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Abstract There has been significant interest in automating testing on the
bases of an extended finite state machine (EFSM) model of the required be-
haviour of the implementation under test (IUT). Many test criteria require
that certain parts of the EFSM are executed. For example, we may want to
execute every transition of the EFSM. In order to find a test suite (set of in-
put sequences) that achieves this we might first derive a set of paths through
the EFSM that satisfy the criterion using, for example, algorithms from graph
theory. We then attempt to produce input sequences that trigger these paths.
Unfortunately, however, the EFSM might have infeasible paths and the prob-
lem of determining whether a path is feasible is generally undecidable. This
paper describes an approach in which a fitness function is used to estimate
how easy it is to find an input sequence to trigger a given path through an
EFSM. Such a fitness function could be used in a search-based approach in
which we search for a path with good fitness that achieves a test objective,
such as executing a particular transition, and then search for an input sequence
that triggers the path. If this second search fails then we search for another
path with good fitness and repeat the process. We give a computationally in-
expensive approach (fitness function) that estimates the feasibility of a path.
In order to evaluate this fitness function we compared the fitness of a path
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with the ease with which an input sequence can be produced using search
to trigger the path and we used random sampling in order to estimate this.
The empirical evidence suggests that a reasonably good correlation (0.72 and
0.62) exists between the fitness of a path, produced using the proposed fitness
function, and an estimate of the ease with which we can randomly generate
an input sequence to trigger the path.

Keywords EFSM, transition feasibility, state-based testing, automated test
generation

1 Introduction

Finite state machines (FSMs) and extended finite state machines (EFSMs)
have been used to model state based systems in different areas like sequential
circuits [10], software development [3] and communication protocols [1,14,19,
26–30]. They have been found to be an effective method for modelling and
there are automated techniques and tools that can be used with them. To
ensure the reliability of systems once implemented they must be tested for
conformance to their specifications.

While FSMs can be used to model the control structure of a system, they
are not suitable for modelling state-based systems that have data. For example,
if we are modelling a simple vending machine and wish to include in this model
the amount of change in the machine then the state of the machine includes
the change currently in the machine. This leads to a vast state space if we use
FSMs even for such a simple system. In contrast, if we use EFSMs then we
can represent the change with a few variables and obtain a relatively small
model. As a result, most state-based modelling languages, such as statecharts
and SDL, use EFSMs rather than FSMs.

This paper is motivated by problems related to testing a state-based system
against an EFSM model M . In testing we use a test suite, which is a set of input
sequences to be applied to the implementation under test (IUT). Each such
input sequence defines a path through M : the path traversed if we simulate
the execution of M with the input sequence. In addition, test criteria, which
give the desired properties of the test suite, are often expressed in terms of
paths through the EFSM. For example, we may want a test suite that leads
to every transition of M being executed (see, for example, [20]).

There are two main approaches to automating test generation from an
EFSM M . The first approach is to expand out the data to form an FSM but
this leads to a combinatorial explosion and often is impractical. An alternative
is to devise a set of paths through the EFSM that, between them, satisfy
the test criterion. We can then attempt to find input sequences that lead to
these paths in M being followed. Unfortunately, however, these paths may
be infeasible and even if they are feasible it may be difficult to find input to
trigger them. While there has been work on transforming an EFSM to one that
has no infeasible paths [6,7], this has only been achieved for EFSMs in which
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all operations and guards are linear. In addition, the problem of determining
whether a path in an EFSM is feasible is generally undecidable.

This paper aims to contribute to the use of search-based techniques, such
as genetic algorithms and simulated annealing, to automating test genera-
tion from an EFSM. Such approaches use fitness functions that allow the test
generation problem to be expressed as one of finding an input sequence with
optimal fitness. There has been significant interest in the use of search-based
techniques to automate white-box testing (see, for example, [16,18,21]), in
which we require test data that executes certain structures in the code. There
has also been recent interest in applying search-based techniques when test-
ing from an EFSM and the problem of finding an input sequence to traverse
a given path has been investigated (see, for example, [15]). Unfortunately, a
chosen path through an EFSM may be infeasible and this paper proposes the
use of a simple fitness function whose aim is to direct testing towards paths
that are likely to be feasible and relatively easy to trigger using search. If we
can define such a fitness function then this can be used in a search for a path
that satisfies a test objective (part of a test criterion) and we then attempt
to find an input sequence to follow the chosen path. If we fail to find such an
input sequence then we can iterate.

Since path feasibility is generally undecidable any fitness function devised
to direct testing towards paths that are likely to be feasible can only be an
approximation. In addition, if we are to use such a fitness function in searching
for an appropriate path then we require a fitness function that is computation-
ally cheap to evaluate: search-based techniques often require fitness functions
to be evaluated many thousands of times. As a result, we require a relatively
simple fitness function and it seems likely that there will be a trade-off between
complexity and precision.

This paper makes two main contributions. First, it proposes a fitness func-
tion that aims to estimate how easy it is to trigger a path and that is computa-
tionally cheap to evaluate. The second major contribution is that we evaluate
the fitness function using experiments on two examples. In the experiments
we generated a set of paths and for each path we evaluated the path’s fitness
and estimated how easy it is to find an input sequence to execute the path
using search: this was estimated by attempting to find an appropriate input
sequence using random search. While the proposed fitness function is (deliber-
ately) quite simple and cheap to compute, the experiments found there to often
be a reasonably good correlation between the fitness of a path and the estimate
of how easy it is to find an input sequence to execute the path. This result
is extremely promising and suggests that automated test generation methods
might use this fitness function, or something similar, to search for appropriate
paths through an EFSM that are likely to be feasible and relatively easy to
trigger using search.

The paper is structured as follows. In Section 2 it outlines the problem
and describes EFSMs. The approach used to search for feasible transition paths
(FTPs) and the proposed fitness function are described in Section 3, including
preprocessing steps that have to be carried out once for every EFSM. The
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experiments are described in Section 4 and here we also analyse the results.
Finally, in Section 5 we draw conclusions and discuss possible future work.

2 EFSM abstraction model

In this section we start in Section 2.1 by describing EFSMs. In Section 2.2 we
then discuss the problem of testing from an EFSM and in Section 2.3 we then
discuss the abstraction and representation we use.

2.1 EFSM model

FSMs are known to model appropriately sequential circuits and control por-
tions of communication protocols. However FSMs are not powerful enough for
some applications where EFSMs are used instead. EFSMs have been widely
used in telecommunications, and are also now being applied in areas rang-
ing over aircraft, train control, medical and packaging systems. Examples of
languages based on EFSMs include SDL, Estelle and Statecharts [9].

By EFSMs we mean Mealy (finite state) machines with parameterised input
and output, internal variables, operations and predicates defined over internal
variables and input parameters. In the following we use NIL to refer to either
an absence of input (no input is required to trigger a transition/operation) or
to there being no guard/precondition, depending on the context in which it is
used.

An EFSM M can be defined as (S, s0, V, σ0, P, I, O, T ) where

– S is the finite set of logical states
– s0 ∈ S is the initial state
– V is the finite set of internal variables
– σ0 denotes the mapping from the variables in V to their initial values
– P is the set of input and output parameters
– I is the set of input declarations
– O is the set of output declarations
– T is the finite set of transitions.

A transition t ∈ T is defined by (ss, gI , gD, op, sf ) where

– ss is the start state of t;
– gI is the input guard expressed as (i, P i, gP i) where

– i ∈ I ∪ {NIL};
– P i ⊆ P ; and
– gP i is the input parameter guard that can either be NIL or a logical

expression in terms of variables in V ′ and P ′ where V ′ ⊆ V , ∅ 6= P ′ ⊆
P i;

– gD is the domain guard and can be either NIL or represented as a logical
expression in terms of variables in V ′ where V ′ ⊆ V ;
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– op is the sequential operation which is made up of simple output and
assignment statements; and

– sf is the final state of t.

The label of a transition in an EFSM has two guards that decide the
feasibility of the transition: the input guard gI and the domain guard gD. In
order for a transition to be triggered its guard gI must be satisfied. Some inputs
may carry values or specific input parameters and M may guard those values
with the input parameter guard gP . Hence the values of the input parameters
may determine whether a transition is triggered and affect the output of M .
The input guard (NIL, ∅, NIL) represents no input being required, which
makes the transition spontaneous. gD is the guard, or precondition, on the
values of the system variables (for example, v > 4, where v ∈ V ). Note that in
order to satisfy the domain guard gD of a transition t, it might be necessary
to have taken some specific path to the start state of t. op is a set of sequential
statements such as v := v + 1 and !o where v ∈ V , o ∈ O and !o means
‘output o to the environment’. Literal outputs (output directly observable by
the user) are denoted with ! and output functions (an output function may
produce different output depending on the parameters it receives) without
it (for example, !o and u(v)). If a transition t has an output function, then
the output value produced by t is determined by the parameters passed to
the output function (the parameters can include internal variables and input
parameters for that transition). The operation of a transition in an EFSM has
only simple statements such as output statements and assignment statements,
no branching statements are allowed.

We assume that none of the spontaneous transitions in an EFSM are with-
out any guards, gI = (NIL, ∅, NIL) and gD = NIL, because they will be
uncontrollable. When a transition in an EFSM is triggered, all the actions of
the operation specified in its label are performed consecutively and only once.

Definition 1 An EFSM M is deterministic if any pair of transitions t and t′

initiating from the same state s that share the same input declaration x have
mutually exclusive guards.

When an EFSM receives an input, the choice of transition triggered de-
pends not only on the input parameters but also on the values of the internal
variables. In FSM there are no internal variables and guards on the transitions.
This makes triggering a transition in EFSMs more complex than in FSMs. As
an example consider the Initiator process of the Inres protocol [13] represented
as an EFSM in Figure 1. There are two transitions initiating from state Sw

with the input declaration Texpired - t2 and t3. However they have mutually
exclusive conditions - counter < 4 and counter ≥ 4 respectively.

Definition 2 An EFSM is strongly connected if for every ordered pair of
states (s, s′) there is some feasible path from s to s′.

We assume that any EFSM considered is deterministic and strongly con-
nected. Consider the EFSM in Figure 1 again. There is an FTP between every
pair of states and so this EFSM is strongly connected.
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Fig. 1 Inres protocol as an EFSM M1

2.2 Testing from EFSMs

Usually the implementation of a system specified by an FSM or EFSM is
tested for conformance by applying a sequence of inputs and verifying that
the corresponding sequence of outputs is that which is expected. This com-
monly involves executing a number of transition paths, until all transitions
have been tested at least once. In EFSMs, in order to follow a transition path
it is necessary to satisfy all of the guards involved, in addition to using a
specific input sequence to trigger these transitions.

Definition 3 Given an EFSM M a transition path (TP) represents a sequence
of transitions in M where every transition starts from the state where the
previous transition finished.

Typically the machines that arise are complex and brute force testing is
infeasible [22].

When systems are tested against an FSM, often a fault can be categorised
as either an output fault (wrong output is produced by a transition) or a
state transfer fault (the state after a transition is wrong). A test strategy for
a transition with starting state si and input x would involve moving M to
si, applying x, verifying the output, and checking the transition’s end state.
There are two main approaches to checking the state after a transition. State
identification sequences determine the current state of the system [22]. In con-
trast, state verification sequences check that the current state is that expected
[22]. Thus, the result of applying a state verification sequence tells us whether
the system was in the correct state but if the state was wrong then it might
not be enough to identify the actual (incorrect) state.
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In EFSMs, test sequence generation is more complex than it is for FSMs.
In FSMs all paths are feasible since there are no guards [6]. With EFSMs,
however, in order to trigger a transition path it is necessary to satisfy the
transition guards. A transition guard may refer to the values of the internal
variables and the input parameters, which in turn can assume different values
after each transition. Some transition paths might have no conditions, some
might have conditions that are rarely satisfied and some transition paths will
be infeasible. The existence of infeasible transition paths creates difficulties for
automating test generation.

There are two main approaches for using FSM test techniques when testing
from an EFSM. First, we can expand out the data in the EFSM to form
an FSM but this can lead to a combinatorial explosion. Alternatively, when
testing from an EFSM M we can abstract out the data to form an FSM A(M).
An FSM based automated test generation technique, when applied to A(M),
returns a set of paths through A(M) and each such path corresponds to a path
in M . However, there is no guarantee that these paths are feasible in M since
the transitions may have guards. Recent work has shown how this problem
can be overcome by transforming an EFSM M into an EFSM M ′ in which all
paths are feasible [7]. Once this transformation has taken place, FSM based
methods are used to produce paths through A(M ′) in the knowledge that each
such path corresponds to a feasible path in M ′. However, this work requires
that all operations and guards are linear and has exponential complexity. As a
result, test generation for EFSMs is still an open research problem [7,14] and
this motivates the approach described in this paper.

The general problem of finding a (an arbitrary) feasible transition sequence
for an EFSM is uncomputable, as is generating the necessary input sequence
to trigger such a transition sequence. While a random algorithm could be used
it does not always produce acceptable results. Test case generation and opti-
misation for FSM based systems has been of interest [6,11,12,24]. Heuristic
search techniques like genetic algorithms (GAs) have been used in problems
like generating test sequences for FSMs [5,8] and generating test input se-
quences for communicating FSMs [4]. Heuristic search techniques can also be
applied to the FTP generation problem if a robust fitness function can be
defined. Hence a function that can estimate the likelihood that a TP can be
triggered may help in areas like test sequence generation since it can be used
to bias the search towards TPs that are likely to be feasible and relatively easy
to trigger.

2.3 EFSM abstraction model

Now consider the problem of finding an input sequence that triggers a feasible
transition path (FTP) from state si to state sj of an EFSM M .

Definition 4 A forward feasible transition path (F-FTP) for state si of an
EFSM M is a sequence of transitions initiating from si that is feasible for at
least one combination of values of the finite set of internal variables V of M .



8

State identification and state verification sequences for an EFSM must
trigger an F-FTP. Methods that can help identify F-FTPs can potentially be
used to help in state identification and state verification sequence generation.

Definition 5 A backward feasible transition path (B-FTP) for state sj of an
EFSM M is a sequence of transitions ending at sj that is feasible for at least
one combination of values of the finite set of internal variables V of M .

A BF-FTP is a feasible transition path with specified both start state si

and end state sj . This paper uses FTP to refer to all three types.
In a transition path of an FSMs each transition can be represented by

its start state and input (ss, i). However with EFSMs this information is not
sufficient because there can be more than one transitions sharing the same
start state and input due to them having mutually exclusive guards. Instead
a transition t in an EFSM M can be identified by its start state, input dec-
laration, input parameter, the input parameter guard and the domain guard
(ss, i, P

i, gP i , gD). gP i and gD for a transition t in M can both be logical ex-
pressions and their results may depend on input parameter P i of t and the
values of some of the internal variables of M . Transitions sharing the same
start state and input declaration can be classified according to their input
guard predicate and domain guard predicate. To identify these for every set of
transitions sharing the same start state s and input declaration i, the number
of unique input guards (input predicate branches) and unique domain guards
(domain predicate branches) is counted and a predicate dependency tree for
state s and input declaration i can be constructed.

Consider the Sending state (Ss) in the EFSM M1 on Figure 1. There are
four transitions initiating from this state that share the same input declaration
AK and input parameter num. A partial transition table for this state (Figure
2) represents all the outgoing transitions from state Ss of M1 with the same
input that differ only in their input parameter guards and domain guards.

i P i g
P i gD PB t

AK num num = number number = 0 PB1 t5
AK num num = number number = 1 PB2 t6
AK num num 6= number counter ≥ 4 PB3 t8
AK num num 6= number counter < 4 PB4 t7

Fig. 2 Partial transition table for transitions starting from Ss in EFSM M1 (Figure 1)

A transition in a transition path of an EFSM can be identified by a tuple
(ss, i, gP i , gD) in which ss is its start state, i is its input, gP i is its input
guard and gD is its domain guard. The input parameter P i is not required in
order to be able to uniquely identify a transition in M . Note how in this case
some transitions with different domain guards share a common input predicate
guard.

Not all transitions in EFSMs have input parameter guards and domain
guards and so transitions in an EFSM M can be categorised in the following
way:
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Fig. 3 Predicate dependency graph for the transitions of Figure 2

– simple transitions are those transitions that have no input parameter
guard and no domain guard, gP i = NIL and gD = NIL.

– gP i transitions are those transitions that have an input parameter guard
but not a domain guard, gP i 6= NIL and gD = NIL.

– gD transitions are those transitions that have a domain guard but not
an input parameter guard, gD 6= NIL and gP i = NIL.

– gP i-gD transitions are those transitions that have both an input param-
eter guard and a domain guard, gP i 6= NIL and gD 6= NIL.

The sequential operations op for a given transition t can consist of simple
assignments and output statements. However in EFSMs besides output decla-
rations there are also output functions that take a number of parameters and
generate an output based on these parameters. An assignment statement in
the op part of a transition would not generate any observable output. However
such assignment statements can still contribute to the value of the output gen-
erated in a later transition if the assignment changes the value of one of the
output function’s parameters. It can also affect the feasibility of the remaining
transitions in the transition path and should also be considered.

Definition 6 An input sequence (IS) is a sequence of input declarations i ∈ I

with associated input parameters P i ⊆ P of an EFSM M .

Instead of using gP i and gD together in order to identify a transition we
can simply use a label.

Definition 7 A predicate branch (PB) is a label that represents a pair of gP i

and gD for a given state s and input declaration i. A PB identifies a transition
within a set of transitions with the same start state and input declaration.

Since a PB identifies a transition t within the set of transitions with the
same start state and input declaration as t, the combination of a PB, input
declaration and a starting state identifies a transition. In addition, the ending
state s′ of the transition t is unique and so if we follow this with another PB
and input declaration then we identify the next transition t′ since we know
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that the starting state of t′ is s′. As a result, we can use a sequence of pairs of
PBs and input declarations to identify a TP through the EFSM , that starts
at the initial state, although the path may be infeasible. For example consider
the transitions listed in Figure 2. Each transition can be identified by the start
state Ss, input declaration AK and predicate branch label PB.

Definition 8 An abstract input sequence (AIS) for M represents an input
declaration sequence with associated PBs that defines a TP in M .

Consider the sequence of transitions t0, t1, t4, t7 and t5 initiating from state
Sd in Figure 1. The AIS for this TP is (ICONreq, PBsd,1); (CC,PBsu,1);
(IDATreq, PBsc,1); (AK, PBss,4); (AK, PBss,1). Generating an IS for a TP
from an AIS involves two stages. The input declarations are mapped across
from the AIS to the IS and then we need to find input parameters that trigger
the PBs. This can lead to conditions on the values of some of the internal
variables of the EFSM. For the TP presented earlier, the internal variable
counter must be smaller than 4 so that transition t5 is triggered.

3 Feasibility estimation algorithm

In order to achieve our objective we require an easy to compute fitness function
that estimates the feasibility of a TP. It is always possible to trigger a simple

transition in a transition path since there are no guards to be satisfied. The
presence of gP i transitions could render a transition path infeasible because
of its input predicate guard. The values of the input parameters P i ⊆ P are
chosen by the tester. However, when these conditions also depend on some in-
ternal variables V ′ ⊆ V (see, for example, the gP i of t6 in M1; num = number)
then such gP i transitions might be no easier to trigger than gD transitions. In
some cases the execution of a gD transitions could require reaching its start
state through a specific transition path. The feasibility of gP i-gD transitions
depends on both issues outlined above for gP i transitions and gD transitions.

Since the presence of gD transitions and gP i-gD transitions seem to in-
crease the chance of a transition path being infeasible such transitions can be
penalised and simple transitions rewarded.

One important issue to consider is how to weight the fitness of transitions
of different types. A table with the associated penalties for every transition
in a transition path is presented in Figure 4. The penalty values shown are
by no means definitive, but they aim to aid the estimation according to the
arguments presented above. It has also been assumed that 6= is the easiest type
of comparison operator to be satisfied while = is the most difficult. Naturally,
for some EFSMs exactly the opposite might be true in certain cases. A more
detailed analysis of the EFSM might lead to better guidance but also might
lead to a computationally more expensive fitness function.

When there is more than one condition in a guard the penalty value associ-
ated with the guard depends on the logical operator between these conditions.
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Operator simple g
P i gD g

P i -gD

6= 0 1 2 4
≥ or ≤ 0 3 4 8
> or < 0 4 5 10

= 0 6 7 14

Fig. 4 Penalties for each condition in a transition

With the AND operator the sum of the penalties is used. For the OR operator
only the lowest penalty is used.

A transition ranking process is completed first before the fitness function
can be used. This process ranks each transition of the EFSM according to how
many penalty points are assigned to the transition guards. A simple transition
gets the highest rank (lowest penalty), an gP i transition with one condition
(6=) is ranked next etc. Transitions that have the same number of penalty
points get the same rank. The ranks are represented by integers starting at 0
(for simple transitions). This algorithm in essence sorts |T | elements and has
complexity O(|T |.log|T |) where |T | is the number of transitions in M . This is
a preprocessing step used to define the fitness function and does not have to
be repeated when the fitness function is used.

Definition 9 The fitness is a function that given a TP of an EFSM M , sums
the rank values (assigned through the transition ranking process for M) for
each of the transitions of the TP.

The proposed fitness algorithm can be used to reward a potential solution
to a TP generation problem according to the ranks of the transitions in the
sequence. The fitness function reflects the belief that the fewer constraints a
sequence contains, the more likely it is to be feasible. When there are only
simple transitions, then the TP must be an FTP.

Estimating the feasibility of a TP is just the first part of the problem
of generating actual input sequences to cover parts of an EFSM. Such input
sequences do not always represent the shortest path between two states. Also
there may be other computationally inexpensive analysis of a TP that can be
added to the existing fitness functions to make it more accurate. In this work
we focus on evaluating our feasibility estimation fitness function.

4 The Experiments

In this section we outline a set of experiments that evaluated the effectiveness
of the proposed feasibility estimation function and present the results.

Two EFSMs were used in the experiments: The Inres protocol M1 and a
Class 2 transport protocol M2 given in Figure 5. A breadth first search (BFS)
algorithm was used to generate a set of TPs for each EFSM. The fitness
function was then applied to each TP and we separately estimated the ease of
executing that TP by applying the following sampling technique: Randomly
generate 1000 sequences of input parameters for the TP and count how many
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Fig. 5 Class 2 transport protocol EFSM M2

of these trigger the TP. The value returned by sampling was called the quality
(feasibility) measure of the path. This sampling process is described below
in detail. The fitness function aims to estimate the feasibility of a TP in a
computationally inexpensive manner and so we compared the fitness value of
a TP with its quality measure.

The sampling process simply attempted to trigger a TP in question from
the initial configuration of the EFSM. The TP defines an input sequence and
thus it was sufficient to randomly generate values for the corresponding in-
put parameters and these were generated within appropriate (preset) bounds.
There were two conditions under which a TP was considered to have been
successfully triggered:

1. Under relaxed verification we required that the start state and the end
state of the triggered TP match that of the expected start and end state;

2. Under strong verification we required that all of the transitions of the TP
are correctly followed in the order given in the TP.

Fig. 6 Example transitions within a TP

To see the difference between relaxed verification with strong verification
consider the example in Figure 6. The two transitions t1 and t2 both share
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the same input declaration, start and end states. Imagine we have selected t1
for our TP because it has a gD v′ > 0, v′ ∈ V whilst t2 has a gD v′ = 0.
As discussed previously a predicate with > is considered to be more easily
satisfiable than one with =. However for this particular EFSM v′ > 0 might
be more difficult to satisfy if, for example, the value of v is set to a positive
value at only one transition in the EFSM. If we only care about the end states
of the TP, this fact may not affect the result. This is because we might have
chosen a particular TP that follws t1 from si to sj but the fact that t2 is
actually followed instead does not affect the end state of the TP. Since this
paper is concerned with particular paths through an EFSM strong verification
is most suitable, but in the experiments we also tested with relaxed verification.

We use M ’s initial state for all TPs since M is in the initial configuration
(start state and values of the internal variables) after a simple reset. The
problem of placing M in a given configuration before input sequence execution,
other than its initial configuration, is not a focus of this work.

In the experiments presented in this paper the fitness function attempts
to estimate how easily a TP can be triggered (hence how easily the input for
this TP can be generated using search). The evaluation of the quality factor
of an FTP involved 1000 attempts to trigger that TP with random input
parameters. A negative statistical correlation is expected between the fitness
values and the TP quality factor values. Correlation factor below 0.4 generally
indicates lack of correlation while correlation factor of 0.6 and above indicates
fair correlation between two sets of values considered [23]. A correlation factor
between 0.4 and 0.6 is considered as some correlation. These limits vary for
applications in different fields.

If a TP was triggered in the experiments then we know that it is feasible.
However, we might fail to trigger a feasible path. We therefore checked each
such path and manually confirmed that all TP that were not triggered in the
evaluation of the quality factor actually were infeasible.

4.1 Class 2 Transport Protocol results

The Class 2 transport protocol M2 is presented in Figure 5 and the correspond-
ing transition table is shown in Figure 7 and Figure 8. M2 has more states,
transitions and is more complex than M1. M2 is a major module (based on
the AP-module [2]) of a simplified version of a class 2 transport protocol [25].
M2 represents only the core transitions of that EFSM, as used in [25].

1083 TPs were generated and plotted in Figure 9 that represent all possible
TPs, starting at the initial state, with length of up to 5 transitions. 479 of
these TPs have positive FTP quality factor (i.e. were successfully triggered at
least once in 1000 attempts). All the 604 TPs with 0 quality factor are drawn
in Figure 9 using lightly shaded squares. It transpired that the TPs with 0
quality factor were infeasible. Note that all TPs with 0 quality factor have a
comparatively high fitness value.



14

t sstart send i Output Ranking
t0 s1 s2 U?TCONreq N!TrCR 0
t1 s1 s3 N?TrCR U!TCONind 0
t2 s2 s4 N?TrCC U!TCONconf 3
t3 s2 s5 N?TrCC U!TDISind N!TrDR 4
t4 s2 s1 N?TrDR U!TDISind N!terminated 0
t5 s3 s4 U?TCONresp N!TrCC 1
t6 s3 s6 U?TDISreq N!TrDR 0
t7 s4 s4 U?TDATAreq N!TrDT 2
t8 s4 s4 N?TrDT U!DATAind N!TrAK 3
t9 s4 s4 N?TrDT U!error N!error 3
t10 s4 s4 U?U READY N!TrAK 0
t11 s4 s4 N?TrAK 6
t12 s4 s4 N?TrAK U!error N!error 4
t13 s4 s4 N?TrAK 7
t14 s4 s4 N?TrAK U!error N!error 5
t15 s4 s4 N?Ready U!Ready 2
t16 s4 s5 U?TDISreq N!TrDR 0
t17 s4 s6 N?TrDR U!TDISind N!TrDC 0
t18 s6 s0 N?terminated U!TDISconf 0
t19 s5 s0 N?TrDC N!terminated U!TDISconf 0
t20 s5 s0 N?TrDR N!terminated 0

Fig. 7 Transition table for M2 excluding transition guards

t gPi
and gD Ranking

t0 0
t1 0
t2 opt ind ≤ opt 3
t3 opt ind > opt 4
t4 0
t5 accpt ind ≤ opt 1
t6 0
t7 S credit > 0 2
t8 R credit 6= 0 ∧ Send sq = TRsq 3
t9 R credit = 0 ∧ Send sq 6= TRsq 3
t10 0
t11 TSsq ≥ XpSsq∧ 6

cr + XpSsq − TSsq ≥ 0 ∧ cr + XpSsq − TSsq ≤ 15
t12 TSsq ≥ XpSsq∧ 4

(cr + XpSsq − TSsq < 0 ∨ cr + XpSsq − TSsq > 15)
t13 TSsq < XpSsq∧ 7

cr + XpSsq − TSsq − 128 ≥ 0 ∧ cr + XpSsq − TSsq − 128 ≤ 15
t14 TSsq < XpSsq∧ 5

(cr + XpSsq − TSsq − 128 < 0 ∨ cr + XpSsq − TSsq − 128 > 15)
t15 S credit > 0 2
t16 0
t17 0
t18 0
t19 0
t20 0

Fig. 8 Transition guards for M2
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Fig. 9 All TPs generated using BFS algorithm for M2 with 1-5 transitions (correlation
factor 0.72, when excluding the 0 quality factor TPs the correlation factor is 0.76). Light
shaded squares represent zero-quality TPs. The dark diamonds represent FTPs.

This high proportion of TPs with 0 quality factor indicates that some
initial TP conflict resolution could be used to improve the results. Conflict
resolution for EFSM test sequences has been addressed in [7] for EFSMs with
linear operators and guards and the use of such methods remains a topic for
future work.

Some interesting FTPs from Figure 9 and their respective fitness values
and quality factors are listed in Figure 10.

TP fitness quality factor (feasibility)
1 1;6;18;0;4; 0 1000/1000
2 1;5;16;20;1; 1 603/1000
3 0;2;7; 3 481/1000
4 0;2;11;11;11; 19 2/1000
5 1;5;14;11;11; 18 5/1000
6 1;5;15;14;11; 14 50/1000
7 0;2;10;11;10; 7 73/1000
8 0;4;0;2;11; 7 83/1000
9 1;5;10;15;11; 9 65/1000
10 0;2;10;14;16; 6 473/1000
11 0;2;10;11;16; 7 69/1000
12 0;2;14;14;14; 16 337/1000
13 0;2;7;14;14; 13 240/1000
14 1;5;14;14;10; 11 436/1000

Fig. 10 Example TPs for the Class 2 transport protocol in transition notation.

The fitness function (best fitness value is 0, and positive fitness values
indicate less desirable solutions) correctly identified all TPs that were made of
only simple transitions. Such TP had a fitness value of 0 and a quality factor of
1000/1000 (for example, TP 1 in Figure 10). TPs that contain mostly simple
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transitions but also a few conditional transitions have fitness value slightly
above 0 and corresponding quality factor of about 500/1000 (for example, TP 2
and 3 in Figure 10). A disproportionate drop in the TP quality factor as soon as
conditional transitions are considered is observed in Figure 9. The introduction
of a single conditional transition to a TP can generally be expected in theory
(all other things being equal) to halve the quality factor. Every additional
condition in theory should further reduce the remaining quality factor. This
could explain the two clusters of points between the 0-200/1000 and 400-
600/1000 quality factor values.

Most TPs with quality factor below 200/1000 have high fitness values. In
these cases the fitness algorithms has correctly estimated that the TPs are not
easy to trigger. TPs 4, 5 and 6 in Figure 10 are such examples.

There are some paths that the fitness algorithm estimated as not too hard
to trigger (i.e. with relatively low fitness value) that have surprisingly low
quality factor values (for example, TPs 7, 8 and 9 in Figure 10). It was found
that transition t11 of M2 is in all those TPs. To illustrate the effect of this
transition in a TP consider TPs 10 and 11 in Figure 10. The only difference
between them is that the fourth transition of TP 11 is t11. Their fitness values
differ only by one point, indicating that t11 is estimated to be more difficult to
trigger than t14 (used in TP 10 instead of t11). However the sharp contrast in
the quality factor values indicates that t11 is harder to trigger than the fitness
function has estimated (relative to the other transitions) for this transition
sequence. A more detailed analysis of the predicates before they are ranked
could help prevent this. Although this remains a topic of future work a few
potential improvement of the fitness function are briefly noted later.

Fig. 11 All FTPs generated using BFS algorithm for M2 with 1-5 transitions ending at s1

(correlation factor 0.83, when excluding the 0 quality factor TPs the correlation factor is
0.77). Light shaded squares represent unfeasible TPs. The dark diamonds represent FTPs.

There were some TPs with high fitness values (estimated to be hard to
trigger) that have relatively high feasibility ratio. Such examples included TPs
12, 13 and 14 in Figure 10. All TPs with such characteristics seem to contain
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Fig. 12 All FTPs generated using BFS algorithm for M2 with 1-5 transitions ending at
s2 (correlation factor 0.95). The dark diamonds represent FTPs. No zero-quality TPs were
found.

Fig. 13 All FTPs generated using BFS algorithm for M2 with 1-5 transitions ending at s3

(correlation factor 0.69, when excluding the 0 quality factor TPs the correlation factor is
0.76). Light shaded squares represent zero-quality TPs. The dark diamonds represent FTPs.

t14. Here the fitness function has not discovered that even though t14 has
a number of complex conditions, they are easy to satisfy for this transition
sequence. There is potential for a more complex analysis of the transitions to
consider other factors that relate to the context in which the transition lies.
The results of such an analysis might be used in the transition ranking phase
and thus fitness definition or we might use a more complex fitness function that
considers the previous transitions before determining the fitness contribution
of a transition t. Such alternative methods might attempt to more accurately
estimate the feasibility of TPs that include transitions like t11 and t14 but are
a topic for future work.

The fitness function seems to correctly estimate the feasibility of most of
the 1083 TPs. There is a negative correlation factor of 0.72 between the fitness
function and the quality factor illustrated on Figure 9. If we only consider the
479 FTPs the correlation factor is 0.76. The FTP results (including unsuc-
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cessful TPs) are classified in six sets according to the end state of the FTPs.
The results for s1, s2, s3, s4, s5 and s6 are presented in Figures 11, 12, 13,
14, 15 and 16 accordingly. The cumulative results have negative correlation
factors of 0.83, 0.95, 0.95, 0.69, 0.71 and 0.76 for TPs of s1, s2, s3, s4, s5 and
s6 accordingly and negative correlation factors of 0.77, 0.87, 0.87, 0.75, 0.70
and 0.78 for the 479 FTPs accordingly.

Fig. 14 All FTPs generated using BFS algorithm for M2 with 1-5 transitions ending at s4

(correlation factor 0.69, when excluding the 0 quality factor TPs the correlation factor is
0.75). Light shaded squares represent zero-quality TPs. The dark diamonds represent FTPs.

Fig. 15 All FTPs generated using BFS algorithm for M2 with 1-5 transitions ending at s5

(correlation factor 0.71, when excluding the 0 quality factor TPs the correlation factor is
0.70). Light shaded squares represent zero-quality TPs. The dark diamonds represent FTPs.

This relatively strong correlation shows that even though the fitness func-
tion underestimated TPs with t11 and overestimated TPs with t14, it can
reasonably estimate the feasibility of a TP without executing it.
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Fig. 16 All FTPs generated using BFS algorithm for M2 with 1-5 transitions ending at s6

(correlation factor 0.76, when excluding the 0 quality factor TPs the correlation factor is
0.78). Light shaded squares represent zero-quality TPs. The dark diamonds represent FTPs.

The results presented use strong FTP verification (the exact TP has to be
followed). When the same experiment was done using relaxed FTP verification
where only the start and end states of the TP are of importance the results
generated a negative correlation factor of only 0.13 and when only considering
FTPs - 0.22. This shows that the fitness is better at assessing feasibility of
a given path than whether the corresponding IS can take us to a particular
state. However, this is unsurprising since the fitness function only estimates
the given path. Although the relaxed FTP verification might be useful in cases
like the one shown on Figure 6, strong FTP verification seems to perform much
better (at least for this EFSM).

4.2 Inres Protocol results

The EFSM M1 in Figure 1 represents the Inres protocol that is simpler than
the Class 2 transport protocol M2 previously examined. The transition table
for M1 is presented in Figure 17.

The BFS algorithms was used to generate 257 TPs for M1 where only 7
TPs had a 0 quality factor. Figure 18 illustrates those TPs that represent all
possible TPs with length of up to 6 transitions. Again TPs with quality factor
of 0 are drawn with lighter shaded squares. However, there are considerably
fewer TPs with 0 quality factor for M1. This could indicate that the FTPs are
easier to generate.

Some interesting FTPs from Figure 18 and their respective fitness values
and quality factors are listed in Figure 19.

Naturally, the fitness function correctly identified all TPs that were made
of only simple transitions just as it did for M2. Such TPs had a fitness value of
0 and a quality factor 1000/1000 (for example, TP 1,2 and 9 in Figure 19). TPs
containing mostly simple transitions tend to have a high quality factor and low
fitness value (for example, TP 8 in Figure 19 has quality factor 860/1000 and
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t sstart send i Output gPi
and gD Ranking

t0 sd sw ICONreq !CR 0
t1 sw sc CC !ICONconf 0
t2 sw sw T expired !CR counter < 4 2
t3 sw sd T expired !IDISind counter ≥ 4 1
t4 sc ss IDATreq DT 0
t5 ss sc AK num = number ∧ number = 0 6
t6 ss sc AK num = number ∧ number = 1 6
t7 ss ss AK DT num 6= number ∧ couter < 4 5
t8 ss sd AK !IDSind num 6= number ∧ couter ≥ 4 4
t9 ss ss T expired DT counter < 4 3
t10 ss sd T expired !IDSind counter ≥ 4 2
t11 sd sd DR !IDSind 0
t12 sw sd DR !IDSind 0
t13 sc sd DR !IDSind 0
t14 ss sd DR !IDSind 0

Fig. 17 Transition table for the Inres protocol on Figure 1.

Fig. 18 All FTPs generated using BFS algorithm for M1 with 1-6 transitions (correlation
factor 0.62, when excluding the 0 quality factor TPs the correlation factor is 0.60). Light
shaded squares represent zero-quality TPs. The dark diamonds represent FTPs.

fitness value of 5). Different to the results for M2 the introduction of guarded
transitions in the TPs generated for M1 does not result in a halving of the
quality factor. Even though a condition was introduced in the TP, the TP
quality factor seems to remain high. This could indicate that the introduced
condition is easy to satisfy. Here the fitness function seems to be penalising
t7, the only conditional transition in TP 8, slightly more than necessary. To
illustrate the effect of this transition in a TP consider TPs 8 and 9 in Figure
19. The only difference between them is that the sixth transition of TP 8 is t7.
Their fitness values differ by 5 points but they both have high quality factors.
This indicates that t7 is estimated to be much more difficult to trigger than
t14 (used in TP 9 instead of t7). However the sharp contrast in the fitness
values indicates that t7 is slightly easier to trigger than the fitness function
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TP fitness quality factor (feasibility)
1 0;1;4;14; 0 1000/1000
2 20;20;0;4;12; 0 1000/1000
3 0;1;4;7;7;6; 16 101/1000
4 0;2;1;4;7;6; 13 134/1000
5 0;1;4;9;7;6; 12 144/1000
6 11;11;0;1;4;6; 6 127/1000
7 0;1;4;6;4;14; 6 142/1000
8 11;11;0;4;7; 5 860/1000
9 11;11;0;4;14; 0 1000/1000
10 0;1;4;6;4; 6 149/1000
11 0;1;4;6;4;5; 12 16/1000
12 0;1;4;9;9;9; 9 1000/1000
13 0;2;2;2;2;3; 9 1000/1000
14 0;2;1;4;9;7; 10 860/1000
15 0;1;4;7;7; 10 745/1000

Fig. 19 Example TPs for the Inres protocol in transition notation.

has estimated for this transition sequence. A more detailed analysis of the
predicates before they are ranked could help prevent this, as discussed before.
As mentioned in Section 4.1, in the context of t11 and t14 in M2, analysing
transitions like t7 in more detail can help achieve better fitness results.

A large number of TPs with quality factor below 200/1000 have high fitness
values. In those cases the fitness algorithms has correctly estimated these TPs
as not being easy to trigger. TPs 3, 4 and 11 in Figure 19 are such examples.

Fig. 20 All FTPs generated using BFS algorithm for M1 with 1-6 transitions ending at sd

(correlation factor 0.62, when excluding the 0 quality factor TPs the correlation factor is
0.61). Light shaded squares represent zero-quality TPs. The dark diamonds represent FTPs.

There as some paths that the fitness algorithm estimated as not too hard to
trigger (i.e. with relatively low fitness value) that have surprisingly low quality
factor values (for example, TPs 6 and 7 in Figure 19) and transition t6 appears
to be in all those TPs. To illustrate the effect of this and a similar transition t5
in a TP consider TPs 10 and 11 in Figure 19. The only difference between them
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Fig. 21 All FTPs generated using BFS algorithm for M1 with 1-6 transitions ending at sw

(correlation factor 0.54, when excluding the 0 quality factor TPs the correlation factor is
0.5). The dark diamonds represent FTPs. No zero-quality TPs were found.

Fig. 22 All FTPs generated using BFS algorithm for M1 with 1-6 transitions ending at sc

(correlation factor 0.85, when excluding the 0 quality factor TPs the correlation factor is
0.87). Light shaded squares represent zero-quality TPs. The dark diamonds represent FTPs.

is that the sixth transition of TP 11 is t5. t6 is the only conditional transition
in TP 10 but the fitness value is only 6. This suggests that executing t6 is
more difficult than the fitness function estimated. Similarly t5 seems to have
similar properties as TP 11 has a quality factor of only 16/1000. A more
detailed analysis of the predicates before they are ranked could be useful in
this example as well.

There were some TPs with high fitness values (estimated to be hard to
trigger) that have surprisingly high quality factors. Such examples included
TPs 12, 13, 14 and 15 in Figure 19. All TPs with such characteristics seem
to contain t2, t7 or t9. We have already seen that t7 seems to be penalised
too harshly. Consider t2 and t3 in Figure 17. t3 is estimated to be easier
to trigger than t2 due to the difference in the comparison operators of their
gD. However, when the EFSM is closely examined t2 appears to always be
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feasible for four consecutive executions and only then does t3 become feasible
for a single execution. t2 represents a counter loop and t3 is the loop exit.
After four consecutive executions of t2, it becomes infeasible and the loop
exit t3 is triggered. Similarly t9 represents a counter loop and t10 is the loop
exit. The dynamic behaviour of these transitions is difficult to estimate using
a simple ranking process. So, identification of such loops could be beneficial.
Detailed analysis of the predicates involved in this example could have strongly
benefited the fitness function.

The fitness function seems to correctly estimate how easy it is to trigger
each of the 257 TPs. There is a negative correlation factor of 0.62 between the
fitness function and the quality factor illustrated in Figure 18. If we only con-
sider the 479 FTPs the correlation factor is 0.6. The FTP results are classified
in four sets according to the end state of the FTPs. The results for sd, sw, sc

and ss are presented in Figures 20, 21, 22 and 23 accordingly. The cumulative
results have negative correlation factors of 0.62, 0.54, 0.85 and 0.49 for FTPs
of sd, sw, sc and ss accordingly. The correlation factor seems to be lowest for
the two states sw and ss, target states for t2 and t9 accordingly and negative
correlation factors of 0.61, 0.5, 0.87 and 0.54 for the 479 FTPs accordingly.

Fig. 23 All FTPs generated using BFS algorithm for M1 with 1-6 transitions ending at ss

(correlation factor 0.49, when excluding the 0 quality factor TPs the correlation factor is
0.54). Light shaded squares represent zero-quality TPs. The dark diamonds represent FTPs.

The correlation between the fitness function and the TP quality factor is
not as strong as that for M2, however, it still seems to correctly estimate the
feasibility for much more than half the FTPs. The small size of the EFSM
and the complex dynamic behaviour of some of the transitions (loops of fixed
number of iterations) seem to contribute towards this result.

The results presented use strong FTP verification (the TP has to be fol-
lowed). Similar results were also generated using the relaxed FTP verification
where only the start and end states of the FTP are of importance. Surpris-
ingly those results generated negative correlation factors of 0.62 for all TPs
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and 0.61 for FTPs. Again the small size of the EFSM is the likely cause for
similar correlation values.

5 Conclusions and future work

This paper defined a computationally inexpensive method to address an im-
portant problem in test data generation for EFSMs. An EFSM abstraction
method was used as the basis of a fitness function that estimated the fea-
sibility of a transition path (TP). The fitness function was evaluated using
two EFSMs - Inres protocol and a Class 2 transport protocol. A breadth first
search algorithm was used to generate a set of TPs for each of the EFSMs.
The fitness function was calculated for each TP and compared to a separately
evaluated ease of execution estimation measure, produced using sampling.

The fitness evaluation results suggest that the fitness function estimates
the feasibility of a given TP with reasonable accuracy. The 0.72 and 0.62
correlation factors suggest a good correlation between the fitness algorithm and
estimated feasibility for the TPs for the two EFSMs used in the experiments.
Hence this computationally inexpensive TP feasibility function may be used
to aid the generation of paths through an EFSM that satisfy a test criterion
and which are likely to be feasible. Other methods such as heuristic search
and constraint satisfaction, can then be used to produce input sequences to
trigger these paths.

Future work will investigate refining the fitness function to take into ac-
count loops and other difficult to estimate transitions. There is likely to be a
trade-off between the sophistication/precision of the fitness function and the
cost of computing it. Interestingly, recent work has extended the fitness func-
tion proposed in this paper by adding some dataflow information [17] but it
is unclear how this will affect the accuracy of the fitness function. Further
evaluation of the fitness function on other EFSMs may also be beneficial. A
final area of future work is the use of the fitness function in methods that
generate particular types of input sequences from an EFSM. For example, we
might combine it with the UIO sequence generation work in [5].
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