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Abstract

Legged robot navigation in extreme environments can hinder the use of cameras and lidar due to darkness, air obfuscation or
sensor damage, whereas proprioceptive sensing will continue to work reliably. In this paper, we propose a purely proprioceptive
localization algorithm which fuses information from both geometry and terrain type to localize a legged robot within a prior
map. First, a terrain classifier computes the probability that a foot has stepped on a particular terrain class from sensed foot
forces. Then, a Monte Carlo-based estimator fuses this terrain probability with the geometric information of the foot contact
points. Results demonstrate this approach operating online and onboard an ANYmal B300 quadruped robot traversing several
terrain courses with different geometries and terrain types over more than 1.2 km. The method keeps pose estimation error
below 20 cm using a prior map with trained network and using sensing only from the feet, leg joints and IMU.

Keywords Legged robots - Proprioceptive localization - Terrain classification - Tactile sensing

1 Introduction

Recent advances in the maturity and robustness of
quadrupedal robots have made them appealing for dull and
dirty industrial operations, such as routine inspection and
monitoring. Automating these operations in underground
mines and sewers is particularly challenging due to darkness,
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in-air dust, dirt, and water vapor, which can significantly
impair a robot’s vision system (Kolvenbach et al. 2020).
Additionally, camera or laser sensor failure may leave only
proprioceptive sensors (i.e.,IMU and joint encoders) at the
robot’s disposal (Fig. 1).

Blind quadrupedal locomotion has achieved impressive
levels of reactive robustness without requiring vision sensors
(Focchi et al. 2020; Lee et al. 2020). However, without the
ability to also localize proprioceptively, a robot would still
be incapable of completing missions or inspections.

1.1 Contributions

In this paper, we significantly extend our prior work on
proprioceptive localization (Buchanan et al. 2020) with the
following contributions:

e A novel proprioceptive legged robot localization system
that, in contrast to Buchanan et al. (2020), fuses both
terrain geometry and semantic information. To the best of
our knowledge, this is the first localization system using
semantics when completely blind.

e A terrain classification method employing signal mask-
ing in the 1D convolutional modules, making it possible
to process variable length signals from footsteps without
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Fig.1 An ANYmal robot (Hutter et al. 2016) in a sewer with two feet in
aslippery, wet depression and two feet in a dry, elevated area. With prior
information about terrain type and geometry, it is possible for the robot
to localized in the world using only touch. This would be extremely
useful in dark and foggy environments (Image courtesy of RSL/ETH
and from Kolvenbach et al. (2020))

the need to truncate or pad them. This enables our method
to work on uneven terrain and at differing walking speeds,
unlike in Bednarek et al. (2019b).

e Extensive additional testing on an ANYmal B300
quadruped robot (Hutter et al. 2016) including differ-
ent geometries and terrain types, for a total duration of
2.5 h and more than 1.2 km of traveled distance. The
pose estimation error is kept down to 10 cm on geomet-
rically feature rich terrain and on average below 20 cm
on all terrain while exploiting terrain semantics. We also
demonstrate convergence after only five steps from an
unknown initial pose.

The remainder of this document is structured as follows:
Sect. 2 summarizes relevant research in the fields of ter-
rain classification, in-hand tactile localization and legged
haptic localization; Sect. 3 defines the mathematical back-
ground of the legged haptic localization problem; Sect. 4
describes our proposed haptic localization algorithm; Sect. 5
describes the implementation details to deploy our algorithm
on a quadruped platform; Sect. 6 presents the experimental
results collected using the ANYmal robot; Sect. 7 provides
an interpretation of the results and discusses the limitations of
the approach; finally, Section 8 concludes with final remarks.

2 Related works

Pioneering work which exploits a robot’s legs, not just for
locomotion, but also to infer terrain information such as fric-
tion, stiffness and geometry has been presented by Krotkov
(1990). This idea has recently been revisited to perform
terrain vibration analysis or improve locomotion parameter
selection via terrain classification. Since we are interested in
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using terrain classification for localization, we cover the most
relevant works applied to legged robots in Sect. 2.1. Works
on proprioceptive localization in manipulation and legged
robots are described in Sects. 2.2 and 2.3, respectively.

2.1 Tactile terrain classification

The first tactile terrain classification method for walking
robots was presented by Hoepflinger et al. (2010) and con-
cerned experiments with a single leg detached from a robot’s
body. In this work, force measurements and motor currents
were used to successfully distinguish between four terrain
types. These results paved the way for the application of ter-
rain classification methods on complete legged robots.

More recently, Kolvenbach et al. (2019) used a single leg
on a real, standing ANYmal robot to differentiate between
four different types of soil. Two types of feet (point and
planar) were used to collect force, torque and IMU mea-
surements that were processed by an SVM classifier. The
system showed that the tactile information could be used to
differentiate between visually similar soils. However, their
method required a pre-determined probing action which is
impractical as it forces the robot to stop walking.

A terrain classification system that could operate during
locomotion was presented by Wellhausen et al. (2019). At
start, their legged robot was trained to assign a terrain nego-
tiation cost based on force/torque sensors. Once operating,
their system assigned a terrain negotiation cost from images
based on previous feet-to-image correspondences and terrain
classification based on proprioceptive sensors. The ability to
predict the terrain negotiation based on images was then used
to plan the robot’s motion and avoid high cost terrains.

In complete darkness, which is our intended domain,
vision-based sensors are of limited use for terrain classifi-
cation, so we focus on purely proprioceptive sensing. In our
previous work (Bednarek et al. 2019a), we showed how deep
learning models can be used to increase the terrain clas-
sification accuracy. The system showed 98% classification
accuracy from force-torque measurements against six ter-
rain classes during a statically stable walk. However, this
approach was limited to fixed-length input signals and thus
could not generalize to aperiodic gaits, different speeds, or
uneven terrain. In our work, we overcome these limitations
with a novel masking mechanism in the convolutional layer,
which allows us to process variable length signals.

More recently, Lee et al. (2020) showed an end-to-end
approach to terrain classification for locomotion. Their deep
learning controller was based on proprioceptive signals to
adapt the gait to rough terrains. Even though tactile terrain
classification was not explicitly performed, an internal rep-
resentation of the terrain type was implicitly stored inside
the network’s memory. In our work, we opt for a modular
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approach that explicitly returns a terrain class, which can
then be used by the localization estimator.

2.2 Tactile localization in manipulation

Tactile localization involves the estimation of the 6-Degree
of Freedom (DoF) pose of an object (of known shape) in
the robot’s base frame by means of kinematics of the robot’s
fingers and its tactile sensors. Since the object can have any
shape, the probability distribution of its pose given tactile
measurements can be multimodal. For this reason, tactile
localization has typically been addressed using Sequential
Monte Carlo (SMC) methods, a subfamily of which are called
particle filters (Fox etal. 2001). SMC methods are sensitive to
the dimension of the state space, which should be low enough
to avoid combinatorial explosions or particle depletion. State-
of-the-art methods aim to reduce this dimensionality and also
to sample the state space in an efficient manner. For example,
Koval et al. (2016) reduced the state space of the pose of an
in-hand object to the observable contact manifold.

Chalon et al. (2013) proposed a particle filtering method
for online in-hand object localization that tracks the pose of
an object while it is being manipulated by a fixed base arm.
The estimated pose was subsequently used to improve the
performance of pick and place tasks. The particle weights
were updated by penalizing finger/object co-penetration and
the distance between the object and the fingertip in contact.

Manuelli and Tedrake (2016) approached a slightly dif-
ferent problem, using a particle filter to estimate external
contacts on arigid body robot using only force/torque sensors
in the joints of the robot. Particles were distributed around
the robot’s body and particle weights were computed from
how well the contact point explained an external torque.

Vezzani et al. (2017) proposed an algorithm for tactile
localization using the Unscented Particle Filter (UPF) on a
iCub robot with sensorized fingertips to localize four differ-
ent objects in the robot’s reference frame. The algorithm was
recursive and could process data in real-time. The object and
the robot’s base were assumed to be static, allowing the pose
to be estimated as a fixed parameter. For legged haptic local-
ization, the assumption of both a static robot and terrain does
not always hold and more general methods are required.

2.3 Haptic localization of legged robots

The first example of haptic localization applied to legged
robots is from Chitta et al. (2007). In their work, they pre-
sented a proprioceptive localization algorithm based on a
particle filter for LittleDog, a small electric quadruped. The
robot was commanded to perform a statically stable gait over
a known irregular terrain course, using a motion capture
system to feed the controller. While walking, the algorithm
approximated the probability distribution of the base state

with a set of particles. The state included three DoF: linear
position on the x y-plane and yaw. Each particle was sampled
from the uncertainty of the odometry, while the weight of a
particle was determined by the L2 norm of the height error
between the map and the feet contact location. The algorithm
was run offline on eight logged trials of 50 s each.

Schwendner et al. (2014) demonstrated haptic localiza-
tion on a wheeled robot with protruding spikes. The spikes
detected contacts with the ground, which were compared to a
prior 2.5D elevation map. Each wheel enabled multiple con-
tact measurements, which they used to perform plane fitting
against the prior map and improve localization over larger,
flatter terrain. They also performed terrain classification, but
with a camera, which we do not require in our proposed work.
They demonstrated an average position error 39 cm in five
experiments, of approximately 100 m each.

In Buchanan et al. (2020), we presented an SMC method
that estimated the past trajectory (instead of the latest pose)
at every step. Furthermore, the localization was performed
for the full 6-DoF of the robot, instead of just the x, y and
yaw dimensions as in Chitta et al. (2007) and Schwendner
et al. (2014). The localization system was experimentally
demonstrated online and onboard an AN'Ymal robot and used
in a closed loop navigation system. When walking on flat
areas, the localization uncertainty increased due to the lack
of constraints on the xy-plane. We are therefore motivated to
use terrain classification techniques described in Sect. 2.1 to
incorporate more information into the SMC.

3 Problem statement

Letx; € SE(3) be arobot’s pose at time k. We use the nota-
tion X to represent a pose estimate from an external estimator,
and x* to represent its most likely estimate from our SMC
filter.

3.1 Quadruped state definition

We assume that for each timestep k, an estimate of the robot
pose X and its covariance X € RO*6 are available from
an inertial-legged odometric estimator, such as Bloesch et al.
(2018), Fink and Semini (2020), Hartley et al. (2020). The
uncertainties for the rotation manifold are maintained in the
Lie tangent space, as in Forster et al. (2017). We also assume
that the location of the robot’s end effectors in the base frame
Dk = (dLF» dRFa dLH , dRH) € R3X4 are known from
forward kinematics. The forces acting on each foot F; =
(fLr, frr, fryg, fry) € R3*4 are measured by foot sensors
(when available) or inferred from inverse dynamics. Finally,
the binary contact states Ky = (kLF, KRF, KLH, KRH) € B*
are inferred from F.
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Fig.2 Terrain map used in Experiment 3, showing terrain categories

For simplicity, we assume errors due to joint encoder
noise or limb flexibility to be negligible. Therefore, the
propagation of the uncertainty from the base to the end effec-
tors is straightforward to compute. For brevity, the union
of the aforementioned states (pose, contacts, and forces)
at time k will be referred as the quadruped state Qy =
Xk, Zk, Dry Ki, Fi).

3.2 Prior map

Our approach can localize against 2.5D terrain elevation
maps as well as full 3D maps. Terrain classification is meant
to be carried out while the robot is walking, with no dedicated
probing actions, therefore 2.5D maps are augmented with a
terrain class category for each cell. This enables our method
to overcome the degeneracy caused by featureless geome-
tries (e.g., flat grounds, which are uninformative about the
robot position on the xy-plane). Point clouds are used for
3D maps and only contain geometric information. To distin-
guish between the three types of map, we will refer to M
when 2.5D only, M3 when 3D, and M, when 2.5D aug-
mented with class information, respectively. An example of
an M, map colorized by terrain class is shown in Fig. 2.

3.3 Estimation objective

Our goal is to use a sequence of quadruped states to estimate
the most likely sequence of robot poses up to time k:

X =[x5, x1, ..., x}] (D
such that the likelihood of the contact points to be on the map
is maximized. Additionally, we assume xé is known.

4 Proposed method

To perform localization, we sample a predefined number of

particles at regular intervals from the pose distribution pro-
vided by the odometry (as described in Sect. 4.2) and we
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compute the likelihoods of the measurements by comparing
each particle to the prior map, so as to update the weights
of the particle estimator (see Sect. 4.3). For convenience, we
give a brief summary of SMC theory in Sect. 4.1.

4.1 Sequential Monte Carlo localization

In SMC Localization, the objective is to approximate the
posterior distribution of the state x; given a history of mea-
surements zg, . . ., Zx = 20:x as follows:

P (elzow) = Y wioyp rlx) p (xelxiy) @)

where w! is the importance weight of the i-th parti-
cle; p (zrlxx) is the measurement likelihood function and
p (xxlx}_,) is the motion model for the i-th particle state.
Since p (xk|zo:k) is typically unknown, the state x is typi-
cally sampled from p (xk|x};_ 1), yielding:

pxilzon) = Yo wiyp (e )6 (e —xi) @)

where §(-) is the Dirac delta function. Over repeated sam-
pling steps, the particles will spread out of the whole state
space with weights approaching zero. To avoid this “impov-
erishment” of the particles, an additional re-sampling from
the mostly likely state is used. When the re-sampling is done
at every step, the method is known as particle filtering. We
use a different strategy that merges likelihoods from a history
of states and so refer to our method with the more general
term SMC.

4.2 Locomotion control and sampling strategy

Without a very robust reactive controller, blind locomotion
requires conservative footstep placement, hence we opt for a
statically stable gait, which guarantees stability at all times
even when the motion is stopped mid flight phase. Since
only one leg can be moved at the time, as soon as the swing
leg touches the ground the robot enters into a four-support
phase; at this time, the quadruped state estimate O and the
estimated terrain class ¢ for a given foot position are col-
lected. Then, a new set of particles is sampled in a manner
similar to Chitta et al. (2007):

pxilxt ) = N(eg, AFpxi |, Sp) 4)

where AX; = ik__l Xk is the pose increment measured by
the onboard state estimator at times k — 1 and k.

At time k, the new particles x}; are thus sampled from a
normal distribution centered at the pose estimated from the
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deg = M(dy g, dyg) || dy —np(Ms, dy)|| lldj—npe(Me, dj, €)]|

Fig.3 Comparison between contact measurements for 2.5D (left), 3D
(middle) and terrain class (right) map representations. The red dots
indicate the contact point as sensed by the robot, while the green dots
indicate the corresponding location returned by the map. The red line
shows the magnitude of the measurement. In the terrain classification
case, the view is from a top down perspective. The robot’s foot sensed
a contact in the ¢, region but a classification of ¢; was detected. The
nearest ¢1 point was returned by the map (Color figure online)

odometry with its corresponding covariance. Since roll and
pitch angles are observable from inertial-legged estimators,
their estimates have low uncertainty. In practice, this allows
us to reduce the number of necessary particles along these two
dimensions, while still retaining the ability to compensate for
the errors of the state estimator due to IMU biases, which are
observable by exteroceptive sensors only.

4.3 Measurement likelihood model for 2.5D data

The measurement likelihood is modeled as a univariate Gaus-
sian centered at the local elevation of each cell, as done in
Buchanan et al. (2020). The variance o, was manually set
to 1 cm. Given a particle state xf(, the estimated position
of a contact in world coordinates for an individual foot f is
defined as the concatenation of the estimated robot base pose
and the location of the end effector, in base coordinates:

dy = (dy;, dip,dy,) = xidy ()

Thus, the measurements and their relative likelihood func-

tions for the i-th particle and a specific foot f are (Fig. 3,
left):

a =di — Mdy;, dip) (©6)

p(zilxt) = N(z, 0, 07) (7

where dé 7 is the vertical component of the estimated contact
point location in world coordinates of foot f, according to
the i-th particle; ./\/l(d)‘;,f, d;’f) is the corresponding map
elevation at the xy coordinates of dif.

4.4 Measurement likelihood model for 3D data

Our method can incorporate contact events from 3D prob-
ing. This is useful for areas where the floor does not provide
enough information to localize. In this case, the robot can
probe walls and 3D objects with its feet. To better model this
situation, we represent the prior map M3 € R3*V by a 3D
point cloud with N points. The likelihood of a particular con-
tact point is computed using the Euclidean distance between
the foot and the nearest point in the map. This likelihood
is again modeled as a zero-mean Gaussian evaluated at the
Euclidean distance between the estimated contact point d"f
and its nearest neighbor on the map, with variance o:

2 = |ld; — np(M;, d))|| ®)
pilxy) = Nz, 0, 07) ©)

where np(M3, d’}) is the function that returns the nearest

point of di, on the map M3, computed from its k—d tree
(Fig. 3, middle). In our tests, point clouds were sufficiently
small to make the k-d tree search time negligible. For larger
scale environments, more compact representations based on
Truncated Sign Distance Fields (Oleynikova et al. 2017) or
Octrees (Vespa et al. 2018) could be used to allow for faster
search and less memory usage.

4.5 Terrain classification

Let f: & + C be the haptic terrain classification func-
tion that associates an element from the signal domain S
to an integer from the class counter-domain C. The set
S : {s € R®*5) includes sequences of variable length
force and torque signals s (of length /(s)) generated by a foot
touchdown event. The set C is defined as the integers from 0
to n — 1, where n is the total number of terrain classes that
the robot is expected to be walking on (in our case, n = 8).
The terrain classes were chosen to have a different haptic
response, ensuring the existence of the function f.

Given the problem definition above, we introduce the fol-
lowing:

e aclassification method f’: S — C, which approximates
the function f. As an implementation of f’ we used a
neural network;

e a dataset consisting of a list of pairs d: [(s, ¢)], where
s € S, ¢ € C.Such adataset was divided into two subsets,
training and validation, with a ratio of 80:20;

e atraining process formulated as an approximation of the
function f using the function f” by the minimization of
cross-entropy between the probability distributions gen-
erated by these functions.

@ Springer
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4.6 Terrain class measurement likelihood model

The prior map is represented as a 2-dimensional grid whose
cells are associated with a terrain class (an example is
provided by Fig. 2). Measurements are represented as a piece-
wise cost function. If the estimated terrain class ¢ for a given
foot position d;c does match the class ¢, at that location in
the prior map ¢ = M. (d )’;f, d ; f) the probability is a constant
value corresponding to the maximum value of a zero-mean
univariate Gaussian with manually selected variance o, of
5 cm (which is the width of the foot).

If the estimated class does not match the expected class in
the map, the same Gaussian distribution is used to model the
likelihood, where the input z,”( is the distance to the closest
point in the map with the expected class. This function is
shown as

1

plalxly = { ov2m = (10)
N(zk,0,0) ¢ #c,

where

Z = lld,,; —npc(M,, d. ;. &) (11)

The function npc (M., d;v = ¢) returns the nearest 2D point

with class ¢ to the 2D foot position di yf in the map M. This
last case is shown in Fig. 3, right.

We assume elevation and terrain class measurements
(zk» zj,) are conditionally independent. Therefore, their joint
probability can be computed as

P2k, Z51xh) = paklx}) p(zglx}). (12)

5 Implementation

The block diagram of our system is shown in Fig. 4. The
internal estimator on the ANYmal robot, TSIF (Bloesch et al.
2018), provides the odometry for the particle estimator, while
the neural network estimates the class. This information is
compared against the prior map to provide an estimate of the
robot’s trajectory, A"

Pseudocode for the particle estimator (green block in
Fig. 4) is listed in Algorithm 1. At time k, the estimates of the
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Pose Estimate and Contacts M

{i}ﬁ Eka Dka Kk}

State
Estimator

Prior Map

xi ~ N(xo, %o, Zo) VieN
foreach four-support phase k do
Axp < ¥ F
foreach particle i € N do
x}'( ~ N(x, Aikxf{_l, i)
u);( < u);;_l
foreach foot f do
if 3D then
% < Inp(Ms, dy) —diy|
wj, < wip(zclx})
else
s dlp = Mdyydyy)
7 < ||d;yf —npc(Me, d;yf, Ol
wi, < wip(2k, 2 1x})
end
end
x,’(* <« WeightedMean(x,? .. .x,?’, w,?, . w,iv)

X < [xé,..‘,xi]
if Var(wl) > threshold then
‘ resample(x/i)
end
end
end
Algorithm 1: Haptic Sequential Monte Carlo Localization

terrain class ¢ and the robot pose X are collected. The pose
estimate is used to compute the relative motion AXy—_1:k,
propagate forward the state of each particle x}'{, and draw
a sample from the distribution centered in Aikx};_ | with
covariance Xy = (0x k, Oy k, Oz k)-

The weight of a particle w’ is then updated by multiplying
it by the likelihood that each foot is in contact with the map
and the terrain class. In our implementation, we modify the
likelihood functions from Eq. 7 as:

p(zilxk) = min(o, N (2, 0, 07)) (13)

where p is a minimum weight threshold, so that outlier con-
tact measurements do not immediately lead to degeneracy.
Re-sampling is triggered when the variance of the weights
rises above a certain threshold. This is necessary to avoid
dispersion of the particle set across the state space, with many
particles with low weight. By triggering this process when
the variance of the weights increases, the particles can first
track the dominant modes of the underlying distribution.
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the weighted mean of all the particle poses. However, as we
showed in our previous work, the particle distribution is often
multi-modal. This motivated us to selectively update different
dimensions of the robot pose. If the variance of the particle
positions in the x and y axes are low (i.e.,< 0y, Oy k),
we assume a well defined estimate and update the robot’s
full pose. However, if they are high, we update only the z
component of the robot’s location, which is always low as
the robot keeps contact with the ground.

In practice, with the terrain classification we found the
terrain course was sufficiently detailed to keep particle posi-
tion variance in the xy-plane low, therefore z-only updates
were rare. The threshold we used was a standard deviation
of 10 cm, which corresponds to the typical uncertainty in our
experiments.

To avoid particle degeneracy, importance sampling can be
done in areas with higher likelihood. For example, if a grass
terrain is detected, some particles could be injected in every
grass terrain in the map. Further investigation on the benefits
of importance sampling are left for future work.

5.2 Terrain classifier network

Ouneural network architecture is shown in Fig. 5 and consists
of three components: convolutional, recurrent, and predic-
tive. Both the convolutional and recurrent components must
process variable-length data. Therefore, for the convolution
part, masking of the signal is required to prevent padded val-
ues from affecting the forward-pass result.

The first component of our network consists of two resid-
ual layers (ResLay). The ResLay used in our work is an
adaptation of the one by He et al. (2016) with 2D convolu-
tions replaced by 1D and support for masking. The recurrent
component uses two bidirectional layers (Bidir) with two
Gated Recurrent Units (GRU) (Cho et al. 2014) in each.
The output of the recurrent component is an average of two
resulting hidden states of the last Bidir. The final output of
the neural network is produced by the predictive component,
which takes the recurrent component’s output, and using two
fully connected (FC) layers produces a probability distribu-
tion from which the terrain class is inferred.

The number of convolutional layers and their sizes were
chosen empirically to produce the best possible features
before applying the compressed signal to the recursive part.
To ensure better error propagation for the convolution part,
we employed so-called skip-connections between layers thus
reducing dimensionality.

The consecutive layers of the model are presented in
Fig. 5. Each convolution block executes the following oper-
ations: batch normalization (Ioffe Szegedy 2015), dropout

bidir GRU, 256
vl

FC 256

)
=
Q
=2
=
nN
=
o
17
=
<
N
ResLay

[conved, 2] [ conv32 |
[coma2 | | v
T _output: [X, Classes] |

Fig. 5 Neural Network Structure used for Terrain Classification. The
main blocks of neural architecture are convolutional (conv), recursive
(GRU bidir), and fully connected (FC) blocks. The masking mecha-
nism used in variable-length signal processing blocks takes appropriate
masks, marked in green, orange, and red. These masks correspond to
the individual signal lengths, taking into account the initial length and
the reduction of size by convolution with stride equal to 2 (Color figure
online)

(Srivastava et al. 2014), and Exponential Linear Unit (ELU)
activation function (Clevert et al. 2016). All are modified to
support masking. We used kernel size of 5 in each convolu-
tion layer. The output from each ResLay block is two times
smaller as a result of stride in convolutions (marked as /2).
Dropout is also used in every Bidir and FC (which also use
batch normalization).

The model uses a dropout rate of 0.3 and a batch nor-
malization momentum of 0.6. The proposed neural network
consists of 1,374,920 trainable parameters.

5.2.1 Training

The learning process was carried out using the k-fold cross-
validation methodology, with k = 5. The AdamW optimizer
from Loshchilov and Hutter (2019) was used to minimize the
loss function, with the following parameters:

e learning rate: Se—4 with exponential decay,
e weight decay: le—4 with cosine decay.

Training was performed for 1000 epochs after which the
training continued until no progress was made for 100 con-
secutive epochs. The size of each mini-batch was 256.

6 Experimental results

We extensively evaluated the performance of our algorithm
in three different experiments, each one targeting a different
type of localization. These are described in more detail in
Sects. 6.2, 6.3, and 6.4.
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6.1 Evaluation protocol

There are three different modalities in our algorithm: HL-G
(Haptic Localization Geometric), which uses only geometric
information, HL-C (Haptic Localization Class), using only
class information, and HL-GC (Haptic Localization Geomet-
ric and Class), which uses both geometric and terrain class
information. HL-G was tested in Experiments 1 and 2 using
2.5D and 3D prior maps, respectively. HL-G, HL-C and HL-
GC were tested in Experiment 3 with 2.5D maps augmented
with terrain class information.

6.1.1 Evaluation metrics

We quantitatively evaluated localization performance by
computing the the mean of the Absolute Translation Error
(ATE) as described by Sturm et al. (2012):

| — .
- 3 trans (T;IT,-) I (14)

i=1

where T; and ’i‘i are the robot’s ground truth and estimated
poses, respectively. In contrast to Sturm et al. (2012), we
do not perform the alignment of trajectories, as ground truth
and estimated poses are represented in the same coordinate
system.

A qualitative evaluation was also performed for Experi-
ment | and 2 by assessing the ability of the robot to reach its
planned goals or end effector targets while using the localiza-
tion online. This demonstrated the benefit of the localization
when used in the loop with the onboard motion planner.

6.1.2 Ground truth and prior map

The ground truth trajectories were collected by motion cap-
ture systems at 100 Hz. The pose of both the robot and
the terrain course reference frame were accurately measured
with mm accuracy via reflective markers installed on them.

At start of the experiment, the relative position of the robot
within the map was measured using ground truth and used
for initialization only. Thereafter, the pose of the robot was
estimated using the particle filter. To account for initial errors,
particles at the start were sampled from a Gaussian centered
at the initial robot pose with a covariance of 20 cm.

The prior maps were captured with survey grade laser
scanners (Leica BLK-360 and SURPHASER 100HSX)
which provided point clouds with sub-centimeter accuracy.

6.2 Experiment 1: 2.5D terrain course

In this experiment, the robot was commanded to navigate
between four walking goals at the corners of a rectangle. One
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Fig. 6 Experiment 1: ANYmal haptic localization experiments. The
robot traverses the terrain, turns 90 deg right and comes back to the initial
position passing trough the flat area. The goals given to the planner are
marked by the dark red disks, while the planned route is a dashed green
line (one goal is out of the camera field of view). The world frame W
is fixed to the ground, while the base frame B is rigidly attached to
the robot’s chassis. The mutual pose between the robot and the terrain
course is bootstrapped with the motion capture (Color figure online)

Table 1 Experiment 1: Estimation performance

Mean Absolute Translation Error (ATE)

Trial Dist. (m) Time (s) TSIF (m) HL-G (m)
1 66.42 525 0.63 0.13
2 145.31 1097 2.57 0.40
3 55.67 557 0.52 0.19
4 68.71 604 0.65 0.32
5 172.65 1606 2.00 0.61

TSIF, Two-State Implicit Filter (Bloesch et al. 2018); HL-G, Haptic
Localization with Geometry only

of the edges required crossing a 4.2 m terrain course com-
posed of a 12° ascending ramp, a 13 cm high chevron pattern,
an asymmetric composition of uneven square blocks and a
12° descending ramp (Fig. 6). After crossing the wooden
course, the robot returned to the starting position across a
portion of flat ground, so as to test the system behavior in
feature-deprived conditions.

While blind reactive locomotion has been developed by
a number of groups including (Di Carlo et al. 2018; Focchi
et al. 2020), unfortunately our blind controller was not suffi-
ciently reliable to cross this terrain course, so we resorted to
use of the statically stable gait from Fankhauser et al. (2018)
which used a depth camera to aid footstep planning. How-
ever, the pose estimation was performed without access to
any camera information.

To demonstrate repeatability, we performed five trials of
this experiment, for a total distance traveled of more than 0.5
km and 1 h 13 min duration. A summary of the results is pre-
sented in Table 1, where HL.-G shows an overall improvement
between 50 and 85% in the ATE compared to the onboard
state estimator. ATE is 33 cm on average, which reduces to
10 cm when evaluating only the feature-rich portion of the
experiments (i.e.,the terrain course traversal).
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Fig. 7 Experiment 1, Trial 2: Top view of the estimated trajectories
from TSIF (dashed purple), haptic localization (blue) and ground truth
(green) (Color figure online)

For trials 1 and 2, the robot was manually operated to
traverse the terrain course, completing two and four loops,
respectively. In trials 3—5, the robot was commanded to fol-
low the rectangular path autonomously. In these trials, the
haptic localization algorithm was run online in closed-loop
and effectively guided the robot towards the goals (Fig. 7).
Using only the prior map and the contact events only, the
robot stayed localized in all the runs and successfully tracked
the planned goals. This can be seen in Fig. 7, where the esti-
mated trajectory (in blue) diverges from ground truth on the
xy-plane when the robot is walking on the flat ground. This
is due to growing uncertainty from lack of geometric infor-
mation, however the covariance reduces significantly and the
cluster mean re-aligns with the ground truth when the robot
reaches the terrain.

Figure 8 shows in detail the estimator performance for
each of the three linear dimensions and yaw. Since posi-
tion and yaw are unobservable, the drift on these states is
unbounded. In particular, the error on the odometry filter
[TSIF (Bloesch et al. 2018), purple dashed line] is domi-
nated by upward drift (due to kinematics errors and impact
nonlinearities, see third plot) and yaw drift (due to IMU gyro
bias, see bottom plot). This drift is estimated and compen-
sated for by the haptic localization (blue solid line), allowing
accurate tracking of the ground truth (green solid line) in all
dimensions. This can be noted particularly at the four peaks
in the z-axis plot, where the estimated trajectory and ground
truth overlap. These times coincide with the robot is at the
top of the terrain course.

Position x-axis [m]

Position y-axis [m]

Position z-axis [m]

Yaw [deg]

100 200 300 400 500 600 700 800 900 1000
Time [s]

Fig.8 Experiment 1, Trial 2: Comparison between the estimated posi-
tion from TSIF (dashed purple) and haptic localization (blue) against
ground truth (green). After 200 s, the estimation error in TSIF has
drifted significantly upward and in yaw. In particular, the upward drift
is noticeable in the third plot, where the values grow linearly. The drift
is eliminated by the re-localization against the prior map (Color figure
online)

6.3 Experiment 2: online haptic exploration on
vertical surfaces

The second experiment involved a haptic wall following task
with the robot starting in front of a wall but with an uncer-
tain location. The particles were again initialized with 20 cm
position covariance. To test the capability to recover from an
initial error, we applied a 10 cm offset in both x and y from
the robot’s true position in the map. At start, the robot was
commanded to walk 1 m to the right (negative y direction)
and press a button on the wall, whose location in the prior
map was known. To accomplish the task, the robot needed to
“feel its way” by alternating probing motions with its right
front foot and walking laterally to localize inside the room.
The fixed number of probing motions was pre-scripted so
with each step to the right, the robot probed both in front and
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Fig.9 Experiment 2: Haptic probing experiment in 3-dimensions. The
top row shows the robot performing the experiment while the bottom
row shows the particle distribution of position estimates. The particle
set is colorized by normalized weight according to the jet colormap
(i.e., dark blue = lowest weight, dark red = highest weight). First, on
the bottom left, the robot has an initial distribution with poses equally
weighed. The robot makes a forward probe and then moves to the right.
Now the particles are distributed as an ellipse with high uncertainty to
the left and right of the robot. Then, the robot makes a probe to the
right and touches an obstacle; the particle cloud collapses into a tight
cluster. Since the robot is now localized, it is able to complete the task
of pressing the button on the wall (Color figure online)

to its right. The whole experiment was executed blindly with
the static controller from Fankhauser et al. (2018).

As shown in Fig. 9 the robot was able to correct its local-
ization and complete the task of touching the button. The
initial probe to the front reduced uncertainty in the robot’s
x and z directions, which reduces the particles to an ellip-
soidal elongated along y. As the robot moves, uncertainty
in the x direction increases slightly. By touching the wall
on the right, the robot re-localized in all three dimensions
in much the same way as a human following a wall in the
dark would. The re-localization allows the robot to press the
button, demonstrating the generalization of our algorithm to
3D. This would enable a robot to localize by probing a known
piece of mining machinery, allowing it to perform mainte-
nance tasks. The final position error was: [7.7, —3.7, —0.2]
centimeters in the x, y and z directions.

6.4 Experiment 3: terrain classification

In the third experiment, we demonstrate the localization
using terrain semantic information, which has been tested
on a custom designed terrain course. Multiple 1 x 1 m? tiles
of different terrain materials were placed on a 3.5 x 7 m?
area. The course includes a 20 cm high platform with two
ramps with different terrain materials, as shown in Fig. 10.
The different terrain types used were: gum, carpet, PVC,
foam, sand, artificial grass, ceramic and gravel.

For training, we gathered an additional dataset of the robot
walking on the different patches consisting of 8773 steps with
aquasi-static walk gait. Examples of data collection is shown

@ Springer

Fig. 10 Top: Examples of foot positioning when collecting data
on different terrains under controlled laboratory conditions. Bottom:
Experiment 3: ANYmal with sensorized flat feet standing on the mul-
tiple terrain type course. Close up of the foot is provided. An IMU and
fore/torque sensor is located in the sole with coordinate frame shown

in Fig. 10 Top. During the data collection, the maximum
base displacement and rotation were enforced to 0.21 m and
0.23 rad, respectively. These limits ensured a stable walk at
all times. The dataset was split into 7018 training and 1775
testing samples. To minimize the impact of unbalanced data
on the learning process (e.g., more steps on a specific class),
the loss function was weighted based on the number of steps
taken on each terrain. The network was trained as described
in Sect. 5.2.1 and the mean and standard deviation of the
accuracy was estimated from k-fold cross-validation to be
94% and 0.09, respectively.

The robot was equipped with sensorized feet which fea-
ture high quality 6-axis force/torque sensors (Valsecchi et al.
2020). These feet are necessary to provide the signals for
terrain classification as in Bednarek et al. (2019b). The robot
autonomously walked between pre-programmed waypoints
placed over the entire course, including several passes over
the ramp. Large sections of the trajectory were only on the
flat terrain tiles, forcing the algorithm to rely mostly on ter-
rain classification for localization. Unlike Experiment 1, the
robot was able to walk completely blind and no exterocep-
tion was used for footstep planning. A statically stable gait
was used such that one foot was in the air at a time.



Autonomous Robots (2021) 45:843-857

853

To demonstrate repeatability, we have performed three tri-
als of this type, for a total distance traveled of more than 0.7
km and 1 h 7 min duration. We compare results produced
using HL-G (Geometry), HL-C (Terrain Class) and HL-GC
(Geometry and Terrain Classification). As the majority of
the terrain course is flat, there is not enough information for
geometry only localization to be continuously accurate. Only
when using terrain class information as well as geometry can
the robot localize in all parts of the terrain course.

A summary of the experiments is presented in Table 2,
where HL-GC shows an overall improvement between 14
and 56% in the ATE compared to HL-G. Using only the
prior knowledge of the terrain geometry and class, the robot
stayed localized in all the runs and bounded the linearly grow-
ing drift of the state estimator. This can be seen in Fig. 11,
where the estimated trajectory (in red) is able to stay near
the ground truth trajectory (green). In areas where there are
large patches of the same material, such as the gravel (dark
blue) and ceramic (yellow), there is not enough information
to localize in the xy-plane and the pose estimate drifts. When
the robot crosses the boundary into a new terrain type the
localization is able to correct.

Figure 13 shows in detail the estimator performance for
each of the three linear dimensions and yaw. As in Experi-
ment 1, the error on the odometry filter (TSIF, purple dashed
line) of the robot is dominated by upward and yaw drift. This
drift is estimated and compensated for by the haptic localiza-
tion (red solid line), allowing accurate tracking of the ground
truth (green solid line) in all dimensions.’

7 Discussion

The results presented in Sects. 6.2 and 6.3 demonstrate that
terrain with a moderate degree of geometric complexity (such
as Fig. 6) already provides enough information to bound the
uncertainty of the robot’s location. The effectiveness of a
purely geometric approach is obviously limited by the actual
terrain morphology in a real world situation, which would
need to contain enough features such that all the DoF of the
robot are constrained once the robot has touched them.

In the case where there is not enough geometric informa-
tion, we have shown in Sect. 6.4 that terrain semantics can
be used to localize. With sufficiently diverse terrain types
(as shown in Fig. 10), boundary crossings from one terrain
to another provide enough information to correct for drift in
the xy-plane.

1" A video showing all of these experiments is attached as supplementary
material.

—— Ground Truth +_» Notable Area
----TSIF

— HL-GC

— ZRamp

Fig. 11 Experiment 3, Trial 2: Top down view of the state estimator
(dashed purple), HL-GC estimated trajectory (red) and ground truth
(green). Trajectories are overlaid on terrain map with ramp shown in
a dashed box. Two dotted circles show notable areas in the trajectory.
A At a boundary crossing, the particle mean diverges from the ground
truth. However, as the particle cloud nears the ramp, the geometric
information gives higher likelihood to the particles in the center of the
terrain. B Another boundary crossing which in two separated crossings
triggers good localization updates (Color figure online)

7.1 Analysis of particle distribution on geometric
terrain

Figure 14 Top shows the evolution of the particles up to the
first half of the terrain course for Experiment 1, Trial 2. As
the robot walks through, the particle cluster becomes concen-
trated, indicating good convergence to the most likely robot
pose.

In the third subfigure, it can be noted how the probability
distribution over the robot’s pose follows a bimodal distribu-
tion, which is visible as two distinct clusters of particles. This
situation justifies the use of particle filters, as they are able
to model non-Gaussian distributions which can arise from a
particular terrain morphology. In this case, the bimodal dis-
tribution is caused by the two identical gaps in between the
chevrons. In such situations, a weighted average of the par-
ticle cluster would lead to a poor approximation of the true
pose distribution. Therefore, the particle evolution illustrated
in Sect. 5.1 is crucial to reject such an update.

Figure 14 Middle shows the particle distribution over flat
ground. While not transitioning between terrain types, our
method must rely on geometric information only and there-
fore is constrained in z but not x and y. In these cases we only
update the drift estimate in the z direction which keeps the
particle distribution near the ground but spread out.

7.2 Analysis of particle distribution on terrain class

Figure 12 shows data from Experiment 3, Trial 1. We com-
pare results from HL-G, HL-GC and HL-C. We can see that
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Table2 Experiment 3: HL-G =

Mean absolute translation error (ATE)

Haptic Localization with only

scometry: HL-C = Haptic Trial Dist. (m) Time (s) TSIF (m) HL-G (m) HL-C (m) HL-GC (m)
Localization with only terrain 1 191 1114 0.64 0.23 0.63 0.14
class; HL-GC = Haptic
Localization with both geometry 331 1850 1.28 025 073 0.11
and terrain class 3 193 1090 0.72 0.21 0.61 0.18
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Fig. 12 Experiment 3, Trial 2: Here we show the difference in results
when using only geometric information HL-G (blue), only terrain class
information HL-C (yellow) and both HL-GC (red). We compare these
to the state estimator (dashed purple) and ground truth (green) (Color
figure online)

even with only class information, this method is able to keep
pose estimation error bounded in the x—y plane (mean ATE
for the class only trajectory was 0.63 m). In the third subplot
from the top, the class only trajectory drifts upward in a sim-
ilar way to TSIF in Fig. 13. This is because of the absence
of any measurement in the z, hence our method relies on the
proprioceptive state estimator.

Further analysis of the effect of terrain class on localiza-
tion is shown in Fig. 14 middle. Here, we show the evolution
of particles from HL-GC in Experiment 3, Trial 3. The par-
ticles, which initially are normally distributed around the
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Fig. 13 Experiment 3, Trial 2: Here we show the difference in results
when using only geometric information HL-G (blue), only terrain class
information HL-C (yellow) and both HL-GC (red). We compare these
to the state estimator (dashed purple) and ground truth (green) (Color
figure online)

starting position, quickly converge along the z axis as the
floor elevation information is used. Once the boundary tran-
sition from green to red occurs, the particles correct for drift
in the x direction.

Finally, in Fig. 14 bottom we show the behavior of HL-
GC when the particles are initialized evenly across the entire
map. Within 5 footsteps the distribution has converged to the
green section in the bottom left. This is because there are
only two green terrains, and the bottom left is the only one
on flat ground.
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Fig.14 Evolution of particle distributions during experiments. Particles
are colorized by normalized weight according to the jet colormap (i.e.,
dark blue =lowest weight, dark red = highest weight). Top (Experiment
1): The green line indicates the ground truth trajectory. A At start, all
the particles have the same weight and are normally distributed at the
starting position. B After a few steps on the ramp, the robot pose is
well estimated on x and z directions, but there is uncertainty on y. C
When the robot approaches the chevron the particle set divides into
two clusters, indicating two strong hypotheses as to the robot pose.
D After a few more steps on the chevron, the robot is fully localized
and the particles are tightly clustered. Middle (Experiment 3): As the
robot walks from left to right, the particle cloud makes two terrain class
transitions. As the robot crosses the first transition, the cloud becomes
more narrow in the x direction as error along this axis is corrected.
Bottom (Experiment 3): Top-down perspective with the robot estimate
initialized in the middle of the map and the initial particle distribution
spread out over the whole map. Within 5 steps the particle distribution
has re-sampled over the correct green terrain patch. The green circles
are the classified footsteps

8 Conclusion

We have presented a haptic localization algorithm for
quadrupedal robots based on Sequential Monte Carlo meth-
ods. The algorithm can fuse geometric information (in 2.5D
or 3D) as well as terrain semantics to localize against a prior
map. We have demonstrated that even using only geometric
information, walking over a non-degenerate terrain course
containing slopes and interested geometry can reduce local-
ization error to 10 cm. Our method also works if the robot
probes vertical surfaces, measuring its environment in full
3D. Finally, we have shown how in areas of even sparser
geometric information, terrain semantics can be used to aug-
ment this geometry.

The proposed approach demonstrated an average of 20 cm
position error over all areas of a terrain course with different
terrain classes and geometries. The ability to localize purely
proprioceptively is valuable for repetitive autonomous tasks
in vision-denied conditions, such as inspections of sewage
systems. This method could also serve as a backup localiza-

tion system in case of sensor failure—enabling a robot to
complete its task and return to base.

8.1 Future work

The main limitation to our method is the need for suffi-
ciently informative terrain. To mitigate this, we intend to
incorporate other terrain properties such as slope or friction
coefficient. Additionally, incorporating the network uncer-
tainty as a prior on the terrain classification measurement
would improve fusion with geometric information. Finally,
we intend to generalize to more dynamic gaits and remove
the costly dependency on sensorized feet.

Supplementary Information  The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10514-021-10013-
w.
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