)

0 > yk(t0)

0 < x3(t0)y j (t0) ⇒ x3(t0) > 0

0 < x3(t0)yk(t0) ⇒ x3(t0) < 0.

This is a contradiction.

It is left to the reader to see that any other pair of different
and not dual configurations can be reduced via a suitable
symmetric action to the two considered above. �
Given a couple of dual regions we can map it to another one
using the permutation (2, 3, 1) or (3, 1, 2), which will also
keep the determinant d1,2,3 of the same sign. This means that
we can reduce our considerations to only one of such couples,
namely (+ + ++) and (+ − −−). We assume w.l.o.g. that
the crossing map is such that H1(t) is the origin and H3(t) ≡
(0, 1) for any t . We are now ready to prove Theorem 2.

Proof The proof is divided into three parts. First we prove
that any line passing through pi and p j with i, j > 4 does
not cross the self-dual region. Then we prove that it does not
happen also for the lines passing through p1, pi and p3, pi .
As a consequence, we are able in the last part to construct
explicitly a crossing map for p.

Consider L : R → R
2, parametric expression of pi p j ,

such that we have L(0) = pi and L(1) = p j .

L(t) =
{
x(t) = (x j − xi ) t + xi ,

y(t) = (y j − yi ) t + yi ,
(2)

with pi = (xi , yi ) and p j = (x j , y j ). We show first that
the line pi p j never crosses the self-dual region. If a point

q = (x, y) is in the self-dual region we have x, y > 0 and
x + y < 1, as its state corresponds to the sign sequence
(+ + −+). We will denote σi, j the sign sequence of the
state relative to (p1, p3, pi , p j ). As we will make broad use
of them, we write the explicit expressions of d1,i, j and d3,i, j ,
given w.l.o.g. that p1 = (0, 0), p2 = (1, 0) and p3 = (0, 1).

{
d1,i, j = xi y j − x j yi ,

d3,i, j = d1,i, j + x j − xi .
(3)

As before we need to examine different cases depending on
σi , resp. σ j , the sign sequence of the points p1, p2, p3 and pi ,
resp. p1, p2, p3 and p j . That is, each case will correspond
to a different pair of regions to which pi and p j belong.

Case 1. If both σi and σ j are (+ − −−), then σi, j is either
(− − ++) or (− − −−). Note that the permutation (i, j)
allows to pass from one case to the other, that is, we can
assume both d1,i, j and d3,i, j positive. Suppose there exists
L(t) from Eq. (2) inside the self-dual region, that is, x(t) >

0. We know that xi , x j < 0 from the expression of σi and
σ j , so by continuity there exists a t0 such that x(t0) = 0. In
particular, this implies that xi − x j �= 0, otherwise x(t) will
be constant and always negative.

(a) If xi < x j , from Eq. (2) we have

xi x j x(t)0↗
t0 1 t0↗

With ↗ we indicate that the value is increasing from left to right,
otherwise we will use ↘.

As x(t0) = 0 then z(t0) = 1 + d3,i, j
x j−xi

> 1, with z(t) =
x(t) + y(t). We have

z j 1 z(t)z(t0)↗
1 tt0↗

As 1 < z(t), we have that L(t) is not in the self-dual
region.

(b) If x j < xi , from Eq. (2) we have

xi x jx(t) 0↘
t 0 1t0↗

As x(t0) = 0 then y(t0) = d1,i, j
xi−x j

< 0. From yi >

1 − xi > 0 we have
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yi0y(t) y(t0)↗
t 0t0↗

Thus, L(t) is not in the self-dual region as y(t) is nega-
tive.

Case 2. If both σi and σ j are (+ + ++), then σi, j is either
(+ + −−) or (+ + ++). Note that the permutation (i, j)
allows to pass from one case to the other, that is, we can
assume both d1,i, j and d3,i, j negative. Suppose there exists
L(t) fromEq. (2) inside the self-dual region, that is, z(t) < 1
for some t . We know that zi , z j are greater than 1, as both
d1,i, j and d3,i, j are negative, so by continuity there exists t0
such that z(t0) = 1. In particular, this implies that zi �= z j ,
otherwise z(t) will be constant and always greater than 1.

(a) If zi < z j , from Eq. (2) we have

zi z jz(t) 1↗
t 0 1t0↗

As z(t0) = 1 then we have x(t0) = d3,i, j
zi−z j

< 0 from
Eq. (2), and, therefore,

xi0x(t) x(t0)↗
t 0t0↗

Thus, L(t) is not in the self-dual region as x(t) < 0.
(b) If z j < zi , from Eq. (2) we have

zi z j z(t)1↘
t0 1 t0↗

As z(t0) = 1 then y(t0) = 1+ d3,i, j
z j−zi

> 1 and x(t0) < 0.
From Eq. (2) we have

xi0x(t) x(t0)↗
t 0t0↗

Since x(t) < 0, we have that L(t) is not in the self-dual
region.

Case 3. σi is (+ + ++) and σ j is (+ − −−).
We now have that σi, j is either (+ − ++) or (+ − −−),
with i < j . The case j < i is obtained permuting i with j .

The condition σi, j = (+ − ++) is equivalent to d1,i, j > 0
as the sign sequence (+ − +−) is not admissible. Simi-
larly we have that σi, j equal to (+ − −−) is equivalent to
assume d3,i, j < 0. As before, suppose there exists L(t) from
Eq. (2) inside the self-dual region, that is, x(t), y(t) > 0
and z(t) < 1 for some t . Note that as p3 = (0, 1) we have
d1,3,k = −xk for any 3 ≤ k.We know that y j < 0 < yi from
the expression of σi and σ j , so by continuity of Eq. (2) there
exists t0 such that y(t0) = 0. Similarly, as x j < 0 < xi ,
there exists a t1 such that x(t1) = 0. Thus we have

y jy(t) 0↘
1t t0↗

and

xi x(t)0↗
0 tt1↗

In particular t1 < t < t0, so x(t0) > 0 and y(t1) > 0.
Furthermore, as zi < 1 < z j we have z(t0) < z(t) < z(t1).

(a) If d1,i, j > 0 then, as x(t1) = 0, we have y(t1) =
d1,i, j
x j−xi

< 0, contradiction. Then there cannot exists L(t)
inside the self-dual region.

(b) If d3,i, j < 0 then, as z(t0) = 1 + d3,i, j
xi−x j

> 1, we have
z(t) > 1, contradiction. Then there cannot exists L(t)
inside the self-dual region.

In conclusion, any line pi p j with i, j > 4 does not cross
the self-dual region.
Consider p1, pi with i > 4 and its parametric expression

L1(t) :
{
x(t) = xi t,

y(t) = yi t .
(4)

If σi = (+ + ++) then xi < 0 < yi , so either xi t, yi t are
both 0 or they are discordant, that is, the point L1(t) is never
in the self-dual region. Similarly if σi = (+ − −−).

Consider p3, pi with i > 4 and its parametric expression

L3(t) :
{
x(t) = xi t,

y(t) = (yi − 1) t + 1.
(5)

If σi = (++++) then xi < 0. Suppose that L3(t) belongs to
the self-dual region, then t < 0 as x(t) > 0, but xi + yi < 1
so x(t) + y(t) > 1. That is, the point L1(t) is never in the
self-dual region. Similarly if σi = (+ − −−).

In conclusion we have that the only lines crossing the self-
dual regionwill be p2 pi for i = 1, . . . , n. In particular as any
pair of them crosses at p2, then they cannot cross inside the
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self-dual region. If we move p2 inside the self-dual region,
along p2 p4 and so continuously, the sign sequence of p
remains the same. That is, we are describing a continuous
path of Con fn(R2) that is contained inside the stratum σ of
p. It is only when p2 p4 crosses p1 p3 that the sign sequence
changes, that is, when the singularity loci is crossed at d1,2,3.
Let L2,4 = p2 p4 and λ such that L2,4(λ) ∈ p1 p3. We
can assume, modulo orientation of L2,4, that λ > 0 and
L2,4(0) = p2, in particular this means that for any t > λ we
have L2,4(t) with x-coordinate negative. Consider μ > λ

such that for any t > λ such that L2,4(t) belongs to some
pi p j , we have t > μ. For i �= 2 consider the continuous
map Hi : [0, 1] → R

2 as the constant map Hi (t) ≡ pi and
H2 as follows.

H2(t) = μ(p4 − p2)t + p2, (6)

To check that H is a crossing map we need to check only
H2. Clearly H2(0) = p2 and H2 is continuous. Consider
0 < t0 = λ

μ
< 1, then H2(t0) ∈ p1 p3, and as H2 is a linear

map this can happen only once. It remains to prove that the
sign sequence of H(1) differs only by the sign of d1,2,3 with
respect to σ . We have that H2(1) has negative x-coordinate,
so d1,2,3 changes sign as wanted. Furthermore, if any other
determinant d2,i, j changes sign, for (i, j) �= (1, 3), then
d2,i, j (t) = 0 for t ∈ (t0, 1), as inside the self-dual region
it cannot happen. That is, there exists λ < ν < μ such that
L2,4(ν) belongs to pi , p j , which is impossible. All in all,
H = {Hi }ni=1 is a crossing map, as wanted. �
Note that, thanks to these two theorems we are able to con-
struct Algorithm 1, and, thanks to the proof of Theorem 2,
we can explicitly construct the crossing map between two
adjacent strata.

C Different states definitions

In Sect. 4 we proposed two different state definitions based
on S4 and on the topological structure of the stratification of
Con fn(R2). A practitioner however might want or need to
study the state of a cloth with particular (or less) focus on
a subset of points. For example, if q is a configuration of

m points, subset of p ∈ Con fn(R2), then one could group

together strata of Con fn(R2) depending on the strata of p
and that of q , or instead that of p \ q . In this appendix we
will show other two state definition based on the Sn-states
and∼σ -ones. Again we will assume that∼σ is defined using
as “base-stratum” the sequence of all positive signs. Even
if we show here only two cases, it is clear that depending
on the cloth in analysis, the mesh properties but as well the
manipulation task in mind, different states can be defined.
For now on, we will assume that q are always the first m

Fig. 19 Adjacency graph of Γ (m, n)-states, blue dashed lines denote
a change for the state of q

points in p, again for user-defined states such assumption
might not be true.

As explained previously, if we consider the Sn-states, we
are effectively forgetting the labelling given to each point.
On the other hand, when using the ∼σ -states we are able to
track how far away we are from the “base-stratum” σ . If we
are interested on the labels of the firstm points and how their
distance change, we would define the following.

Definition 3 (Γ (m, n)-States) Given two strata τ1, τ2 of
Con fn(R2), for i = 1, 2 we denote by σi the subsequence

of the first

(
m
3

)
signs, strata in Con fm(R2). We say that τ1

and τ2 belong to the same Sn-state if they are in the same
Sn-state and σ1 is in the same ∼σ -state of σ2. We will denote
such equivalence relation as τ1 ∼(m,n) τ2.

The adjacency graph of such classes for n = 5 and m = 4 is
displayed in Fig. 19, note that unlike the∼σ -states, self-loops
can now occur as they are a refinement of the Sn-states.

On the opposite case, if our intention is to study the state
of the cloth, without giving importance to the labelling of q ,
then we can define the following states.

Definition 4 (Γ (n,m)-States) Given two strata τ1, τ2 of
Con fn(R2), for i = 1, 2 we denote by σi the subsequence

of the first

(
m
3

)
signs, strata in Con fm(R2). We say that τ1

and τ2 belong to the same ∼σ -state if they are in the same
Sn-state and σ1 is in the same Sm-state of σ2. We will denote
such equivalence relation as τ1 ∼(n,m) τ2.
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Fig. 20 Adjacency graph of Γ (n,m)-states, blue dashed lines denote
a change for the state of q (Color figure online)

The adjacency graph of such states for n = 5 and m = 4 is
displayed in Fig. 19.

As the graphs displayed in Figs. 19 and 20 are not isomor-
phic, we know that these two state definitions are different.
Note that, asΓ (n,m)-states are a refinement of the∼σ -states,
there cannot be self-loops in its adjacency graph. This does
not always happen for theΓ (m, n)-states as they are a refine-
ment of Sn-states, which do have self-loops.

There are clearly a lot more possible state definitions than
the ones we presented here. From our point of view, interest-
ing ones can arise when considering instead of Sn subgroups
of it, for example the one generated by the cycle (1, 2 . . . , n).
This would produce a refinement of Sn-states which is not
identical to the one of ∼σ . Furthermore one could use such
states as in Definition 4 or Definition 3 to group together
configuration that are equal after cyclic permutation of m, or
n, points.
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