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Abstract
Industrial robots are increasingly used to perform tasks requiring an interaction with the surrounding environment (e.g.,
assembly tasks). Such environments are usually (partially) unknown to the robot, requiring the implemented controllers to
suitably react to the established interaction. Standard controllers require force/torquemeasurements to close the loop.However,
most of the industrial manipulators do not have embedded force/torque sensor(s) and such integration results in additional
costs and implementation effort. To extend the use of compliant controllers to sensorless interaction control, a model-based
methodology is presented in this paper. Relying on sensorless Cartesian impedance control, two Extended Kalman Filters
(EKF) are proposed: an EKF for interaction force estimation and an EKF for environment stiffness estimation. Exploiting
such estimations, a control architecture is proposed to implement a sensorless force loop (exploiting the provided estimated
force) with adaptive Cartesian impedance control and coupling dynamics compensation (exploiting the provided estimated
environment stiffness). The described approach has been validated in both simulations and experiments. A Franka EMIKA
panda robot has been used. A probing task involving different materials (i.e., with different - unknown - stiffness properties)
has been considered to show the capabilities of the developed EKFs (able to converge with limited errors) and control tuning
(preserving stability). Additionally, a polishing-like task and an assembly task have been implemented to show the achieved
performance of the proposed methodology.

Keywords Sensorless force control · environment stiffness estimation · interaction force estimation · Extended Kalman
Filter · impedance control · industrial robots.

1 Introduction

1.1 Context

Robots are increasingly involved in daily life activities, pro-
viding assistance in many domains (Ben-Ari and Mondada
2018; Yang et al. 2018). Robots are no longer used to
only execute repetitive simple task thousands of times, but
rather they have to face thousands of different tasks in an
ever-changing environment. It will be, therefore, difficult to
pre-program all the possible tasks and scenarios, requiring
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the robot to learn/adapt its behavior on the basis of the oper-
ating conditions (Dattaprasad and Rao 2018). Considering
the manufacturing context, robots have to provide a flexible
solution, adapting to new tasks/production, while guarantee-
ing target performance (Polverini et al. 2016a; Mohamed
2018). Considering interaction tasks (i.e., robot exchang-
ing forces/torques with the environment), the capability to
adapt to new scenarios becomes even more critical (Hogan
1984). To avoid any unwanted/unstable behavior, the interac-
tion force has to be controlled (Vukobratovic 2010; Roveda
et al. 2016). Common interaction control strategies, however,
make use of expensive sensors (Roveda et al. 2018a; Roveda
2018; Polverini et al. 2019), increasing the hardware costs
and the setup time. To avoid the use of such devices having
the robot able to adapt to uncertain interaction, many works
are investigating external wrench estimation algorithms and
sensorless control methodologies.
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1.2 Related works

Being able to achieve a stable interaction between sensor-
less industrial robots and the environment is taking many
attentions from the research community. On the one hand,
force-sensorless methodologies to estimate the interaction
between the robot and its environment have been proposed.
Such research area is strongly connected with the main aim
of this paper, since the proper estimation of the established
interaction between the robot and its environment is required
in order to design a stable and high-performance interaction
controller for a sensorless robot. Developed methodologies
relying on robot dynamic identification (Janot et al. 2013)
have been addressed, aiming at deriving an accurate robot
dynamical model. Such a computed high-accuracy model
can then be exploited in order to estimate the external
forces/torques applied on the robot during task execution.
Some of the state of the art contributions exploit disturbance
observers to perform the identification. Such approaches
make use of the inverse of the identified robot model to
observe the disturbance (i.e., the external wrench) applied to
themanipulator. In Chen et al. (2000) a nonlinear disturbance
observer is proposed to estimate the external interaction. Tak-
ing into account the physical parameters and constraints (e.g.,
maximum joint velocities) of the robot, the method is capa-
ble to guarantee the stability of the disturbance observer by
properly tune its design parameters. In addition, the described
nonlinear disturbance observer allowed for the first time
the possibility to include in its design nonlinear systems
(such as robot manipulators). In Colomé et al. (2013) a
task-oriented dynamics model learning and a robust distur-
bance state observer are proposed to estimate the external
interaction. Making use of a learning-based approach, the
proposed methodology was able to avoid to analytically
model the robot dynamics terms (such as joints’ friction
or Coriolis effects), resulting in a general and easy imple-
mentable approach. In Hu and Xiong (2017) a parametric
robot dynamics modeling based on rigid-body dynamics
(RBD) is combined with a non-parametric compensator
trained with multilayer perception (MLP) to eliminate errors
resulting from the former modeling. Exploiting such a two-
layer modeling, a high-accuracy robot dynamics description
is obtained, achieving better model accuracy than either the
RBDmodel or theMLPmodel itself. Such amodeled dynam-
ics is then exploited in a disturbance Kalman filter based
on a time-invariant composite robot model to perform the
interaction force estimation, providing robust and accurate
estimation against uncertainty. In Peng et al. (2020) a sen-
sorless admittance control scheme exploiting a disturbance
observer based on generalized momentum to model a linear
environment dynamics is proposed for sensorless interaction
applications. The generalized momentum modeling allows
to avoid the use of acceleration-level measurements and the

computation of the inverse of the robot mass matrix that
amplify measurements noise. Model uncertainties are com-
pensated adopting a radial basis neural networks approach.
Actuation saturation is also considered in order to prop-
erly manage the control inputs. Some state of the art works
structure the identification as an optimization problem. In
Van Damme et al. (2011) the filtered dynamic equations are
combined with a recursive least-square estimation algorithm
to provide a smooth external force estimation. The described
methodology is compared with a generalized momentum-
based disturbance observer. Simulation and experimental
results highlighted a strong connections between the two
approaches. In Linderoth et al. (2013) a convex optimiza-
tion problem is solved in real time to estimate the interaction
force accounting for velocity-dependent uncertainties of the
Coulomb friction modeling. In fact, while Coulomb friction
can be well-modeled when a joint is moving, huge uncer-
tainties are shown for velocities close to zero. Some state
of the art methodologies exploit the definition of virtual
sensors based on high-performance dynamic model cali-
bration. In Villagrossi et al. (2018) a virtual force sensor
to estimate the interaction force is proposed by exploit-
ing a task-oriented robot dynamic model calibration. The
proposed robot dynamics includes also a thermal friction
model for the robot joints. The robot dynamics is calibrated
making use of exciting trajectories composed by suitable
paths generated by a genetic-based two-stage optimization.
Such a dynamic model is then used to estimate the exter-
nal joint torques as a difference between measured motor
torques and modelled torques (i.e., residual method). Other
methodologies have been developed in order tomap the inter-
action between the robot and the environment on the basis
of Artificial Intelligence approaches, exploiting such learned
dynamics in the controller. In Sharifi et al. (2015) a robot
position controller is implemented by exploiting the inter-
action force estimation between the robotic tool and a soft
tissue. A Lyapunov time-varying equation is proposed for
the design of the force observer. In addition, the assumption
of modeling the interaction environment as a visco-elastic
system is considered, since it has a great impact on the effec-
tiveness of the force-control strategy when working with soft
tissues. In Dong et al. (2020) an online sparse Gaussian pro-
cess regression (OSGPR) approach is proposed to estimate
the interaction forces between the slave manipulator and its
surrounding environment for a bilateral tele-operation sys-
tem. The proposed observer is completely independent of
the dynamic model of the slave manipulator. After offline
training exploiting historical dataset, a generalized regres-
sion model is obtained with OSGPR. The proposed observer
can be finally carried out in real time to estimate the inter-
action forces. The main feature of the described work is
that the proposed approach avoid the use of the inverse of
Jacobian transpose. Some approaches make use of external
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sensors in order to acquire more data to be processed for
interaction force estimation purposes. InMagrini et al. (2014)
external contacts between the robot and the environment are
detected using a depth camera, while determining in paral-
lel the external joint torques using the residual method. The
combination of such exteroceptive sensing and model-based
techniques is proven, under suitable conditions, to provide
a reliable estimation of the current exchanged force at the
contact point. The described algorithm is also capable to
manage a multiple contacts scenario. In Mendizabal et al.
(2019) a Neural Network approach to classify force ranges
from optical coherence tomography (OCT) images is pro-
posed. To avoid the need for large real data sets, the network
is trained on images of simulated deformed sclera. This sim-
ulation is based on a finite element method, and the model is
parameterized using a Bayesian filter applied to observations
of the deformation in OCT images. In Marban et al. (2019)
visual feedback is exploited for observing soft-tissues’ defor-
mation. A force estimation model based on Convolutional
Neural Networks and Long-Short TermMemory networks is
proposed.Theproposedmodel is designed toprocess both the
spatio-temporal information included in a video sequences
and the temporal structure of tool data.

On the other hand, sensorless methodologies to control
the interaction have been proposed. Such research area is
strongly connected with the main aim of this paper, since the
herein main goal is to make a sensorless robot able to interact
with an (unknown) environment while achieving high force-
tracking performance. In Alonge et al. (2010) an adaptive
force-position controller to track a target force without its
measurements has been proposed based on Lyapunov tech-
niques. A pure elastic model is considered in the contribution
in order to describe the environment dynamics. Themain lim-
itation of the here described approach is the fact that a linear
interaction environment is considered, together with the fact
that only simulation results (considering a simple 2 degrees
of freedom - DoFs - robot) have been provided. In Huang
et al. (2013) a nonlinear matrix mapping function between
each joint motor control input and end-effector actuating
force/torques vector is achieved, exploiting such a mapping
into a model-free fuzzy sliding mode control for interac-
tion control. The main limitation of the proposed approach
is the fact that the computation of such a nonlinear matrix
mapping function relies on a time-consuming manual and
ad hoc experimental procedure, requiring to positioning and
actuate the manipulator in many operating configurations.
In Polverini et al. (2016b) sensorless admittance control is
implemented to perform an insertion task. A real-time trajec-
tory generator, exploiting a model-based sensorless observer
of the interaction forces is proposed to perform the assem-
bly. In Zhou et al. (2017) a force/position decentralized
robust control problem for constrained reconfigurablemanip-
ulator system with parameter perturbation and unmodeled

dynamics is presented. A radial basis function (RBF) neural
network is derived in order to compensate for the unmod-
eled/unknown robot dynamics. The main limitations of the
described paper are related to the fact that only simulation
results are given. In Phuong et al. (2018) a force estima-
tion approach is proposed. On the basis of a dither periodic
component elimination Kalman filter and on a disturbance
observer, the estimation of the interaction force is provided.
Exploiting such an interaction force estimation, a fine sensor-
less force control system under the existence of static friction
is proposed. The main limitation of the proposed approach is
related to the fact that a simple 1DoF systemhas been consid-
ered for experimental evaluation. In Nakamura et al. (2018)
a notch-type friction-free disturbance observer (DOB) and
a notch-type friction-free reaction force observer (FFRFO)
are proposed to implement a fine sensorless force controller.
The proposed approach allows to take into account the static
friction phenomena, stabilizing the proposed controller. The
main limitation of the proposed approach is related to the
fact that a simple 1 DoF system has been considered for
experimental evaluation. While all these contribution allow
to control the interaction between the sensorless robot and the
environment, none of them is capable to provide an estimate
of the environment properties. It is, therefore, not possible
to tune the control parameters w.r.t. the interaction dynamics
properties, useful approach to guarantee stability and control
performance.

Considering model-based approaches, state of the art
methods allow to estimate and control the interaction
between the robot and the environment only making use of
the robot dynamical model, without modeling and estimating
the environment dynamics. Such modeling and estimation,
however, is of great importance to design the interaction
controller to avoid instabilities and to achieve required per-
formance (Hogan 1988; Roveda et al. 2018b). From the state-
of-the-art review, the only sensorless approach estimating
the environment compliance can be found in Dehghan et al.
(2015). This contribution proposes an adaptive force/position
controller exploiting a position-based force estimator and
a force-based environment compliance estimator. However,
the convergence of themethod is guaranteed only in the pres-
ence of a persistent excitation (i.e., a constant reference force
cannot be applied - as required by the most of the indus-
trial tasks). Therefore, the presented paper aims to extend the
sensorless force control literature proposing the estimation
of both the interaction force and the environment stiffness
without any use of persistent excitation. While the interac-
tion force estimation will be used in order to close the force
loop, the environment stiffness estimation will be used to
compensate for coupled interaction dynamics and to tune the
control parameters, guaranteeing the stability of the interac-
tion.
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Fig. 1 Experimental set-up including the Franka EMIKApandamanip-
ulator for the target probing task execution. The interaction environment
with unknown stiffness Ke is highlighted

1.3 Paper contribution

Extending the work in Roveda et al. (2013) to sensorless
robotic applications (i.e., modifying the proposed EKF for
the environment stiffness estimation to sensorless applica-
tions), the proposed contribution aims to design a model-
basedmethodology to estimate both the interaction force and
the environment stiffness for sensorless robotized interaction
tasks. To this end, relying on sensorless Cartesian impedance
control, two Extended Kalman Filters (EKF) are designed.
On the one hand, an EKF is proposed in order to estimate the
interaction force. On the other hand, an EKF is proposed in
order to estimate the environment stiffness. The force esti-
mation provided by the former EKF is used to detect the no
contact/contact transitions (to activate the latter EKF for envi-
ronment stiffness estimation) and to close the force loop. The
latter EKF is used to compensate for the coupling terms in the
controlled robot dynamics and to tune the impedance control
parameters, ensuring stability. Both the proposed EKFs take
into account the non-linear coupled robot dynamics resulting
from the sensorless Cartesian impedance controller, together
with the environment dynamics. The described approach has
been validated in simulations and experiments. A Franka

EMIKA panda robot has been used (Figure 1). A prob-
ing task involving different materials (i.e., with different -
unknown - stiffness properties) has been considered to show
the capabilities of the developed EKFs and of the proposed
sensorless force controller. In addition, a polishing-like task
and an assembly task of a gear into its shaft have been tested
exploiting the estimation of the interaction force.

1.4 Paper outline

The paper is structured as follows. Section 2 provides the pro-
posed control framework overview. Section 3 describes the
implemented sensorless Cartesian impedance controller with
redundancy management. Section 4 describes the derivation
of the proposed Extended Kalman Filter for sensorless inter-
action force estimation. Section 5 describes the derivation of
the Extended Kalman Filter for the (unknown) environment
stiffness estimation. Section 6 describes the control tuning
on the basis of the performed environment stiffness estima-
tion. Section 7 provides both simulation and experimental
results. Section 8 shows advanced applications exploiting
the interaction force estimation (i.e., a polishing-like task
and an assembly task of a gear into its shaft). Conclusions
and directions for future works are given in Section 9.

2 Methodology

The main objective of the proposed contribution is the def-
inition of a sensorless force control framework allowing to
estimate both the interaction force and the environment stiff-
ness. Two EKFs are proposed to achieve the proposed goal.
While an EKF is designed to estimate the interaction force,
another EKF is designed to estimate the environment stiff-
ness. The former EKF estimation of the interaction force
is used to enable the estimation of the environment stiff-
ness as soon as the contact with the environment is detected,
and to close the force loop. The latter EKF environment
stiffness estimation is instead used to compensate for the cou-
pling terms in the controlled robot dynamics and to tune the
impedance control parameters, ensuring stability. The pro-
posed control architecture is shown in Figure 2, highlighting
the proposed EKFs and the control schema.

3 Robot control

3.1 Sensorless Cartesian impedance control

To design the proposed sensorless Extended Kalman Filter
for the estimation of the environment stiffness, the sensorless
Cartesian impedance controller has to be implemented. The
followingmanipulator dynamics is considered (Siciliano and
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Fig. 2 Proposed control schema
highlighting the two
implemented EKFs, the
sensorless Cartesian impedance
control and the force loop

Villani 2000):

B(q)q̈ + C(q, q̇) + g(q) + τ f (q̇) = τ − J(q)Thext , (1)

where B(q) is the inertia matrix, C(q, q̇) is the Coriolis vec-
tor (i.e., embedding in the C(q, q̇) term the multiplication
between the Coriolis matrix and the joint velocity vector q̇),
g(q) is the gravitational vector, τ f (q̇) is the joint friction
vector, q is the joint position vector, J(q) is the Jacobian
matrix, and hext is the external force/torque vector, τ is the
joint torque vector. Based on (1), it is possible to design
the sensorless Cartesian impedance controller with dynam-
ics compensation (Siciliano and Villani 2000), defining the
joint torque vector τ as:

τ = B(q)γ + C(q, q̇) + g(q) + τ f (q̇), (2)

where γ is the sensorless Cartesian impedance control law.
Cartesian impedance control rotations are described consid-
ering the set of Euler anglesϕcd extracted fromRd

c = RT
d Rc,

describing the mutual orientation between the compliant
frameRc (at the end-effector) and the target frameRd . Trasla-
tional p̈ and rotational ϕ̈cd accelerations of the sensorless
Cartesian impedance controller γ can be written as:

p̈ = M−1
t (−D t ṗ − Kt �p) ,

ϕ̈cd = M−1
r

(−Dr ϕ̇cd − Kr ϕcd
)
.

(3)

Considering the traslational part of the sensorless Cartesian
impedance control, Mt is the mass matrix, Dt is the damp-
ing matrix, and Kt is the stiffness matrix. p is the actual
Cartesian positions vector, while �p = p− pd , where pd is
the target position vector. Concerning the rotational part of
the sensorless Cartesian impedance control,Mr is the inertia
matrix, Dr is the damping matrix, Kr is the stiffness matrix.
Angular accelerations ω̇cd can be computed considering the

rotational part of the sensorless Cartesian:

ω̇cd = T(ϕcd)
(
M−1

r

(−Dr ϕ̇cd − Kr ϕcd
))

+Ṫ(ϕcd)ϕ̇cd , (4)

where matrix T(ϕcd) defines the transformation from Euler
angles derivatives to angular velocities ωcd = T(ϕcd)ϕ̇cd ,
and ω = Reeωcd (with Ree the rotation matrix from the
robot base to its end-effector) (Siciliano and Villani 2000).
By defining M̃r = (ReeT(ϕcd))

−1Mr and D̃r = Dr −
M̃rReeṪ(ϕcd), (4) can be written as:

ω̇ = M̃−1
r

(−D̃r ϕ̇cd − Kr ϕcd
)
. (5)

The formulation resulting from (5), (4), and (3) can bewritten
in a compact form as follows:

ẍimp = −M−1 (D ẋ + K�x) , (6)

where the target acceleration computed by the sensorless
Cartesian impedance control is ẍimp = [ẍt ; ẍr ] = [p̈; ω̇].
M = [Mt 0; 0 M̃r ], D = [Dt 0; 0 D̃r ], K = [Kt 0; 0Kr ]
are the sensorless Cartesian impedance mass, damping and
stiffnessmatrices composed by both the traslational and rota-
tional parts, and �x = x − xd = [�p;ϕcd ]. x is the current
robot end-effector pose vector including both traslational and
rotational components, while xd is the reference robot end-
effector pose vector including both traslational and rotational
components. The sensorless Cartesian impedance control
law γ can then be written as follows:

γ = J(q)−1
(
ẍimp − J̇(q, q̇)q̇

)
. (7)

In general, matrix J(q)−1 can be substituted with the pseudo-
inverse of the Jacobian matrix J(q)# (Chang and Lee
1988). Substituting (2) in (1), under the hypothesis that the
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manipulator dynamics is known (such identification can be
performed with state-of-the-art techniques (Pedrocchi et al.
2013)), the controlled robot dynamics results in:

q̈ = γ − B(q)−1J(q)Thext , (8)

where hext = [f,TT (ϕcd)μd ] (considering the external
forces f and torques μd - referred to the target frame Rd

- acting on the robot related to the interaction with the envi-
ronment). Substitution of (7) into (8) leads to:

J(q)q̈ + J̇(q, q̇)q̇ = ẍ

= ẍimp − J(q)B(q)−1J(q)Thext , (9)

having ẍ = J(q)q̈ + J̇(q, q̇)q̇ the resulting Cartesian accel-
eration of the robot end-effector resulting from the imple-
mentation of the proposed sensorless Cartesian impedance
controller. Finally, substituting (6) into (9), the controlled
robot dynamics resulting from the design of the sensorless
Cartesian impedance control is described by the following
equation:

Mẍ + Dẋ + K�x = −L(q)hext , (10)

where L(q) = MJ(q)B(q)−1J(q)T . The resulting dynamic
equation is therefore coupled in theCartesian degrees of free-
dom (DoFs) by the matrix L(q).

The proposed sensorless Cartesian impedance control is
depicted in Figure 3.

Remark 1 The sensorless Cartesian impedance control is
therefore resulting in a coupled controlled robot dynamics.
Matrix L(q) redistributes interaction forces along all the
Cartesian DoFs. While the decoupled robot behavior can-
not be achieved implementing such controller, the sensorless
Cartesian impedance control strategy allows to implement a
tunable compliant robot behavior, ensuring a safe and stable
interaction with the target environment.

3.2 Redundancymanagement

The Franka EMIKA panda manipulator has been used as
a test platform for experimental validation. Such a robot is
redundant, requiring to manage its null-space configuration
while performing themain task. In this paper, a pure damping
behavior is proposed for the null-space configuration control,
aiming to damp the null-space motion:

τR = B(q)
((

I − J(q)#J(q)
)

(−Dn q̇)
)

, (11)

where τR is the null-space control torque, I is the identity
matrix, J(q)# is the pseudo-inverse of the Jacobian matrix,
and Dn is the null-space damping diagonal matrix. The term

Fig. 3 Cartesian impedance control is shown for the robot in interaction
with the environment, highlighting the impedance control matricesM,
D, K, the external wrench hext , and the base (Ob), the compliant (Oc),
and the target (Od ) reference frames

(
I − J(q)#J(q)

)
is the null-space projectionmatrix. The term

−Dn q̇ allows to damp the null-spacemotion. The control law
(2) is, therefore, modified as follows:

τ = B(q)γ + C(q, q̇) + g(q) + τ f (q̇) + τR . (12)

The control torque τR acts in the null-space of the manip-
ulator, i.e., not affecting the Cartesian motion of the robot.
Indeed, the Cartesian controlled robot behavior in 10 is not
affected by this term.

4 Sensorless extended Kalman Filter for
interaction forces estimation

The aim of this Section is to propose a sensorless model-
based methodology to estimate the interaction force between
the robot and the environment along traslational directions.
Therefore, in the following Extended Kalman Filter (EKF)
design, only the traslational Cartesian DoFs will be consid-
ered. Such estimation of the interaction force will be used
to:

– detect no contact/contact transitions to enable the esti-
mation of the environment stiffness;

– close the force loop to control the interaction between the
robot and the environment;

– possibly implement contact-motion tasks (e.g., polishing
tasks), controlling the interaction force (i.e., the normal
forcew.r.t. the contact surface)whilemovingon the target
surface. In such away, the estimation of the friction forces

123



Autonomous Robots (2021) 45:371–388 377

(i.e., the tangential forces along sliding directions) is also
performed.

Exploiting the coupled robot-environment dynamic equa-
tion (10), it is possible to design the EKF to be used for the
estimation of the interaction force f .

The robot-environment interactiondynamics canbedefined
by the following filter state xa composed by the robot veloc-
ity ẋt and position xt states (along traslational directions),
and augmented with the interaction force f :

xa = [ẋt , xt , f]T . (13)

Substituting the augmented state xa (13) in the interaction
dynamics model (10), the filter dynamics results in:

f(xa, ν) =
⎡

⎣
ẍt
ẋt
ḟ

⎤

⎦

=
⎡

⎣
M−1

t
(−Dt ẋt − Ktxt − L(q)f + Ktxdt + νxt

)

ẋt + M−1
t νẋt

ν f

⎤

⎦ ,

(14)

where the vector νa = [νxt , νẋt , νf ]T accounts for uncer-
tainties in models parameters/estimates. The observer of the
augmented state is therefore defined as:

{ ˙̂xa = f(xa, νa) + KEK F (y − Ca x̂a),

ŷ = h(xa,w),
(15)

with x̂a the augmented state estimate, Ca the observation
matrix for the robot velocity ẋt and the robot position xt , and
KEK F the gain matrix:

KEK F = PCaR−1. (16)

R is the measurement noise matrix defined as:

R = HE{wwT }HT = HWHT , (17)

where the observation function h linearly maps the sam-
ple inaccuracies, due to measurement noise w, through the
matrix H:

H = ∂h
∂w

∣∣∣∣
x̂a

. (18)

The covariance matrix P and its rate, as in:

Ṗ = AaP − PCT
a R

−1CaP + Q + PAT
a , (19)

are based on the dynamics of the state and the model uncer-
tainties. Matrices Aa and Ga are defined respectively as:

Aa = ∂f
∂xa

∣∣
∣∣
x̂a

; Ga = ∂f
∂νa

∣∣
∣∣
x̂a

. (20)

MatrixQ, used for the estimation of the parameters, is defined
as:

Q = Ga E{νaνTa }GT
a = GaVGT

a . (21)

It has to be underlined that in the filter dynamics (14) the
matrix L(q) appears as a function of the joint position q.
Analyzing the definition of L(q), the joint position depen-
dence is due to the matrices J(q) and B(q). It has to be
noted that, when the robot is in interaction with an environ-
ment while executing a task (e.g., an assembly task), its joint
configuration is not excessively modifying, or at least such
modification is happeningwith a dynamicsmuch slower than
the interaction dynamics. It is therefore possible to neglect

the time-derivative L̇(q) in (20), considering the constant
matrix L(q), updating q = q as soon as the robot joint con-
figuration modifications are affecting the values of J(q) and
B(q). In such a way, (14) can be written as follows:

f(xa, ν) =
⎡

⎣
ẍt
ẋt
ḟ

⎤

⎦

=
⎡

⎣
M−1

t
(−Dt ẋt − Ktxt − L(q)f + Ktxdt + νxt

)

ẋt + M−1
t νẋt

ν f

⎤

⎦ ,

(22)

Remark 2 The approximation of L(q) in L(q) introduces
negligible modeling errors, that are of orders of magni-
tude smaller than common modeling errors resulting from
the robot dynamics identification procedures, therefore not
affecting the target estimation.

5 Sensorless Extended Kalman Filter for
environment stiffness estimation

The aim of this Section is to propose a sensorless model-
based methodology to estimate the environment stiffness
along traslational directions. Therefore, in the following
Extended Kalman Filter (EKF) design, only the traslational
Cartesian DoFs will be considered. Such estimation of the
environment stiffness will be used to:

– define the robot-environment dynamic model;
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– compensate for the coupled dynamics resulting from the
implementation of the sensorless Cartesian impedance
controller described in 3;

– tune the impedance control parameters ensuring stability
of the interaction.

5.1 Interaction environment dynamics modeling

In order to design the EKF to be used for the estimation of
the interaction environment stiffness, the interaction envi-
ronment dynamics has to be modeled. Based on (Roveda
et al. 2013), the simplest way to describe the interaction
environment dynamics is the linear spring-damper model
(with environment stiffness matrix Ke, environment damp-
ing matrix De - both diagonal and positive definite -, and
environment position vector xe):

∑

i

(Di
eẋ

i
e + Ki

e�xie) = f, ∀i = 1, ··, N , (23)

for all the finite number N of interaction ports. Considering
the environment traslational DoFs xe,t and under the hypoth-
esis of a stable single contact point (i.e., the robot and the
environment are always in contact with xe,t = xt , where xt
is the robot end-effector traslational DoFs vector), (23) can
be written as follows:

Deẋt + Ke�xt = f . (24)

The identification of the environment dampingDe is not pos-
sible without a persistent excitation (Dehghan et al. 2015)
(option not applicable in the context of the proposed contribu-
tion). The environment damping does not affect the stiffness
estimation at steady-state (being related to the robot velocity
in (24)), while affecting the transitory dynamics. However,
since the robot end-effector velocity is limited along the inter-
action directions (due to the contact with the environment),
the damping can be neglected in the environment dynamics
(24), considering a pure elastic dynamics:

Ke

(
xt − x0e,t

)
= f, (25)

where x0e,t is the equilibrium position of the environment.
For simplicity, x0e,t = 0 is considered. By substituting (25)
in (10), the coupled robot-environment interaction dynamics
can be defined as:

Mt ẍt + Dt ẋt + Kt (q)xt = Ktxdt , (26)

whereMt = Mt , Dt = Dt , Kt (q) = Kt +L(q)Ke. It has to
be underlined that the equivalent stiffness matrix Kt (q) is a
function of the joint position q due to the presence of L(q).

5.2 Extended Kalman Filter design

Exploiting the coupled robot-environment dynamic equation
(26), it is possible to design the EKF to be used for the esti-
mation of the interaction environment stiffness Ke.
Modifying the augmented state in (13), the robot-environment
interaction dynamics can be defined by the following filter
state xa composed by the robot velocity ẋt and position xt
states (along traslational directions), and augmented with the
environment stiffness properties Ke:

xa = [ẋt , xt ,Ke]T . (27)

Substituting the augmented state xa (27) in the interaction
dynamics model (26), the filter dynamics results in:

f(xa, νa) =
⎡

⎣
ẍt
ẋt
K̇e

⎤

⎦

=
⎡

⎢
⎣
M

−1
t

(−Dt ẋt − Kt (q)xt + Ktxdt + νxt
)

ẋt + M
−1
t νẋt

νKe

⎤

⎥
⎦ ,(28)

where the vector νa = [νxt , νẋt , νKe ]T accounts for uncer-
tainties in models parameters/estimates.

The same derivation of the EKF dynamics described in
Sect. 4 can be followed for the EKF implementation. The
same considerations described in Sect. 4 for L(q) are valid
for Kt (q).

Remark 3 It has to be underlined that the EKF is capable
to perform the estimation even for a non-linear interaction
dynamics, estimating the linearized stiffness value in the con-
sidered operating condition.

Remark 4 It has to be underlined that the proposed EKF for
the estimation of the environment stiffness is activated as
soon as the contact is established between the robot and the
environment. On the basis of the interaction force estimation
f̂ provided in Sect. 4, it is possible to enable the estimation
of the environment stiffness when the contact is detected. In
particular, a threshold force T f is considered on the com-
ponents of f̂ to enable the environment stiffness estimation.
When an estimated force component goes below the thresh-
old, the estimation is deactivated in such a direction.

6 Sensorless Cartesian impedance control
adaptation

Exploiting the estimated environment stiffness K̂e provided
by the EKF, it is possible to:
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– design a compensator for the coupled dynamics result-
ing from the implementation of the sensorless Cartesian
impedance controller;

– tune the sensorless Cartesian impedance control param-
eters to ensure the stability of the interaction.

The coupling compensator xt,dc allows to deal with the
coupled dynamics resulting from the inner sensorless Carte-
sian impedance controller (10). As resulting from (26), the
term L(q) multiplies the environment stiffnessKe, coupling
the dynamic equations (i.e., the Cartesian DoFs). Despite
such a term is a function of the robot joint configuration q, it
can be considered as constant (i.e., L(q) = L) as described
in Sect. 4. The coupling compensator can be defined as in the
following:

xt,dc,i = Li, j K̂
j
e xt, j + Li,k K̂

k
e xt,k . (29)

where i defines the controlled Cartesian DoF, while j and
k the coupled Cartesian DoFs. (29) can be included in the
definition of the sensorless Cartesian impedance setpoint xdt
in (26) to decoupling the Cartesian DoFs.

The sensorless Cartesian impedance control parameters
can also be tuned in order to guarantee the stability of
the robot-environment system described by (26). Once the
coupling terms compensation is performed, the resulting
robot-environment interaction dynamics results in:

Mt ẍt + Dt ẋt + (Kt + Ke) xt = Ktxdt , (30)

considering that the coupling compensator has been applied
to the setpoint xdt . Substituting in (30) the estimated environ-
ment stiffness K̂e:

Mt ẍt + Dt ẋt + (
Kt + K̂e

)
xt = Ktxdt , (31)

the robot-environment interaction dynamics can be exploited
to tune the sensorless Cartesian impedance control parame-
ters.

TheCartesian impedance control damping can be imposed
in order to achieve an over-damped behavior for the coupled
interaction dynamics. The eigenvalues of (31) can be com-
puted as:

λ
i
1,2 =

−Dt,i ±
√
D2
t,i − 4Mt,i

(
Kt,i + K̂e,i

)

2Mt,i
, (32)

for each Cartesian DoF i . In order to achieve an over-damped
stable system dynamics, the following condition has to be
satisfied:

D2
t,i − 4Mt,i

(
Kt,i + K̂e,i

)
> 0. (33)

Byconsidering that the damping termDt,i = 2ht,i
√
Mt,i Kt,i ,

the damping ration ht,i can be computed as:

ht,i >

√
Kt,i + K̂e,i

Kt,i
. (34)

Remark 5 The Cartesian impedance control stiffness can be
imposed to a value that is smaller or equal to the one of
the estimated environment stiffness in order to absorb the
interaction force during the task execution.

Remark 6 It is important to underline that the sensorless
Cartesian impedance control is interconnected with the EKF
(exploiting the provided environment stiffness estimation)
for the update of its parameters. Therefore, even if the EKF
and the impedance control are individually stable, the dynam-
ics of the estimation given by the EKF affects the stability
of the controller. Therefore, it is important that the dynamics
of the EKF is faster than the controller dynamics (the band-
width of the EKF should be at least one decade faster then the
bandwidth of the controller) to avoid any instability resulting
from the transient dynamics of the EKF.

7 Results

A Franka EMIKA panda manipulator has been used as a test
platform (Figure 1). The robot torque controller has been
exploited (control frequency 1 kHz). A probing task (with
different interacting environments, i.e., different stiffness)
has been considered as a reference task.

7.1 Simulation results

Simulations have been performed in Matlab implementing
the FrankaEMIKApanda kinematics and dynamics using the
Robotics Toolbox (Corke 2017). Control law (12) has been
implemented. The robot-environment interaction is simu-
lated along all the traslationalCartesianDoFs exploiting (26).

The following sets of environment stiffness parameters
has been applied in simulation: K1

e = diag([1000, 1000,
1000]) N/m, K2

e = diag([50000, 50000, 50000]) N/m,
K3

e = diag([10000, 20000, 50000]) N/m. The impedance
control matrices have been imposed as follows: mass param-
eters into the diagonal matrixM have been imposed equal to
10 kg, while inertia parameters have been imposed equal to
10 kg m2; traslational parameters into the diagonal stiffness
matrix K has been imposed equal to 1000 N/m, while rota-
tional parameters have been imposed equal to 5000 Nm/rad;
damping ratio parameters into the diagonal matrix h have
been imposed equal to 0.7.
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Fig. 4 Estimated interaction force f̂ (dashed line) vs. measured interaction force f (continuous line) for the considered simulations

Starting the simulations, the robot position is not in con-
tact with the environment. The impedance control setpoint
is applied xdt = xt + [0.0075, 0.0075, 0.0075]T m along all
the Cartesian traslational DoFs. The EKF for the interac-
tion force estimation is activeted immediately. As soon as a
steady interaction estimated force f̂ higher than the thresh-
old T f = 3 N is achieved, the impedance control setpoint is
modified to xdt = xt + [0.015, 0.015, 0.015]T , and the EKF
for the environment stiffness estimation is activated.

7.1.1 Estimated interaction force

Figure 4 shows results related to the EKF for the interac-
tion force f̂ estimation described in Sect. 4. The estimated
interaction force f̂ is plotted against the measured interac-
tion force f in the simulation scenarios. Initially, the robot

is moving in free-space and the estimated force is equal to
zero.As soon as the contact is established, the estimated force
tracks the measured force with a limited delay. The effective-
ness of the proposed methodology is shown, having the EKF
able to estimate the interaction force with a fast dynamics
and reduced delays. The achieved accuracy in the estimation
allows to implement the force loop for sensorless interaction
task execution.

7.1.2 Estimated environment stiffness

Figure 5 shows the results related to the EKF for the envi-
ronment stiffness K̂e estimation described in Sect. 5.2. The
estimated environment stiffness K̂e is plotted against the
nominal environment stiffness Ke in the simulation scenar-
ios. The estimation of the environment stiffness is enabled
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Fig. 5 Estimated environment stiffness K̂e (continuous line) vs. real environment stiffness Ke (dashed line) for the considered simulations

as soon as the interaction estimated force f̂ is at its steady
state and higher than the defined threshold T f = 3 N. The
effectiveness of the proposed methodology is shown, having
the EKF able to estimate the environment stiffness with a
fast dynamics. The proposed methodology allows to achieve
a high accuracy in the estimation, making possible to exploit
such estimation in the control parameters tuning for stability
purposes.

7.2 Experimental results

Experiments have been performed on the Franka EMIKA
panda manipulator (Figure 1), establishing the interaction
along the z Cartesian DoF. The implemented controller (12)
has been considered, without the compensation of the joint

friction term (currently under development):

τ = B(q)γ + C(q, q̇) + g(q) + τR .

Three different environments have been tested with dif-
ferent (unknown) stiffness characteristics. The impedance
control matrices have been initialized as follows: mass
parameters into the diagonal matrix M have been imposed
equal to 10 kg, while inertia parameters have been imposed
equal to 10 kg m2; traslational parameters into the diago-
nal stiffness matrix K has been imposed equal to 1500 N/m
(to achieve a medium-soft robot behavior, i.e., a safe inter-
action with the unknown stiff environment), while rotational
parameters have been imposed equal to 8000 Nm/rad; damp-
ing ratio parameters into the diagonal matrix h have been
initially imposed equal to 0.7.
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Fig. 6 a estimated interaction
force f̂z (continuous line) vs.
measured interaction force fz
(dot-dashed line) for the three
experimental scenarios.
Reference force f dz (dashed
line) is highlighted. b estimated
interaction force error ê f ,z

(a) (b)

(a) (b)

(a) (b)

In the proposed experiments, the proposed EKFs (Sect. 4
and Sect. 5.2) and the controller (Sect. 6) are implemented
and are running in parallel. The EKF for the interaction force
estimation is immediately activated, while the EKF for the
environment stiffness estimation will be activated as soon
as the contact is established. The robot moves along the
Cartesian DoF −z until the contact with the environment
is detected (exploiting the interaction force estimation f̂z)
by applying an impedance control setpoint xdt,z = xt,z +
0.0075m. As soon as the estimated force f̂z overcomes the
threshold T f = 5 N, the EKF for the environment stiffness

estimation is enabled. After the convergence of K̂e,z to K̂ e,z

(i.e., estimated value taken after four seconds from the EKF
activation), the update of the impedance control damping
exploiting (34) is performed to guarantee stability. In partic-

ular, ht,z = 1.1
√

(Kt,z + K̂e,z)/Kt,z is imposed to deal with
estimation uncertainties.

Remark 7 The sensorlessCartesian impedance control param-
eters update, on the basis of the estimate provided by the
EKF, is performed at a slower rate w.r.t. the EKF esti-
mation. In particular, having an estimation frequency of
1 kHz, the impedance parameters update is performed at
0.5 Hz to preserve the controller + observer stability. The
update of the impedance parameters is also slower than the
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impedance control dynamics to avoid non-smooth transition
of the parameters. In the case the EKF estimation diverges,
the experiment is safely stopped.

To show the possibility to exploit the estimations provided
by the EKFs (in Sect. 4 and Sect. 5.2) to implement a sensor-
less force controller, f̂z is used to close a force-loop, while
K̂e,z is used to tune the PI force-control gains. A reference
force f dz = 30N has been imposed. The sensorless Cartesian
impedance setpoint is defined along the z direction as:

xdt,z = xt,z + Kp, f /Kt,ze f ,z + Ki, f /Kt,z

∫
e f ,zdt, (35)

where e f ,z = f dz − f̂z is the force error, Kp, f is the propor-
tional gain and Ki, f is the integral gain. Model in (31) has
been used to tune the control gains to achieve a 0.5 Hz band-
width. The impedance setpoint along the x and y directions i
is defined to include the coupling compensator term (29) as

xdt,i = xt,i + xt,dc,i ,

where xt,i is the robot position measured at the time of the

estimation of K̂ e,z .
Figure 6 shows the estimated interaction force f̂z vs. the

measured interaction force fz (exploiting the internal estima-
tion of the interaction force provided by the Franka EMIKA
panda robot on the basis of its joint torque sensors), also
highlighting the reference force f dz , for the three environ-
ments (first column), and the interaction force estimation
error ê f ,z = fz − f̂z (second column). Limited steady state
errors (maximum error less than 5 N) are shown, compa-
rable to state-of-the-art techniques for sensorless external
force estimation. A fast estimation is achieved, showing the
convergence of the estimation in approximately 0.1 s (i.e.,
EKF bandwidth approximately equal to 10 Hz, an order of
magnitude faster than the force-tracking impedance control
bandwidth), as it can be seen from the interaction force esti-
mation error plots. Figure 7 shows the estimated interaction

environment stiffness K̂e,z and its converged value K̂ e,z for
the three environments vs. the real (calibrated) environment
stiffness Ke,z . The estimated environment stiffness has a fast
dynamics and a limited error (less than 10%, i.e., acceptable
error in line with state of the art techniques), allowing the
proper tuning of the sensorless Cartesian impedance control
parameters as described in Sect. 6.

As shown by simulation results, estimation performance
can be improved including friction compensation in the con-
troller. In fact, without including it, modeling errors are
shown in (26), decreasing the estimation performance of the
proposed EKFs. Authors wanted to evaluate the performance
of the proposed approach in the presence of modeling errors
to verify the applicability of the approach in non-optimized
conditions.

Fig. 7 Estimated interaction environment stiffness K̂e,z (black con-

tinuous line) and its converged value K̂ e,z (red circle) for the three
experimental scenarios vs. the real (calibrated) environment stiffness
Ke,z (black dashed line)

Remark 8 The EKFs gains have been experimentally tuned
in order to achieve the fastest dynamics. Initialization of the
EKF estimated stiffness values has been randomized in order
to show the proper convergence of the EKF.

Remark 9 The implemented PI force controller aims to show
the stability of the performed environment stiffness estima-
tion, i.e., of the related interaction force estimation, making
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Fig. 8 (a) estimated interaction
forces f̂x , f̂ y , and f̂z
(dot-dashed line) vs. measured
interaction forces fx , fy , and fz
(continuous line) for the
polishing-like task. Reference
force f dz (dashed line) is
highlighted. (b) estimated
interaction force errors e f ,x ,
e f ,y , and e f ,z

(a) (b)

(a) (b)

(a) (b)

possible to perform an interaction task with the proposed
approach.

8 Advanced applications

In order to show the capabilities of the proposed approach,
two more advanced applications have been implemented: a
polishing-like task, and an assembly task of a gear into its
shaft. The sensorless Cartesian impedance control together
with the estimation of the interaction force have been
exploited in order to control the robot for the task execution.

To improve the performance of the proposed EKF (described
in Sect. 4), friction compensation based on Gaz et al. (2019)
has also been implemented.

8.1 Polishing-like task

The proposed task consists in approaching the target envi-
ronment along z direction. Then, the robot has to maintain
a constant contact with the environment by applying a ref-
erence force f dz , while sliding along directions x and y.
The reference force has been imposed as f dz = 30 N. The
same controller in (35) has been implemented, exploiting
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Fig. 9 Experimental set-up including the Franka EMIKApandamanip-
ulator for the target assembly task. The manipulated gear and its shaft
are highlighted

the estimated force f̂z to close the force loop. A sinusoidal
motion has been imposed along directions x and y. The
impedance control matrices have been initialized as fol-
lows: mass parameters into the diagonal matrixM have been
imposed equal to 10 kg, while inertia parameters have been
imposed equal to 10 kg m2; traslational parameters into the
diagonal stiffness matrix K has been imposed equal to 1000
N/m (to achieve a medium-soft robot behavior, i.e., a safe
interaction with the unknown stiff environment), while rota-
tional parameters have been imposed equal to 8000 Nm/rad;
damping ratio parameters into the diagonal matrix h have
been imposed equal to 1.

Figure 8 shows in the first column the estimated interac-
tion forces f̂x , f̂ y , and f̂z vs. the measured interaction forces
fx , fy , and fz (exploiting the internal estimation of the inter-
action force provided by the Franka EMIKA panda robot on
the basis of its joint torque sensors), also highlighting the ref-
erence force f dz . The second column shows the interaction
force estimation errors ê f ,x = fx − f̂x , ê f ,y = fy − f̂ y ,
and ê f ,z = fz − f̂z . Limited errors are shown, comparable
to state-of-the-art techniques for sensorless external force
estimation. A fast estimation is achieved, making possible
to estimate the interaction forces while performing the task.
Estimation performance can be enhanced by improving the
friction compensation as proposed in Roveda et al. (2017),
where a local friction model identification and compensation
are performed w.r.t. the specific task and workspace area in
which the robot is operating.

8.2 Assembly task

The proposed task consists in an assembly of a gear into its
shaft. The target task is shown in Fig. 9. The main task direc-
tion is z and, therefore, a reference force f dz = 30 N has been
defined to perform the insertion task. The same controller in
(35) has been implemented, exploiting the estimated force f̂z
to close the force loop. The sensorless Cartesian impedance
control is exploited in order to have the robot compliant along
the other Cartesian DoFs. The impedance control matrices
have been initialized as follows: mass parameters into the
diagonal matrixM have been imposed equal to 10 kg, while
inertia parameters have been imposed equal to 10 kg m2;
traslational parameters into the diagonal stiffness matrix K
has been imposed equal to 1000 N/m (to achieve a medium-
soft robot behavior, i.e., a safe interaction with the unknown
stiff environment), while rotational parameters have been
imposed equal to 1000 Nm/rad; damping ratio parameters
into the diagonal matrix h have been imposed equal to 1.

Figure 10 shows in the first column the estimated interac-
tion forces f̂x , f̂ y , and f̂z vs. the measured interaction forces
fx , fy , and fz (exploiting the internal estimation of the inter-
action force provided by the Franka EMIKA panda robot on
the basis of its joint torque sensors), also highlighting the ref-
erence force f dz . The second column shows the interaction
force estimation errors ê f ,x = fx − f̂x , ê f ,y = fy − f̂ y , and
ê f ,z = fz − f̂z . Limited steady state errors (around 2 N) are
shown, comparable to state-of-the-art techniques for sensor-
less external force estimation. A fast estimation is achieved,
showing the convergence of the estimation in approximately
0.1 s (i.e., EKF bandwidth approximately equal to 10 Hz, an
order of magnitude faster than the force-tracking impedance
control bandwidth), as it can be seen from the interaction
force estimation error plots.

9 Conclusions and future work

The presented paper proposed a sensorless model-based
methodology (exploiting sensorless Cartesian impedance
control and Extended Kalman Filters) to estimate both the
interaction force and the environment stiffness for interaction
control purposes. The estimated interaction force can be used
to close a force loop, making the sensorless robot able to per-
form interaction task. In addition, the environment stiffness
estimation is used to compensate for the coupled dynam-
ics and to tune the Cartesian impedance control parameters,
ensuring stability. With respect to state of the art method-
ologies for the environment stiffness estimation in sensorless
applications, the main advantage of the proposed approach is
that no persistent excitation is required to perform the estima-
tion. The described approach has been validated in a probing
task in both simulations and experiments, using the Franka
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Fig. 10 (a) estimated
interaction forces f̂x , f̂ y , and f̂z
(dot-dashed line) vs. measured
interaction forces fx , fy , and fz
(continuous line) for the
polishing-like task. Reference
force f dz (dashed line) is
highlighted. (b) estimated
interaction force errors e f ,x ,
e f ,y , and e f ,z

(a) (b)

(a) (b)

(a) (b)

EMIKA panda manipulator. Simulation and experimental
results show fast dynamics performing the proposed esti-
mation and limited estimation errors. In addition, advanced
applications have been tested, considering a polishing-like
task and an assembly task of a gear into its shaft. The esti-
mation of the interaction force has been exploited for control
purposes, showing the capabilities of the proposed approach.

Current/future work is devoted to improve the estima-
tion accuracy (of both interaction force and environment
stiffness) developing local high-performance friction com-
pensation algorithms based on learning techniques. The
design of sensorless force control exploiting the proposed
framework is under investigation for the tuning of both the

Cartesian impedance control parameters and the force con-
trol law (considering SDRE control (Çimen 2007)). Machine
learning techniques are also considered for the offline tuning
of the sensorless force controller. In particular, performance
can be improved using force/torque sensor measurements
in the offline sensorless controller tuning phase, then online
exploited for the sensorless control of the manipulator in
unknown scenarios. The optimization of the tuning of the
EKF gains is under investigation, making use of machine
learning techniques.
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