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Abstract
Online event-based perception techniques on board robots navigating in complex, unstructured, and dynamic environments
can suffer unpredictable changes in the incoming event rates and their processing times, which can cause computational
overflow or loss of responsiveness. This paper presents ASAP: a novel event handling framework that dynamically adapts the
transmission of events to the processing algorithm, keeping the system responsiveness and preventing overflows. ASAP is
composed of two adaptivemechanisms. The first one prevents event processing overflows by discarding an adaptive percentage
of the incoming events. The second mechanism dynamically adapts the size of the event packages to reduce the delay between
event generation and processing. ASAP has guaranteed convergence and is flexible to the processing algorithm. It has been
validated on board a quadrotor and an ornithopter robot in challenging conditions.

Keywords Event camera · Event-based vision · Robot perception

1 Introduction

In the last years event cameras have attracted increasing
interest in the robotics community. Event cameras are neu-
romorphic sensors that capture asynchronous illumination
changes at pixel level with µs resolution. They are insensi-
tive tomotion blur and have awide dynamic range, providing
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Fig. 1 Picture from ASAP validation experiments on board a DJI
Flamewheel F450 and the GRIFFIN E-Flap ornithopter

high robustness to lighting conditions. A good number of
successful event processing techniques have been proposed
evidencing their capabilities, see e.g. (Gallego et al., 2020).

Most existing event handling frameworks deliver the
events generated by the camera to the event processing
algorithm in event packages—i.e., structures in which sev-
eral events are buffered to reduce the transmission cost.
Packaging using a fixed number of events—i.e., fixed pack-
age size—or a fixed triggering rate are the most common
approaches. Event delivery has a critical impact on the pro-
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cessing algorithm performance. For instance, in cases with
low event generation rates, using large packages can gener-
ate unnecessary delay, whereas short packages would enable
better exploiting the asynchronous nature of event cameras.
On the other hand, in cases with high event generation rates,
using short packages would require devoting significant time
to transmit and receive the events, increasing the risk of
processing bottlenecks and saturation. When using event
cameras on board robots in complex environments, changes
in lighting conditions, type of scene, or robot motion can
induce strong unpredictable changes in the event rate and in
the processing algorithm efficiency. Static delivery is con-
figured for the expected event rate and algorithm processing
time, and cannot adapt to these changes, often resulting in
processing responsiveness loss or computational overflow.

This paper presents ASAP, an event handling framework
that dynamically adapts event delivery to enhance process-
ing responsiveness and prevent computational overflows. It
absorbs the variations in the event rates and in the algorithm
event processing time through two adaptive feedback-based
mechanisms that run simultaneously and have a synergistic
behaviour in which they help one another in the adaptation.
Any event-based algorithm can be fed with ASAP requir-
ing only minor implementation modifications. The proposed
event handling scheme is flexible to the processing algorithm,
its computational complexity, and its implementation, and
also offers the possibility of packaging with fixed time win-
dows and fixed number of events. The main contributions of
this paper are:

1. an adaptive event handling scheme that enables respon-
sive event processing with no overflows;

2. its experimental validation and evaluation on board a
quadrotor and an ornithopter robot, see Fig. 1;

3. ASAP code1 to contribute to the robotics, computer
vision, and neuromorphic sensing communities.

This work is inspired by our previous workshop paper
(Tapia et al., 2020). Themain novelties are: (a) deep improve-
ments in both adaptive mechanisms to take into account the
temporal cost fed back from the event processing algorithm;
(b) improvement in the event packaging mechanism, which
can now be tuned using closed analytical expressions; (c)
mathematical demonstration of its convergence; and (d) new
and detailed experimental validation including the imple-
mentation and evaluation in two aerial robots in challenging
conditions.

The structure of the paper is as follows. The main related
work is summarized in Sect. 2. The proposed scheme and its
two mechanisms are presented in Sects. 3, 4, and 5, respec-
tively. The convergence demonstration is described in Sect. 6.

1 https://raultapia.com/repositories/asap.

The experimental evaluation and validation are described in
Sect. 7. Section 8 summarizes the conclusions and future
work.

2 Related work

Existing event-based methods can be classified into: event
images, event-by-event, and hybrid algorithms. The most
widely used approach in robotics relies on processing event
images, created by accumulating the events received. A
method for detection and tracking using a Micro Aerial
Vehicle (MAV) was developed in (Mitrokhin et al., 2018).
It compensated for the global motion of the robot using a
model of the affine transformation between two consecutive
event images. Work (Falanga et al., 2020) presented a reac-
tive obstacle avoidance method for quadrotors using event
images from a stereo set-up. All these works provided valid
solutions to someexisting andnovel problems.However, pro-
cessing event images does not fully exploit the asynchronous
behaviour of event cameras.

Event-by-event methods process events one by one with-
out grouping, exploiting the asynchronous nature of the event
cameras. A number of solutions have been developed for fea-
ture detection (Vasco et al., 2016) (Mueggler et al., 2017) (Li
et al., 2019), tracking (Alzugaray & Chli, 2018), and cluster-
ing (Barranco et al., 2018), among others. Although these
methods are designed to process events one-by-one, few
of them have focused on mobile robot applications, where
computational restrictions can be relevant. An event-by-event
pose tracking method for Unmanned Aerial Vehicles (UAVs)
was developed in (Mueggler et al., 2014). The method was
validated during high-speedmaneuvers and reached accurate
pose estimations. An event-based surveillance system using
UAVs was presented in (Rodríguez-Gómez et al., 2020). The
authors proposed a fully event-by-event scheme that com-
bines feature detection, tracking, and clustering.

Although event-by-event processing overcomes some of
the limitations of event images, events are noisy and process-
ing one-by-one results in high computational cost. Hybrid
approaches combine the advantages of event-by-event and
event image processing. A hybrid motion detector method
was implemented in (Vasco et al., 2017) by learning the
motion model of corner features when no object was present.
The work in (Gómez Eguíluz et al., 2020) presented a
bioinspired approach to time-to-contact maneuvers for mul-
tirotors.

Although most of the above processing methods provide
valid solutions to robotic perception, the online implemen-
tation of event-based vision systems on real robots requires
mechanisms capable of efficiently managing the computa-
tional resources. However, few works have addressed the
efficient delivery of events between event cameras and event
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processing algorithms. Existing event handling frameworks
can be classified according to the manner in which they
feed the event processing algorithms. The use of event
packages is the most widespread trend. The event-based
framework included into the YARP (Yet Another Robot Plat-
form) architecture (Glover et al., 2018b) or the RPG ROS
DVS driver—used, for instance, in (Mueggler et al., 2014),
(Lichtsteiner et al., 2008) or (Brandli et al., 2014)—rely on
the use of event packages to feed the processing algorithms.
Packages can be built up by accumulating a fixed number
of events or by accumulating events during a fixed period of
time. Although this kind of event handling prevents the algo-
rithm’s communication overhead to some extent, they are not
efficient in cases when the processing of one event package
has been completed before the next package arrives. On the
other hand, event-by-event transmission is an efficient solu-
tion when algorithms can process events faster than they are
received. The work in (Marcireau et al., 2020) presented a
framework for event-by-event handling that consists of three
modules: an I/O library (called Sepia), a computation toolbox
(Tarsier), and a visualization tool (Chameleon). Their frame-
work suppresses the use of buffers between the modules and
limits the use of event buffers to the reception of events from
the camera. Although event-by-event frameworks provide a
lower communication delay than solutions based on event
packages, its use is restricted to algorithms that complete the
processing of an event before the reception of the follow-
ing. Otherwise, high event rates can cause bottlenecks and,
eventually, saturation.

Online event processing on board real robots requires
effective management of the computational load. Some
works have started to explore how to adapt the incoming event
stream from the event camera. Since (Berner et al., 2007),
removing events that cannot be delivered in time has been a
solution adopted by the event camera logic interface. Other
works such as (Rodríguez-Gómez et al., 2020) or (Tapia et
al., 2020) used the idea of randomly discarding a percentage
of the incoming events to reduce the number of events to
be processed. A feedback control scheme was presented in
(Delbruck et al., 2021) for the adaptive setting of the internal
parameters of the DVS sensor. Their method regulates the
event rate by controlling the threshold and refractory period
changing the internal bias currents, and also regulates noise
using bandwidth control. Regarding adaptive packaging, the
work in (Glover et al., 2018a) adjusts event package size
by finding the error between the event rate produced by the
camera and the event rate that can be processed.

Themethod proposed in this paper focuses on event deliv-
ery under strong event rate changes such as those that can
be found in aerial robotics in complex and dynamic envi-
ronments with low-resource onboard processing capacity.
It dynamically adapts event delivery by using two closed-
loop mechanisms with synergistic behaviours that help

one another in the adaptation. To the best of the authors’
knowledge, it is the first event adaptive handling frame-
work validated on board aerial robots performing aggressive
maneuvers.

3 General description

Consider an event camera, which events are delivered for
processing at an event processing algorithm. Each event is
represented as ei and includes the timestamp at which it was
generated, the event pixel coordinates, and the event polar-
ity. Events are transmitted from the pixel array to the output
bus by using Address Event Representation (AER). In many
applications, the event rates registered by the event cam-
era may suffer unpredictable changes. For instance, that is
the case in many robotics applications in which ground or
aerial robots equipped with onboard event cameras navigate
in complex and dynamic environments. Although static event
packages, using either a fixed number of events or a fixed
triggering rate, is the most widely approach, it can cause pro-
cessing saturation and loss of responsiveness in cases with
strong event rate changes. If the event generation rate is lower
than expected, static packaging can cause unnecessary delays
between event generation and processing. If it is higher, it can
cause processing bottlenecks and overflows, since the algo-
rithm may receive a new event package before completing
the processing of the previous one.

Two metrics are interesting to analyze the transmission of
an event package pk : the delivery time τk and the package
building timeπk . First, τk is defined as the difference between
the time at which pk is sent to the processing algorithm and
the time the processing of pk starts –including a possible
package buffer. πk is defined as the difference between the
timestamps of the oldest and newest event in pk . In addition,
the term latency could be applied to different time intervals
regarding generation, packaging, buffering, and processing.
As a convention, this work defines the latency λk of pk as
the time between the generation of the oldest event in pk and
the start of the processing of pk , i.e. πk + τk .

The objective of ASAP is to dynamically adapt the
transmission of events from the camera to the processing
algorithm to keep its responsiveness and prevent computa-
tional overflow by feeding the algorithm with a new package

Fig. 2 General scheme of ASAP
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Table 1 Summary of the notation used

Variable Description

ei i-th event of the incoming event stream
γ ei i-th event of the event stream after γ -filter

ri Incoming event rate at the time when ei arrives
γ ri γ -filtered event rate at the time when ei arrives

pk k-th event package generated by ASAP

sk Number of events in the event package pk

tk Time required by the algorithm to process pk

τk Temporal difference between pk is sent to the algorithm and processing of pk starts

πk Temporal difference between the timestamps of the oldest and newest event in pk

λk Latency of pk , computed as τk + πk

as soon as possible, i.e. as soon as it has finished the process-
ing of the previous package. The scheme of ASAP is shown
in Fig. 2. It includes two closed-loop adaptive mechanisms,
both use tk−1, the time required by the algorithm to process
the events from the last package pk−1. The first mechanism,
based on the adaptive packaging module, enhances the algo-
rithm responsiveness by dynamically adapting the size of
the event packages. It uses tk−1 to select sk , the size of the
next event package. Adapting the event package size can be
insufficient for preventing processing overflows in case of
high event rates. The secondmechanism, based onmodule γ -
filter, prevents overflows by randomly removing an adaptive
percentage of events that will not be packaged or processed.
In previous work (Rodríguez-Gómez et al., 2020) we noticed
that in cases with high event rates, removing up to a maxi-
mum percentage of events had a low impact on the algorithm
performance. γ -filter measures the current event generation
rate and uses it to dynamically select the percentage of events
to be removed. Event removal percentage is minimum at low
event rates and increases with the event rate.

Both closed-loop mechanisms are executed simultane-
ously and interact exhibiting a joint synergistic behaviour that
enables fast adaptation. For instance, if tk−1 has increased,
the adaptive packaging module reacts by increasing sk .
This will increase the latency λk , losing responsiveness.
Simultaneously, due to the higher tk−1, γ -filter reacts by
increasing the event removal percentage, reducing λk and
improving responsiveness. Also, in the opposite case, if tk−1

has decreased, adaptive packaging reduces sk , and γ -filter
reduces the event removal percentage. The notation of the
main variables used in ASAP is shown in Table 1.

4 Adaptive event packaging

This mechanism adapts the size of the event packages
delivered to the processing algorithm to reduce the delay
between event generation and processing. It uses tk−1, the

time required by the algorithm to process the events in the
last package pk−1, to select sk , the number of events to be
included in the next package pk . Package pk is created by
buffering events until the size of pk is ≥ sk . Then, pk is
delivered for processing.

There is a dependence between the number of events in
the package and the time required to process the packet. On
the one hand, smaller packages will require lower time to
be processed. On the other hand, the processing of events
delivered in smaller packages is less efficient due to the time
required to transmit and receive the events. Adaptive packag-
ing selects sk according to tk−1 using the following generic
function:

sk = A�(tk−1) + B, (1)

where A, B ∈ R enable adjusting the ranges of sk and
tk−1, namely [smin, smax] and [tmin, tmax]. A and B should
be adjusted such that smin = A�(tmin) + B and smax =
A�(tmax) + B. Hence, A and B should satisfy:

A = smax − smin

�(tmax) − �(tmin)
, (2)

B = smax − A�(tmax). (3)

� is a continuous function that relates tk−1 and sk . ASAP can
use any function � that satisfies the following conditions:

1. Every value of tk−1 ∈ [tmin, tmax] must have an associ-
ated value of sk . Hence, � should be defined ∀tk−1 ∈
[tmin, tmax].

2. Larger package sizes should be assigned to higher
processing times. Hence, � should be monotonically
increasing, i.e. ∂�(tk−1)

∂tk−1
> 0,∀tk−1 ∈ [tmin, tmax].

3. Event packaging should have ranges with different sen-
sitivity of sk against variations in tk−1. Hence, � should
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have at least one inflection point tflex, i.e. ∃tflex :
∂2�(tk−1)

∂t2k−1
|tflex = 0, such that:

(a) For tk−1 < tflex, the sensitivity of � to changes in
tk−1 should decrease with tk−1 to prevent small vari-
ations in tk−1 from causing large changes in sk . The
sensitivity of � to changes in tk−1 should be lower
the closer to tmin.

(b) For tk−1 > tflex, the sensitivity of � should increase
with tk−1 to prevent small changes in tk−1 from caus-
ing no change in sk . The sensitivity of � should be
higher the closer to tmax.

Additionally, we want � to operate satisfactorily with
event processing algorithms with wide differences (several
orders of magnitude) in tk−1. Hence, we used log(tk−1)

instead of tk−1, where log represents the natural logarithm.
The suggested � in the ASAP code is:

�(tk−1) = arctan(κ log(tk−1)). (4)

This function fulfills the above conditions, guarantees
the existence of one inflection point, and includes only one
parameter κ that adjusts the curvature of � to set the desired
inflection point. Given κ , the inflection point tflex can be
determined by a closed expression:

tflex = exp

(
−√

κ2 − 1

κ
− 1

)
. (5)

|κ| < 1 provides unfeasible solutions in Eq. (5). For |κ| >

1 there is a second inflection point tflex2 in � when taking
the two solutions of the square root. It can be noticed that

tflex2 > tflex and that ∂2�(tk−1)

∂t2k−1
≈ 0, ∀tk−1 ∈ [tflex2 , tmax].

Hence, tflex2 has negligible influence on the sensitivity of �.
The value of κ modifies the shape of �. Figure 3 shows the
resulting curves sk = A�(tk−1) + B when using different
values of κ ∈ [1, 11] and computing A and B with Eqs. (2)
and (3) using tmin = 10−6 s, tmax = 1 s, smin = 1, and
smax = 104. These values are the roughly-selected upper
and lower bounds for tk−1 and sk that we observed in a wide
variety of problems and event processing algorithms, and are
proposed as default values in the ASAP code. Although they
have been validated for all the problems tested, they can be
fine-tuned if desired, see Sect. 7.

The value of κ determines the position of tflex and hence,
the point of operation of dynamic packaging. The default
value for κ in the ASAP code was roughly selected as κ = 5,
the center of the range shown in Fig. 3. This value provided
satisfactory results in all the problems that were tested, some
of which are shown in Section 7. Additionally, Sect. 7 briefly
presents how to adapt κ to specific conditions or applications.

Fig. 3 Values of function sk = A�(tk−1) + B for κ ∈ [1, 11] taking
tmin = 10−6 s, tmax = 1 s, smin = 1, and smax = 104. For these values,
A ≈ 6.395 · 103 and B = 104

To reduce the time to compute Eq. (1), e.g., for interest
in low-resource computers such as those used in Sects. 7.3
and 7.4, � was approximated by its Taylor series expansion
around an operating point a:

�(tk−1) ≈
N∑
j=0

c j (tk−1 − a) j , (6)

where c j is the j-th Taylor coefficient of� and N is the order
of the Taylor series expansion. Coefficients c j are tabulated
for logarithmically-spaced values of a. For instance, using
N = 3 obtains a computational cost saving of 68.9% w.r.t.
obtaining � directly and an approximation error of 1.07 ·
10−6, whereas N = 5 involves a computational cost saving
of 60.41% and an approximation error of 2.0247 · 10−9.

5 �-filter

Adaptive packaging is insufficient for preventing algorithm
processing overflow in case of high event rates. γ -filter
reduces the number of events to be processed by randomly
removing an adaptive percentage of the input events. It
receives as input the event stream captured by the camera
and outputs a filtered stream with a lower or equal number of
events. Discarding events in cases with high event rates is not
uncommon and has been proposed in several works. In our
system, the event removal percentage is dynamically adapted
depending on the current event rate and the value of tk−1.
Additionally, event removal should be performed efficiently
to reduce the delay. We adopted random event removal. We
performed preliminary experiments (Sect. 7.2) in which dif-
ferent types of event processing algorithms were fed with
event streams resulting from filtering the input stream with
different event removal percentages. We confirmed that with
high event rates, the algorithm performance degradation was
very low with event removal percentages of up to 80%, and
that removal was more effective (lower algorithm degrada-
tion and higher processing saving) with high event rates.
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The operation of γ -filter depends on γi ∈ R : 0 ≤ γi ≤ 1.
For each received event ei , a random number ρi ∈ R :
0 ≤ ρi ≤ 1 is generated according to a uniform distribution
U (0, 1). If ρi < γi , ei is removed. Otherwise, ei is provided
as output.Withγi = 0, all incoming events are removed;with
γi = 1, all are given as output. γi is selected proportionally
to the incoming event rate. Let ei be an incoming event from
the camera. Let ri ∈ R

+ be the current event rate when ei is
received, measured by counting the events received during a
sliding time window. The adaptation law makes γi linearly
dependent on ri , which requires setting the maximum and
minimum values of ri , namely rmax

i and rmin
i respectively.

Using static values for rmax
i and rmin

i would constrain adap-
tation to event rate changes. Hence, they are updated for each
incoming event ei as follows:

rmax
i =

{
αrmax

i−1 if ri ≤ rmax
i−1

ri if ri > rmax
i−1

, rmin
i =

⎧⎨
⎩

1

α
rmin
i−1 if ri ≥ rmin

i−1

ri if ri < rmin
i−1

(7)

If ri is lower than rmin
i−1, the minimum value rmin

i is updated
to ri . Also, if ri is higher than rmax

i−1 , r
max
i is updated to ri . Oth-

erwise, rmin
i and rmax

i are computed from rmin
i−1 and r

max
i−1 using

a forgetting factor α ∈ R : 0 < α ≤ 1. In addition, using
a linear law to adapt γi also requires establishing the upper
and lower bounds for γi . The lower bound γmin reflects the
maximum event removal percentage, which, following the
preliminary experiments, was taken as γmin = 0.2. Using a
fixed value for theminimum event removal percentage estab-
lishes a static relation between ri and γi . However, adapting
it depending on the computational cost of the event algo-
rithm is very interesting since it enables synergies between
event packaging and γ -filter. The minimum event removal
percentage γ̂k is updated for each tk−1 as follows:

γ̂k = γmax − tk−1 − tmin

tmax − tmin (γmax − γmin), (8)

where tk−1, tmin, and tmax are as defined in Sect. 4. γmax is
a fixed parameter that depends on the application, acts as the
upper bound of γ̂k , and reflects the minimum event removal
percentage. The value of γ̂k depends on tk−1 but always lies
within [γmin, γmax].

The synergistic behaviour between both mechanisms can
be clearly noticed. If the event algorithm becomes slower,
tk−1 will tend to tmin. On one hand, adaptive packaging will
increase the package size.On the other hand, according toEq.
(8), γ̂k will tend to γmin, which will help select a lower value
for γk hence, avoiding the processing of a higher percent-
age of events, helping reduce the algorithm processing time.
The opposite effect can be observed if tk−1 tends to tmax.
Hence, using tk−1 to adapt γ̂k provides synergistic effects in

which γ -filter helps event packaging in reducing the algo-
rithm response time.

Finally, the value of γi is computed for each incoming
event ei as follows:

γi = γ̂k − ri − rmin
i

rmax
i − rmin

i

(γ̂k − γmin), (9)

γi adapts depending on ri and on tk−1. This dual mechanism
provides fast adaptation to changes in the event rate and in
the algorithm response time.

We selected the random discard approach in γ -filter due to
its extremely low computational burden. However, other fil-
tering techniques can be used. For instance, spatio-temporal
consistency filters could be used to discard events generated
repeatedly in the same pixel or removing noisy events gener-
ated sporadically or in isolated regions on the image. Event
filtering must be applied on each incoming event ei , there-
fore, computationally complex filters may generate delays
in cases with high event rates. Although the event random
removal approach has been taken as default, different filters
are provided in the ASAP code and the addition of new ones
is straightforward.

6 ASAP adaptive packaging convergence

Adaptive packaging selects a suitable package size sk for
each processing temporal cost tk−1. At the same time, the
event algorithm processes the package of size sk in time tk .
It is necessary to demonstrate that adaptive packaging con-
verges to feasible values of sk and tk−1. Also, γ -filter does
not disturb the relation between sk and tk−1, since it only
affects the number of events that are packaged, regardless of
how they are packaged.

The convergence of adaptive packaging can be demon-
strated as follows. First, assume that tk = g(sk), where
g : R+ → R

+ models the time required by the algorithm
to process the events in pk . Function g is assumed positive
and strictly increasing in all its domain, i.e. g(sk) > 0 and
∂g(sk )
∂sk

> 0, ∀sk > 0. These two conditions are fulfilled in
practice since the algorithm takes some time to process the
package, and the higher number of events in the package, the
longer it takes to process them. tk is used to select the size of
the next package sk+1. Let sk+1 = f (tk), f : R+ → R

+ be
the function used to select sk . Using Eqs. (1) and (4), the f
function used in ASAP is:

sk+1 = f (tk) = A arctan (κ log(tk)) + B. (10)

UsingEqs. (2), (3), and (5), it can be deduced that A ∈ R
+,

B ∈ R, and κ ≥ 1. It can be also noticed that f is strictly
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Fig. 4 Package size sk from numerical solution of sk = A�(tk−1)+ B
and tk = β0 +β1sk for β0, β1 ∈ (0, 0.1] s using smin = 1, tmin = 10−6

s, smax = 103, and tmax = 0.1 s

increasing ∀tk > 0:

∂ f (tk)

∂tk
= Aκ

tk(κ2 log2(tk) + 1)
. (11)

Assuming that s0 > 0, it can beproved that the sequence of
values of sk is either strictly increasing (sk+1 > sk), strictly
decreasing (sk+1 < sk), or constant (sk+1 = sk), ∀k > 0.
First, as ∂g(sk )

∂sk
> 0, ∀sk > 0, the larger the input sk , the

larger the output tk . Second, from Eq. (11), the larger the
input tk , the larger the output sk+1. Consequently, if a > b,
f (g(a)) > f (g(b)) and vice versa. Therefore:

1. Constant: Assuming sk+1 = sk , the package size at k+2
is sk+2 = f (g(sk+1)) = f (g(sk)) = sk+1. Hence, by
induction, sk+n = sk , ∀k > 0, ∀n > k.

2. Strictly increasing: Assuming sk+1 > sk , the package
size at k + 2 is sk+2 = f (g(sk+1)) > f (g(sk)) = sk+1.
By induction, sk+n > sk , ∀k > 0, ∀n > k.

3. Strictly decreasing: Assuming sk+1 < sk , the package
size at k + 2 is sk+2 = f (g(sk+1)) < f (g(sk)) = sk+1.
Hence, sk+n < sk , ∀k > 0, ∀n > k.

Thus, it can be also proved that sk converges when k −→
∞ in any of the three cases. Case Constant, all the val-
ues in the sequence are equal, so sk = s0 ∀k. Cases
Strictly increasing and Strictly decreasing, as f is bounded
− 1

2 Aπ + B < f (tk) < 1
2 Aπ + B, ∀tk > 0, sk has to

converge, i.e., limk→∞ sk ∈ R. Otherwise, if sk diverged,
then | limk→∞ sk | = ∞. As an example, convergence is
analyzed for tk = g(sk) = β0 + β1sk , where β0 ∈ R

+
is the time required by the algorithm to perform operations
that do not depend on the number of events and β1 ∈ R

+
is the time required for processing each event in the pack-
age. Figure 4 presents the values to which sk converges
for β0, β1 ∈ (0, 0.1] s using smin = 1, tmin = 10−6 s,
smax = 103, and tmax = 0.1 s.

7 Experimental results

ASAP is configured by only setting the bounds of γi , tk−1,
and sk , and the value of κ . We suggest reasonable values
(default in the ASAP code) that cover a wide variety of appli-
cations and event processing algorithms, see Table 2. These
values exhibited the expected performance in the wide vari-
ety of tested applications and conditions, some of which are
presented in this section.

Manually setting these parameters enables fine-tuning
ASAP for a specific problem. In cases with low event rates
and efficient event processing algorithms that operate with
packet sizes near to 1, it is interesting to select values of smax

and tmax lower than the default to provide ASAP with higher
sensitivity when selecting sk with values close to 1. In these
cases it is interesting to use higher values of κ that set lower
values of tflex, the point of operation of event packaging.Con-
versely, with high event rates and high time-consuming event
algorithms it is interesting to set higher values of smax and
tmax than the default, and lower values of κ to force ASAP
to use larger packages as tk−1 becomes larger.

ASAP can operate with any event processing algorithm.
The only requirement is that the algorithm should feed back
the time it required to process each received package. Such
modification is minor and was easily performed in all the
different algorithms we tested. ASAP was implemented in
C++11 under ROS Melodic Morenia. It uses the libcaer
library for low-level event acquisition from the camera, but it
can be integrated with other widely-used acquisition drivers
(e.g. jAER).

First, both adaptive mechanisms are analyzed in Sects. 7.1
and 7.2. In Sects. 7.3 and 7.4, ASAP is validated and evalu-
ated on board a quadrotor and a flapping-wing robot. In the
analyses we use the delivery time τk and building time πk

presented in Sect. 3.

Table 2 ASAP parameters and their default values

Parameter Description Default value

γmin Lower bound for γk 0.2

γmax Upper bound for γk 1

tmin Lower bound for tk−1 10−6 s

tmax Upper bound for tk−1 0.1 s

smin Minimum package size 1 event

smax Maximum package size 1000 events

κ � factor see Eq. (4) 5
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7.1 Evaluation of adaptive packaging

First, we analyze the isolated effect of adaptive packaging.
A DAVIS346 event camera was placed in front of a spinning
wheel (see Fig. 5-top-left) that rotated at a constant angular
velocity providing an approximately constant event rate of
∼ 70 events/ms.

Figure 6 shows its behaviour when there are sudden
changes in tk−1. Before ∼ 0.75 s an efficient event process-
ing algorithm with computational cost O(1) was used, and
adaptive packaging selected sk ≈ 1. At ∼ 0.75 s, the com-
putational cost of the algorithm was increased to O(25). It
can be seen in Fig. 6b that sk adapted with no overshoot and
rapidly reached the steady state. We define ν as the number
of iterations required by tk−1 to reach an steady-state error

Fig. 5 Experimental setups for validation of packaging (top-left), γ -
filter (top-right), and full ASAP scheme (bottom)

(a)

(b)

(c)

Fig. 6 Values of tk−1 (a), sk (b), and τk (c) resulting in an experiment
in which the algorithm computational cost changed at ∼ 0.75 s from
O(1) to O(25)

Fig. 7 Mean package sizes sk for event processing algorithms with
different computational complexity

< ±1% w.r.t. the mean steady-state value. In this experi-
ment, ASAP adapted in only ν = 5 iterations. The resulting
package delivery times τk shown in Fig. 6cwere always lower
than 3ms and had similar values in both algorithms, meaning
that there were not computational overflows despite the high
differences in tk−1 between both algorithms. In case of com-
putational overflow, the packages would be buffered and τk
would increase over time. Algorithms with different values
of tk−1 will result in different sk . Fig. 7 shows the mean val-
ues of sk when using event algorithms with linear, quadratic,
and cubic complexity.

Figure 8 shows the performance of adaptive packaging to
changes in the computational cost of event algorithms with
linear O(n) (left), quadratic O(n2) (center), and cubic O(n3)
(right) complexity. In each case, n is changed every ∼ 2 s
following the sequence 10, 50, 200, 500, 200, 50, and 10. The
figure shows the evolution in the values of tk−1 (Fig. 8a), sk
(Fig. 8b), τk (Fig. 8c), and πk (Fig. 8d). Adaptive packag-
ing successfully adapted to every change in a low number
of iterations ν, shown in Table 3. Note that the more com-
putationally expensive the algorithm, the higher the value of
sk and hence πk . In all cases, τk remained lower than 3 ms
despite the high difference in sk , meaning that there were
no increasing waiting buffers and packages were processed
as soon as they arrived. The values of λk are not shown. As
λk = τk + πk , latency can be obtained from Fig. 8c and d.
The values of τk had high similarity for all packages, hence,
the main changes in λk were caused by the different values
of πk . This behaviour means that ASAP increases latency
only in cases where the algorithm requires it, and not due to
increasing waiting buffers.

The value ofπk depends on the performance of ASAP (sk)
and the environment (ri ). The influence of ASAP in πk can
be easily noticed in this experiment since the values of ri are
approximately constant along this experiment. This influence
is not that clear in the experiments below since ri has wide
variations, and for clarity πk is not shown. The objective of
ASAP is to keep τk steady regardless of the environment and
the algorithm processing time. If τk remains approximately
constant, it means that the packages were processed as soon
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Fig. 8 Values of: tk−1 (a), sk (b), τk (c), and πk (d) when changing the algorithm computational cost with linear (left), quadratic (center), and cubic
(right) complexity. Every ∼ 2 s n changed following the sequence 10, 50, 200, 500, 200, 50, 10

Table 3 Number of iterations ν required by tk−1 to reach an steady-state
error < ±1% in the tests shown in Fig. 8

n Number of iterations
O (n) O (n2) O (n3)

10 → 50 5 7 4

50 → 200 6 3 4

200 → 500 8 4 2

500 → 200 5 3 5

200 → 50 4 2 4

50 → 10 3 2 3

as they arrive. Hence, τk is the most critical metric in the
performance of our method and its analysis is the main focus
in the experiments below.

7.2 Evaluation of �-filter

Next, the isolated effect ofγ -filter is analyzed.TheDAVIS346
was placed in front of a UAV propeller attached to a brush-
less motor (see Fig. 5-top-right). The motor angular velocity
was varied between 450 rpm (providing ∼ 500 event/ms in
average) and 4300 rpm (∼ 8000 event/ms). First, we analyze
its performance with changes only in the input event rate ri ,
and then, changes simultaneously in ri and tk−1.

Figure 9 shows the operation of γ -filter when the motor
accelerated from450 to 4300 rpmand then decelerated to 450
rpm. The value of tk−1 was kept constant. γ -filter dynami-
cally adapted γi to ri , see Fig. 9-bottom. Figure 9-top shows

Fig. 9 Operation of γ -filter when the motor accelerated until ∼ 20 s,
and decelerates until ∼ 40 s: top) input and output event rates from
γ -filter; bottom) resulting values of γi

the event rate in orange and the resulting event rate output
from γ -filter in yellow.

Figure 10 shows an experiment inwhich themotor angular
velocitywas increased from 450 rpm to 4300 rpm and, simul-
taneously, tk−1 had sinusoidal oscillations between 10−6 and
0.1 s, see Fig. 10-top. The values of γ̂k adapted to tk−1

through Eq. (8), and the oscillations in tk−1 induced oscilla-
tions between γmin = 0.2 and γmax = 1, see Fig. 10-center.
Also, using Eq. (9), γi decreases the higher the value of ri
and varied between γmin and γ̂k depending on ri . This effect
can be noticed in Fig. 10-bottom. A very low percentage of
events are removed with low values of ri and tk−1, e.g. at
the start of the experiment. A higher percentage of events
are removed with higher values of tk−1 and ri , e.g. at 18 s.
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Fig. 10 Performance of γ -filterwhen themotor velocity increased from
450 to 4300 rpm, and simultaneously tk−1 had sinusoidal oscillations
between tmin = 10−6 s and tmax = 0.1 s: top) tk−1; center) resulting
values for γ̂k and γi ; bottom) input and output event rates showing the
filtering effect

γ -filter only removed a moderate number of events when
event rates compromised the algorithm processing capacity.

7.3 Evaluation on board a quadrotor robot

This section analyzes the operation of ASAP on board a
quadrotor robot while navigating at different velocities. Fig-
ure 1 shows the experimental platform: a DJI Flamewheel
F450 frame equipped with a front-facing DAVIS346 event

camera and a PixRacer autopilot. Event onboard computa-
tion was performed using a low-cost Khadas VIM3 board,
which included an Amlogic A311D SoC, 2GB RAM, and
16GB eMMC, mounting Ubuntu 18. The scenario was the
GRVC Robotics Lab indoor flight arena endowed with a
motion capture systemwith 24OptiTrack Primex13 cameras
that provided millimeter-accuracy pose estimations.

In this experiment, ASAP fed the eHarris∗ from (Vasco
et al., 2016) using the implementation from (Alzugaray &
Chli, 2018). We use a corner detector for validation since it
is dependent on the events generated in the neighborhood of
each corner. This algorithm is suitable to properly evaluate
the influence of γ -filter since its performance is particularly
sensitive to event removal. The robot flight was designed to
combine aggressive and slow movements. Each flight had 5
stages: (A) take-off; (B) hovering at WP0 defined at 2 m
over the take-off position; (C) navigation to waypoint WP1
combining aggressive and smooth maneuvers; (D) hovering
atWP1; and (E) landing. Figure 11-left shows the event rates
(in logarithmic axis) along the experiment, which suffered
wide variations including: low event rates during stages B
and D; average event rates in stages A and E; and sudden
event rate peaks in stage C. Figure 11-bottom-right shows
event images (grouping the events during 30 ms) extracted
from stages A, B, C, and E. Figure 11-left shows (from top
to bottom) the input event rates, γi , tk−1, sk , and τk along one
experiment.

At stage A the quadrotor took off at ∼ 16 s. The input
event rates changed from very low values (before take-off) to

Fig. 11 Quadrotor experimental results. Left, from top to bottom: Values of ri , γi , tk−1, sk , and τk . Right-top: Quadrotor robot trajectory. Right-
bottom: event images (grouping events during 30 ms) at times (1), (2), (3), and (4)
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moderate values with sudden peaks of up to∼ 250 event/ms.
γ -filter reacted to these peaks by decreasing γi . Simultane-
ously, an increase in ri involved a higher number of events to
be processed, and to avoid an increase in the delay, adaptive
packaging increased sk . As a consequence, tk increased. Both
effects originated package delivery times of approximately
constant values and always lower than 3.6 ms, regardless of
the changes in ri . At stage B the quadrotor stayed at station-
ary flight at WP0 but the scene contained moving objects
that triggered events causing event rate changes. To adapt
to these changes, γ -filter decreased γi and sk increased to
compensate delay increments.

At stage C the quadrotor flew from WP0 to WP1 at a
constant velocity except for three local accelerations (and
decelerations) at times 53 (54), 73 (75), and 97 (104) s.
During accelerations, the input event rate changes were com-
pensated by decreasing γi and increasing sk . Recall from
Sect. 5 that γ -filter keeps track of rmin and rmax, which
influence the computation of γi in Eq. (9). The aggressive
accelerations at time 97 s, caused a strong increase in rmax.
From that moment on, γ -filter adapted to event rate changes
with lower decrements in γi , which can be noticed at time
124 s. The responsability to compensate event rate changes
is shared between γ -filter and adaptive packaging. As it
acquiresmore information on the problem (e.g. updating rmin

and rmax), it better adjusts the share between both mecha-
nisms. During decelerations, the event rate reductions were
compensated by increasing γi and decreasing sk .

At stage D the quadrotor stayed in stationary flight and
there were no moving objects in the scene. There were low
changes in ri , and γi was kept constant. Changes in sk were
only caused by changes in the algorithm processing time. At
stage E the quadrotor landed at ∼ 124 s. The event rate had
abrupt changes, caused by the robot contact with the ground.
γ -filter attenuated this event rate peak by decreasing γi .

Despite the wide variations in the event rate along the
experiment, ASAP successfully adapted γi and sk so that
τk remained approximately constant and lower than 3.6 ms,
meaning that the algorithm did not suffer overflows. The
suggested ASAP parameters performed as expected, also
during stage C where the robot accelerations caused event
rate peaks of 5000 event/ms. Figure 12 compares the per-
formance of ASAP versus static event packaging methods
while flying from WP0 to WP1: left) fixed size packages
with 10, 500, and 1000 events per package, and right) fixed
time window packages at 50, 100, and 500 Hz. ASAP pro-
vided values of tk−1 significantly lower than using fixed size
packages of 500 and 1000 events. Only fixed-size packages
of 10 events were processed faster. However, in this case,
the value of τk increased along the experiment, which means
that the packages were queued in increasing waiting buffers
and the algorithm suffered overflows. Similarly, ASAP pro-
vided lower tk than packaging with fixed time windows at

Fig. 12 Comparison of ASAP versus other event packaging methods:
left) fixed size packages with 10, 500, and 1000 events, and right) fixed
time windows with 50, 100, and 500 Hz: top) tk−1, and bottom) τk

Table 4 Performance degradation w.r.t. the best corner detection effi-
cacy when comparing ASAP with static packaging

Triangle (%) Spotlight (%) Pipe (%)

Fixed-size 10 events 86.16 84.24 85.33

500 events 91.20 96.82 91.47

1000 events 95.66 98.73 96.70

Fixed-time 50 Hz 95.59 95.32 94.30

100 Hz 100.00 100.00 100.00

500 Hz 93.89 93.91 93.26

ASAP 95.10 97.47 95.13

50 and 100 Hz, and package delivery times increased over
time when packaging at 500 Hz, which involved algorithm
overflows.

Each event algorithm, depending on the type and cost of
the involved processing, has a range of package sizes and fre-
quencies that keep the algorithm responsiveness preventing
overflows. Manually selecting the value of the static pack-
age size/frequency can involve long trial-and-error iterative
processes, and the found value might be unsuitable if the
event rate changes. The efficacy of the event algorithm fed
with ASAP was also evaluated and compared. Three areas in
the scenario were selected in the evaluation: the upper cor-
ner of the triangle in Fig. 5-bottom (Triangle), a spotlight
(Spotlight), and the end of a pipe (Pipe). Performance was
estimated by the corner detection rate, defined as the ratio
between the time at least one corner was detected at these
areas and the total time the areas were within the camera’s
field of view. Table 4 presents the average corner detection
rate obtained for the different event packagingmethods w.r.t.
the best rate. In all the cases feeding with ASAP provided
results> 95%.Amore thorough analysis could be performed
to in-detail evaluate the influence of γ -filter in different eval-
uation metrics of Harris detector. However, that is not the
objective of this paper and we preferred to use a general
performance metric for brevity. These results validate that
ASAP or its random event removal γ -filter do not perturb
the efficacy of the event-based corner detector tested. ASAP
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has also been validated with other event-by-event algorithms
with different computational burden, such as (Mueggler et
al., 2017), and other algorithms based on event images and
hybrid processing, such as (Gómez Eguíluz et al., 2020),
(Martínez-de Dios et al., 2020), or (Rodríguez-Gómez et al.,
2021a).

The influence of γ -filter on the algorithm performance
depends on the type of event processing. Event-based algo-
rithms relying on local features—e.g., corners—will be
particularly sensitive to randomevent removal since the result
of each pixel depends on the consistency in the event gen-
eration of its neighborhood. Conversely, algorithms based
on the use of non-local information—e.g., lines or blob
detection– will be more robust to random discard. Random
event removal has been validatedwith different types of algo-
rithms, such as clustering (Tapia et al., 2020), line detection
(Gómez Eguíluz et al., 2021), and optical flow estimation
(Rodríguez-Gómez et al., 2022), where it operated satisfac-
torily involving no significant performance loss. The results
are not shown for brevity.

7.4 Validation on board a flapping-wing robot

ASAP is particularly interesting for onboard perception for
flapping-wing robots. First, ornithopters suffer frommechan-
ical vibrations and wide abrupt movements due to the flap-
ping strokes, which originate large event rates (Rodríguez-
Gómez et al., 2021b). They also have gliding capabilities
and their flights often combine flapping and gliding modes,
involving wide event rate changes. Besides, they have strict
payload and energy limitations, which severely constrain
the onboard processing hardware. Furthermore, dealing with
their high vibration level can require complex event pro-
cessing algorithms. ASAPwas validated onboard the E-Flap
ornithopter robot developed at the GRVCRobotics Lab (Zuf-
ferey et al., 2021). E-Flap has an empty weight of 510 g, a
maximumpayloadof 520g, a total length of 95 cmand amax-
imal wing span of 1.5 m. It was equipped with a DAVIS346
event camera and a Khadas VIM3 for onboard perception
mounting Ubuntu 18.

Figure 13 shows the results obtained when using ASAP
to feed an event-based guidance algorithm. The algorithm
detected lines combining event image based line detec-
tion with event-by-event line tracking. The line estimates,
obtained at rates>100 Hz, were input to a closed-loop visual
servoing scheme that controlled the ornithopter tail deflectors
to guide E-Flap to a pre-selected final position. Vibrations
caused by flapping strokes, aggressive maneuvers, and land-
ing contact caused abrupt event rate changes, which were
attenuated by γ -filter, as can be seen in Fig. 13-top. Due
to adaptive packaging, the responsiveness of the algorithm
(which was executed on board in a low-resource Khadas
VIM3) was not affected by the event rate changes and did

Fig. 13 E-Flap experimental results. From top to bottom: Values of ri ,
sk , and τk

not suffer computational overflows, see Fig. 13-center. As
can be noticed in Fig. 13-bottom, the package delivery times
were similar along the flight and always lower than 3.6 ms.
ASAP fed the events to the event-based guidance method,
which consistently reached the target position with an error
<0.4 m. The above results validate the use of ASAP in this
challenging problem.

8 Conclusions and future work

Feeding event processing algorithms with static event pack-
aging (either with constant size or rate) has limitations when
dealing with the strong changes in the event rate and in the
processing algorithm efficiency that can be found in robotics
applications. This paper presented ASAP, a framework for
event handling that dynamically adapts event delivery—
absorbing changes in the event rates and in the algorithm
event processing times—to enhance processing responsive-
ness and prevent overflow. It is composed of two adaptive
feedback-based mechanisms. The first one prevents event
processing overflows by randomly discarding an adaptive
percentage of the incoming events. The second mechanism
dynamically adapts the size of the event packages. ASAP
has guaranteed convergence and is flexible to the process-
ing algorithm and its computational complexity. It has been
validated in different experiments and scenarios, includ-
ing experiments with one quadrotor and one ornithopter
robot, where ASAP delivers events to different online event
algorithms that were executed on board in low-resource
embedded computers.

ASAP paves the way for the use of online event vision
techniques in a wide range of applications. Although the sug-
gested � function and parameters have shown their efficacy
in all the experiments performed, using other functions and
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parameters is still an open field for research. The extension
of ASAP to a full-featured framework for event-based vision
research, including camera calibration, event stream analy-
sis, and visualization tools is object of current development.
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