
Noname manuscript No.
(will be inserted by the editor)

Modeling Hierarchical Usage Context for Software
Exceptions based on Interaction Data

Hui Chen, Kostadin Damevski, David
Shepherd · Nicholas A. Kraft

Received: date / Accepted: date

Abstract Traces of user interactions with a software system, captured in
production, are commonly used as an input source for user experience testing.
In this paper, we present an alternative use, introducing a novel approach of
modeling user interaction traces enriched with another type of data gathered
in production - software fault reports consisting of software exceptions and
stack traces. The model described in this paper aims to improve developers’
comprehension of the circumstances surrounding a specific software exception
and can highlight specific user behaviors that lead to a high frequency of
software faults.

Modeling the combination of interaction traces and software crash reports
to form an interpretable and useful model is challenging due to the com-
plexity and variance in the combined data source. Therefore, we propose a
probabilistic unsupervised learning approach, adapting the Nested Hierarchi-
cal Dirichlet Process, which is a Bayesian non-parametric hierarchical topic

H. Chen
Department of Computer and Information Science
Brooklyn College of the City University of New York
Brooklyn, NY 11210, U.S.A.
E-mail: huichen@ieee.org

K. Damevski
Department of Computer Science
Virginia Commonwealth University
Richmond, VA 23284, U.S.A.
E-mail: damevski@acm.org

D.C. Shepherd
ABB Corporate Research
Raleigh, NC 27606 U.S.A.
E-mail: david.shepherd@us.abb.com

N.A. Kraft
ABB Corporate Research
Raleigh, NC 27606 U.S.A.
E-mail: nicholas.a.kraft@us.abb.com

ar
X

iv
:1

90
4.

07
07

2v
2

 [
cs

.S
E

]
 2

3
Ju

l 2
01

9

2 Hui Chen, Kostadin Damevski, David Shepherd, Nicholas A. Kraft

model originally applied to natural language data. This model infers a tree of
topics, each of whom describes a set of commonly co-occurring commands and
exceptions. The topic tree can be interpreted hierarchically to aid in categoriz-
ing the numerous types of exceptions and interactions. We apply the proposed
approach to large scale datasets collected from the ABB RobotStudio software
application, and evaluate it both numerically and with a small survey of the
RobotStudio developers.

Keywords Stack Trace, Crash Report, Software Exception, Software
Interaction Trace, Hierarchical Topic Model

1 Introduction

Continuous monitoring of deployed software usage is now a standard approach
in industry. Developers leverage usage data to discover and correct faults,
performance bottlenecks, or inefficient user interface design. This practice has
led to a debugging methodology called “debugging in the large”, a postmortem
analysis of large amount of usage data to recognize patterns of bugs [17, 19].
For instance, Arnold et al. use application stack traces to group processes
exhibiting similar behavior called “process equivalence classes”, and identify
what differentiate these classes with the aim to discover the root cause of the
bugs associated with the stack traces [3]. Han et al. clusters stack traces and
recognize patterns of stack traces to discover impactful performance bugs [19].

Software-as-a-service applications often gather monitoring data at the ser-
vice host, while user-installed client software collects relevant traces (or logs)
periodically at the user’s machines and transferred them from users’ machines
to a server. The granularity and format of the collected data (e.g., whether
the format of the data is a raw/log form or as a set of derivative metrics)
depend on the specific application and deployment. Two types of data com-
monly collected via monitoring include software exceptions, containing a stack
traces from software faults that occur in production, and interaction traces,
containing details of user interactions with the software’s interface.

By utilizing datasets that contain both of these two types of data, we can
provide a novel perspective on interpreting frequently occurring stack traces
resulting from software exceptions by modeling them in concert with the user
interactions with which they co-occur. Our approach probabilistically repre-
sents stack traces and their interaction context for the purpose of increasing
developer understanding of specific software faults and the contexts in which
they appear. Over time, this understanding can help developers to reproduce
exceptions, to prioritize software crash reports based on their user impact, or
to identify specific user behaviors that tend to trigger failures. Existing works
attempt to empirically characterize software crash reports in application do-
mains like operating systems, networking software, and open source software
applications [9, 22, 23, 39], but none have used interaction traces containing
stack traces for the purpose of fault characterization debugging.

Modeling Hierarchical Usage Context of Software Exceptions 3

Interaction traces can be challenging to analyze. First, the logged inter-
actions are typically low-level, corresponding to most mouse clicks and key
presses available in the software application, and therefore the raw number
of interactions in these traces can be large — containing millions of messages
from different users. Second, for complex software applications, there are of-
ten multiple reasonable interaction paths to accomplish a specific high-level
task while interaction traces that lead to different tasks can share shorter
but common interaction paths. To address these two challenges of scale and
of uncertainty in interpreting interaction traces, we posit that probabilistic
dimension reduction techniques that can extract frequent patterns from the
low-level interaction data are the right choice to analyze interaction traces.

Topic models are such a dimensionality reduction technique with the ca-
pacity to discover complex latent thematic structures. Typically applied to
large textual document collections, such models can naturally capture the
uncertainty in software interaction data using probabilistic assumptions; how-
ever, in cases where the interaction traces are particularly complex, e.g., in
complex software applications such as IDEs or CAD tools, applying typical
topic models may still result in a large topic space that is difficult to interpret.
The special class of hierarchical topic models encodes a tree of related topics,
enabling further reduction in complexity and dimensionality of the original
interaction data and improving the interpretability of the model. We apply a
hierarchical topic modeling technique, called the Nested Hierarchical Dirichlet
Process (NHDP) [26] to combine interaction traces and stack traces gathered
from a complex software application into a single, compact representation. The
NHDP discovers a hierarchical structure of usage events that has the following
characteristics:

– provides an interpretable summary of the user interactions that commonly
co-occur with specific stack traces;

– allows for differentiating the strength of the relationship between specific
interaction trace messages and a stack trace; and

– enables locating specific interactions that have co-occurred with numerous
runtime errors.

In addition, as a Bayesian non-parametric modeling technique, NHDP has an
additional advantage. It allows the model to grow structurally as it observes
more data. Specifically, instead of imposing a fixed set of topics or hypotheses
about the relationship of the topics, the model grows its hierarchy to fit the
data, i.e., to “let the data speak” [4]. This is beneficial in modeling the datasets
of interest since users’ interaction with software changes as the software does,
e.g., by adding new features or removing (or introducing) new bugs.

The main contributions of this paper are as follows:

– We apply a hierarchical topic model to a large collection of interaction
and stack trace data produced by ABB RobotStudio, a popular robot pro-
gramming platform developed at ABB Inc, and examine how effective it
extracts latent thematic structures of the dataset and how well the struc-

4 Hui Chen, Kostadin Damevski, David Shepherd, Nicholas A. Kraft

ture depicts a context for exceptions occurring during the production use
of RobotStudio.

– We are first to propose the idea of grouping users’ IDE interaction traces
with stack traces hierarchically and probabilistically into “clusters”. These
“clusters” provide user interaction contexts of stack traces. Since a stack
trace may be the result of multiple different interaction contexts, this ap-
proach associates a stack trace with its contexts probabilistically.

We organize the remainder of this paper as follows. Section 2 introduces
the types of interaction and stack trace data we use and how we prepare these
data sources for topic modeling. We describe the hierarchical topic modeling
technique and its application to software interaction and crash data in Sec-
tion 3. We apply the modeling technique to the large RobotStudio dataset
and provide an evaluation in Section 4. Our work is not without threats to
its validity, which we discuss in Section 5. In Section 6, we describe relevant
related research and conclude this paper in Section 7.

2 Background

03:14:58 EditCut
03:14:59 EditPaste
03:15:10 RobotStudio.Services.RobApiException
 C0049000 : RAPID symbol was not found.
 at Program.cs:123 …
03:15:11 ProgramSetCursor
…

00:29:42 EditCopy
00:29:43 EditPaste
00:29:54 TextEditorFormatDocument
00:31:51 ProgramShow
00:32:20 ProgramSetCursor
00:32:21 RobotStudio.Services.RobApiException
 C0049000 : RAPID symbol was not found
 at Program.cs:123 …
<END OF LOG>

EditPaste
ProgramSetCursor
RobotStudio.Services.RobApiException
 C0049000 : RAPID symbol was not found.
 at Program.cs:123 …
EditCut
EditCopy
TextEditorFormatDocument
ProgramShow

...

...

…

A

A.1

A.1.a A.1.b A.1.c

Fig. 1 The left half of the figure shows interaction traces with embedded stack traces. Note
that in the shown interaction traces, the embedded stack traces are identical. In this paper,
we construct a model that yields a context of the stack trace, like the one described in Sec-
tion 3, on the right half of the figure. The model aggregates a collection of interaction traces
coupled with stack traces into a hierarchy of topics (or contexts). Each topic expresses a set
of interaction messages with different probabilities, depicted via text size in this figure. Note
that on the left half of the figure each message in the traces has a time stamp depicting the
sequence their appear while on the right half there are no time stamps. This is because when
we apply a topic model to the traces, we capture the co-occurring relationship of commands
and events, such as, the co-occurrence relationship of EditCopy and ProgramSetCursor but
discard the timing of the commands and events.

Modeling Hierarchical Usage Context of Software Exceptions 5

Interaction data gathered from complex software applications, such as
IDEs1, typically consists of a large vocabulary of messages, ordered in a time
series. The data is typically collected exhaustively, in order to capture user
actions in an interpretable, logical sequence. As users complete certain actions
much more often than others, the occurrence of interaction messages follows
a skewed distribution where some messages appear often, while most occur
infrequently. Some of the messages are direct results of user actions (i.e., com-
mands), while the others may reflect the state of the application (i.e., events),
such as the completion of a background task like a project build. Consider the
below snippet of an interaction trace, gathered in Visual Studio, part of the
Blaze dataset [12,31]

2014-02-06 17:12:12 Debug.Start

2014-02-06 17:14:14 Build.BuildBegin

2014-02-06 17:14:16 Build.BuildDone

2014-02-06 17:14:50 View.OnChangeCaretLine

2014-02-06 17:14:50 Debug.Debug Break Mode

2014-02-06 17:15:02 Debug.EnableBreakpoint

2014-02-06 17:15:06 Debug.EnableBreakpoint

2014-02-06 17:15:10 Debug.Start

2014-02-06 17:15:10 Debug.Debug Run Mode

The developer that generated the above interaction trace snippet is starting
the interactive debugger, observed by the Debug.Start command. This trig-
gers an automatic build in Visual Studio, shown by the Build.BuildBegin

and Build.BuildDone, the exact same log messages that appear when the
user explicitly requests the build to begin. After the debugger stops at a break-
point, Debug.Debug Break Mode, this developer enables two previously dis-
abled breakpoints (e.g., Debug.EnableBreakpoint) and restarts (or resumes)
debugging (such as, Debug.Start and Debug.Debug Run Mode).

We leverage a probabilistic approach where we model each extracted high-
level behavior as a probability distribution of interaction messages. This type
of model is able to capture the noisy nature of interaction data [32], which
stems from the fact that 1) numerous paths that represent a specific high-
level behavior exist (e.g., using ToggleBreakpoint versus EnableBreakpoint
has the same effect) and 2) unrelated events may be in the midst of a set
of interactions (e.g., Debug.BuildDone can occur at intervals beginning at
Debug.BuildStart and interspersed with other messages).

One particular application domain where probabilistic models have been
effective for extracting high-level contexts, or topics, is natural language pro-
cessing. In natural language texts words are the most basic unit of the discrete
data and documents can be sets of words (i.e., a “bag of words” assumption).
We can draw an analogy from the characteristics of interaction traces to nat-
ural language texts, i.e., interaction traces exhibit naming relations such as
synonymy and polysemy similar to those in natural language texts. A trace
often contains multiple different messages that share meaning in a specific

1 The Eclipse UDC dataset is a well known source of this type of data in the software
engineering community. Available at: http://archive.eclipse.org/projects/usagedata/

http://archive.eclipse.org/projects/usagedata/

6 Hui Chen, Kostadin Damevski, David Shepherd, Nicholas A. Kraft

behavioral context, e.g., both the ToggleBreakpoint and EnableBreakpoint

events have the same meaning in the same context. This is similar to the no-
tion of synonymy in natural languages, where different words can have the
same meaning in a given context. Similarly, IDE commands carry a different
meaning depending on the task that the developer is performing, e.g., an error
in building the project after pulling code from the repository has a different
meaning than encountering a build error after editing the code base. This
characteristic is akin to polysemy in natural language, where one word can
have different meanings based on its context.

Figure 1 shows an example of two IDE traces containing both interac-
tions and stack traces from the ABB RobotStudio IDE. Both of these traces
correspond to user writing a program using a programming language called
RAPID into this environment’s editor, and performing common actions like
cutting-and-pasting and cursor movement (i.e., EditCut, EditPaste, and Pro-

gramSetCursor). In both trace excerpts the users encountered the identical
exception, RobApiException [...] RAPID symbol was not found, as iden-
tified by its type and message. While corresponding to the same high-level user
behavior, the sequence and constituent messages occurring in the two inter-
action traces are slightly different. The modeling approach described here is
able to capture the common interaction context of RobApiException, forming
high-level user behaviors that we represent as a probabilistic distribution of
interaction messages and stack traces, shown in the right part of Figure 1.
The model is able to overcome the slightly different composition and order in
the two interaction traces, extracting their commonalities, and can help better
characterize and understand the context of the shown exception’s stack trace.

The above motivates us to seek an algorithm to find not only useful sets of
patterns of user behaviors, and learn to organize the these patterns according
to a hierarchy in which more generic or abstract patterns near the root of
the hierarchy and more concrete patterns are near the leaves. This hierarchy
would allow us to explore stack traces and associated user interactions from
the generic to the specific, in a way no different from what we do in our daily
lives, i.e. when we go to a grocery store, we begin with a particular section,
and then down to a specific aisle, finally locating a particular product.

2.1 Topic Models for Interaction Data

Given a collection of natural language documents, topic modeling allows one
to discover latent thematic structures in the document collection (commonly
called a corpus) [6]. A document in the corpus is an unordered set of words
(i.e., “a bag of words”). The vocabulary of the corpus, denoted as V, con-
sists of the |V| unique words in the corpus. A topic is a discrete probability
distribution over the vocabulary words. A collection of topics describe the ex-
tracted thematic structures in the corpus. For instance, given the vocabulary
of a corpus, denoted as V = {m1,m2, . . . ,mn}, a topic is a discrete probability
distribution represented by its probability mass function, P (m = mi) = Pmi

,

Modeling Hierarchical Usage Context of Software Exceptions 7

where 0 ≤ Pmi
≤ 1,

∑|V|
i=1 Pmi

= 1. Topic models provide means to express
the thematic structures in a document and a document collection, i.e., using
topics and the relationship among the topics. For instance, in Latent Dirichlet
allocation (LDA) [6], a popular flat (non-hierarchical) topic model, the the-
matic structures in the document collection includes the proportions of each
topic exhibited in the collection or in a specific document in the collection.

Topic models are readily applied to other types of data because the mod-
els do not rely on any natural language specific information or assumptions,
e.g., a language grammar. Examples of data types other than textual data
for which topic modeling has found success include image collections, genetic
information, and social network data [7, 28,36].

In this paper, we apply topic models to interaction traces with embed-
ded stack traces. We begin by dividing an interaction trace into segments (or
windows). First, we treat each segment as a “document” and each command,
event, and stack trace as a word. Furthermore, when we examine a small seg-
ment of an interaction trace, we find that a segment consists of usually highly
regular and repetitive patterns. This is likely the result of the following obser-
vation of user behavior. Within a small period of time, a user is likely focusing
on a specific task and interacting with a small subset of the development envi-
ronment, resulting in segments with a small number of interaction messages.
In addition, interaction traces exhibit two naming relations, namely synonymy
and polysemy that also exist in natural texts. The former refers to that a user
can use a command to complete multiple types of tasks, and the later that
the user can accomplish a task via different types of commands [12]. We posit
that these relationships between the interaction types within small units of
IDE usage time mimics the “naturalness” of text [20], which suggests that
models used for analyzing natural language text can be applied to IDE inter-
action data. In this paper, interaction trace messages are the words, segments
of interactions messages are the documents, and all of the observed segments
are the corpus of the study. Note that we use the term “window” to represent
a segment as we use the moving window method described below to divide an
interaction trace into segments.

Interaction traces consist of frequently occurring low-level messages corre-
sponding to 1) user actions and commands (e.g., copying text into the clip-
board, pasting text from the clipboard, building the project); and 2) events
that occur asynchronously (e.g., completion of the build, stopping at a break-
point when debugging). The sequential order between the messages is only
relevant to some behaviors, but not to others. For instance, the event indicat-
ing the completion of the build may be important to the next set of actions the
developer performs, or it may be occurring in the background without import.

In our model, following the “bag of words” assumption, we use a tight mov-
ing window of interaction messages generated by an individual developer, but
ignore the message order within the window. This is a reasonable modeling
assumption that captures sequential order but resilient to small permutations
in message order within the window. In addition, developer interaction traces
often contain large time gaps, stemming from breaks in the individual devel-

8 Hui Chen, Kostadin Damevski, David Shepherd, Nicholas A. Kraft

oper’s work. To take account of these we force window breaks when the time
between two consecutive messages exceeds a predefined threshold. An interac-
tion window is a sequence of N messages denoted as m = (m1,m2, . . . ,mN)
where mN is the N -th message in the sequence. A corpus is a set of M win-
dows, denoted as D = {m1,m2, . . . ,mM} = m1:M where M = |D|.

Software exceptions and stack traces, reporting a software fault, which may
or may not be fatal and result in the software to crash, commonly contain a
time stamp and some type of user/machine identifier that tie them to inter-
actions from the same user. We use a dataset that interleaves the interactions
with the stack traces. We use a window-based modeling technique, as such,
minor timing issues in relating interaction and software crash data become
unimportant, as long as we tie the stack trace of the crash with the rele-
vant window of interaction messages. Assuming this reasonable assumption
holds, we treat the stack trace as just another message in the interaction log,
i.e., the “vocabulary” becomes V = {m1,m2, . . . ,mn, s1, s2, . . . , sp}, where
m is an interaction message and s is a stack trace. Following the “bag of
words” assumption, we represent document m to the term-frequency form,
i.e., mtf = (fm1

, fm2
, . . . , fmn

, fs1 , fs2 , . . . , fsp) where fw is the frequency of
word w, either an interaction message or a stack trace in vocabulary V.

3 Hierarchical Topic Modeling for Interaction Data

The scale of IDE interaction traces collected from the field can pose a challenge
to analysis. The size of the traces can grow quickly and become large, for
instance, the Eclipse Foundation Filtered UDC Data set consists of on the
order of 107 messages a day. Our approach is to divide the traces into message
windows. To accomplish this, we first divide the traces into active sessions,
using a prolonged time gap between messages as a delimiter, and further divide
each session into one or more windows, each of which is a sequence of a fixed
number of messages. Stack traces appear in the interaction log from time to
time. We treat them as ordinary messages in the windows in the model. In the
remainder of the paper, to be consistent with prior literature on topic models,
we sometimes refer to a message window as a document, and messages within
that window as words.

Our windowing approach bears similarity to the data processing method
commonly used for streaming text corpora, such as, transcripts of automatic
speech recognized streaming audio, transcripts of closed captioning, and feeds
from the news wire [5]. Among these kinds of datasets, no explicit document
breaks exist. A common approach is to divide the text into “documents” of a
fixed length, as we have.

Most topic models, such as LDA, are flat topic models, in which the topics
are independent and there is no structural relationship among the discovered
topics. There are two challenges facing flat topic models. First, it is difficult
or at least computationally expensive to discover the number of topics that
we should model in a document collection. Second, since there is only a rudi-

Modeling Hierarchical Usage Context of Software Exceptions 9

mentary relationship among topics, the meaning of the topics is difficult to
interpret, in particular, when multiple topics may look alike based on their
probability distributions.

We use a hierarchical topic model based on the Nested Hierarchical Dirich-
let Process (NHDP), which, compared with a flat topic model, arranges the
topics in a tree where more generic topics appear on upper levels of the tree
while more specific topics appear at lower levels. We can achieve two objec-
tives via a hierarchical topic model. The number of topics for a model can be
easily expressed in the hierarchy, much like the hierarchical clustering algo-
rithm where we can determine the number of clusters by increasing gradually
the depth and the branches of the tree of clusters. In addition, the hierarchical
structure of the topics, i.e., more generic topics appearing on upper levels of
the tree and more specific topics on lower levels can lead to improved human
interpretability. As argued in [4], “if interpretability is the goal, then there are
strong reasons to prefer” a hierarchical topic model, such as, NHDP over a
flat topic model, such as, LDA.

A number of hierarchical topic models exist in the literature. We choose
the Nested Hierarchical Dirichlet Process (NHDP) [4] as it possesses some
advantages over other popular hierarchical models, such as the Hierarchical
Latent Dirichlet Allocation (HLDA) [4]. Different from these models, NHDP
results in a more compact hierarchy of topics (less branching) and produces
less repetitive topics as it allows a document to sample topics from a subtree
that is not limited to a path from the root of the tree. For the IDE interaction
traces of our interest, NHDP is a right modeling tool because a stack trace
can occur at different interaction contexts and we can capture this variability
effectively at higher (more general) levels of its hierarchy and differentiate the
contexts at lower (more specific) level of the hierarchy.

To understand how we may apply the NHDP topic model to analyze soft-
ware interaction traces, we illustrate the model in Figure 2 as a directed graph,
i.e., a Bayesian network. Since NHDP is a Bayesian model, it starts with a
prior. In effect, the name of the NHDP topic model comes from that of its
prior, i.e., the nested hierarchical Dirichlet process. The prior expresses the
assumption that the thematic structure of the topics is in a tree-like structure
and the assumption that a topic can have branches corresponding to more spe-
cific topics at lower level in the tree. We specify or tune these assumptions by
giving a number of parameters of the prior as inputs to the model, commonly
referred to as the hyperparameters of the model. We provide an overview of
these hyperparameters and their relationship with other variables in the graph
in Figure 2.

In NHDP, we consider words in documents to follow Multinomial distri-
butions, given a topic. Dirichlet distributions are a commonly used prior for
multinomial distributions. It follows that we draw topics, a set of multinomial
distributions over words from given Dirichlet distributions. As shown in Fig-
ure 2, given a hyperparameter η as the parameter for a Dirichlet distribution,
we draw potentially infinite number of topics, denoted as θk, k = {1, 2, . . .}
in Figure 2. Since we choose a symmetric Dirichlet distribution for generating

10 Hui Chen, Kostadin Damevski, David Shepherd, Nicholas A. Kraft

topic distributions for this work, hyperparameter η is a positive scalar, and
represents the concentration parameter of the Dirichlet distribution Dir(η).
The smaller η is, more concentrated on fewer words we believe a topic to be.

A topic corresponds to a node in global topic tree T . We can either draw
a global topic tree T from a nested Chinese Restaurant Process as illustrated
in [4] or construct it directly using a nested Stick Breaking Process as shown
in [26]. Both of these two methods yield an infinite set of Dirichlet processes,
each corresponding to a node in the tree. A Dirichlet process, an infinitely
decimated Dirichlet distribution, allows us to branch from a topic node to
an infinite number of child topic nodes, which constitutes the mechanism to
build the topic tree. A Dirichlet process is a distribution from which a draw is
also a probability distribution. We denote drawing a probability distribution
G from a Dirichlet process as G ∼ DP (αH) where concentration parameter
α and base measure H are two hyperparameters as shown in Figure 2. The
probability distributions drawn from the Dirichlet process provide a parameter
to associate a node in the topic tree to its corresponding topic (θk). The
concentration parameter α, where α > 0 represents our belief on how we
should branch a topic node to topic nodes on a lower level. The greater the α,
the more branches we should expect when given a corpus.

When examining the relationship of the topics, we know that the topics de-
pend on the manner that we derive document trees in the model. A document
tree Td is a copy of the global topic tree of the given corpus with the same
topics on the nodes but with different branching probabilities. As discussed
above, an important characteristic of NHDP is its prior, the nested hierar-
chical Dirichlet process that leads to the mechanism by which we branch a
topic node to a lower level. Each node in the global tree has a corresponding
Dirichlet process. Let’s denote the Dirichlet process at a node n in the global
tree T as GTn , the corresponding node in the topologically identical document
topic tree for document d has a Dirichlet process Gd ∼DP (βGTn), where the
concentration parameter β controls our belief on how a document branches
in the corresponding document tree, i.e., hyperparameter β controls how the
branching probability mass is distributed among branches. The higher the β,
the less concentrated the branching probability mass is, and in effect, the more
branches we should expect from a corpus. For instance, if we expect a docu-
ment in the corpus should branch to a small number of topics in next level, all
the while we expect these topics to be different among different documents,
we should begin with a large α and a small β because we expect effectively a
large global tree, but small document trees.

Furthermore, each word in a document has a topic since we sample words
from a topic, i.e., a discrete probability distribution over words. We conve-
niently refer a topic by using its index. Denote the index of the n-th word’s
topic in document d as cd,n as shown in Figure 2. We determine the topic for
the word from a two-step approach. First, we choose a path from the root in
the document tree Td based on the tree’s branching probabilities. Next, we
select a topic along the path for the word based on a probability distribution
— starting from the root along the path, we draw Ud from Beta distribution

Modeling Hierarchical Usage Context of Software Exceptions 11

Beta(γ1, γ2), and Ud is the probability that we remain on the node, and 1−Ud

is the probability that we switch to next node along the path. The two pa-
rameters control the expected range of the level switching probabilities. The
Beta distribution here is commonly used to express a probability distribution
of probabilities.

These hyperparameters have an impact on the learned NHDP model and
inference of new documents. In Section 4, we evaluate how sensitive the learned
NHDP model is to the hyperparameters. An insensitive model has stronger
ability to correct inaccurate hyperparameter priors by learning what the data
implies.

3.1 Learning the NHDP Model

To learn a NHDP model from a document corpus, we adopt the stochastic
inference algorithm in [26]. The algorithm has the following steps:

1. Scan the documents from the training corpus, and extract words to form
a vocabulary of the training corpus. In this step, the vocabulary consists
of IDE messages and stack traces. We treat a stack trace as a single word.
Denote the vocabulary as V that consists of |V| unique words.

2. Index words in the vocabulary from 0 to |V|−1, and convert each document
to a term-frequency vector where the value at position i is the frequency
of the word indexed by i in the document.

3. Randomly select a small subset of documents from the training corpus,
denote the set of documents as DI . The random selection of documents
will not stop until any word in the vocabulary appears at least once in the
selected documents.

4. Repeatedly run the K-means clustering algorithm against DI to build a
tree of clusters.

5. Initialize a NHDP tree for DI , call the initial NHDP topic tree as TI , and
let TR = TI .

6. Randomly select a subset of documents from the training corpus, denote
the set of documents as DR.

7. Make adjustment to TR based on an inference algorithm against DR. The
result is a topic tree T .

8. Repeat steps 6 and 7 until T converges.

From steps 3 to 5, we provide the maximum height and the maximum
number of nodes at each level of tree DI . The maximum height and number
of nodes at each level should be greater than the final tree. Following the
assumption that words are interchangeable, we convert a document to the
term-frequency form, i.e., a vector where each element is the frequency of the
corresponding word appearing in the document. In Step 4, we use the K-means
clustering algorithm to divide the documents into a number of clusters, and
for each cluster, we estimate a topic distribution. These clusters and the topic
distributions are the top level nodes in tree DI just beneath the root. We then

12 Hui Chen, Kostadin Damevski, David Shepherd, Nicholas A. Kraft

repeat the process for each cluster, and each cluster is further divided into a
number of subclusters. For each subcluster we estimate a topic distribution.
This step is for computational efficiency. Given the number of clusters and the
depth of the tree, the K-means algorithm builds a large tree quickly. This tree
serves as the initial tree for the NHDP algorithm that learns the switching
probabilities for different levels and the switching probabilities for different
clusters at a level, which effectively shrinks the tree by learning the switching
probabilities. Note in the above when applying the K-means algorithms, we
adopt the L1 distance, i.e., given two documents represented as two vectors di

and dj , the distance of the two documents is d(di,dj) =
∑|V|−1

k=0 |dik − djk|.

Steps 6 to 8 perform a randomized batch inference processing. Agrawal
et al. demonstrate that topic modeling can suffer from “order effects”, i.e., a
topic modeling algorithm yields different topics when we alter the order of the
training data [2]. This randomized batch processing can reduce this “order
effects” via averaging over different random orders of the training data set.
Step 7 requires a specific inference algorithm. In [4,34], Markov Chain Monte
Carlo algorithms, specifically, Gibbs samplers are used. In this work, we used
the variational inference algorithm in [26]. Variational inference algorithms
are typically shown to scale better to large data sets than Gibbs samplers
do. Steps 6 to 8 can begin with an arbitrary tree, however, it is much more
computationally efficient to initialize the inference algorithm with a tree that
shares statistical traits with the target data.

wd,n θk
∞

ηcd,n

Td

Ud

T

βH

α

γ1

γ2

Nd

M

Fig. 2 The probabilistic graphical model of NHDP. The model is a Bayesian network, rep-
resented as a directed graph. There are 3 plates in the graph, the topic plate that represents
potentially infinite number of topics, the document plate for a document and the corpus
plate. We denote the number of words in document d as Nd. The corpus has M documents.
The n-th word in document d, wd,n is the only observable variable in the model. For n-th
word in document d, we draw a topic indicator based on the topic tree Td and the switching
probabilities Ud, where we draw Td from global topic tree T and draw Ud from a Beta
distribution with two hyperparameters γ1 and γ2.

Modeling Hierarchical Usage Context of Software Exceptions 13

4 Evaluation

For evaluation, we use field interaction traces from ABB RobotStudio, a popu-
lar IDE intended for robotics development that supports both simulation and
physical robot programming using a programming language called RAPID.
RobotStudio as an IDE also runs robot application programs developed in
the IDE by users. It is RobotStudio that collects interaction traces other than
the robot applications do. The RobotStudio interaction trace dataset we used
represents 25, 724 users over a maximum of 3 months of activity, or a total
of 76, 866 user-work hours. In the interaction traces, there are 7, 425 unique
messages, 134 types of exceptions, 1, 975, 474 sessions, and 2, 251 unique stack
traces, resulting in 1, 978, 081 documents of 50 messages. Note that a single
exceptions in RobotStudio is often triggered by numerous users of the IDE, as
such, an exception corresponds to many unique stack traces and each unique
stack trace has many copies. We chose the window size of 50 messages based
on empirically observing this to result in semantically interesting windows,
which commonly represent a single activity by a developer [11].

The RobotStudio dataset consists of sequences of time-stamped messages,
where each message corresponds to a RobotStudio command (e.g., RapidEd-
itorShow) or an event representing application state (e.g., Exception and
StartingVirtualController). Messages have additional attributes, such as
the component that generates the command or the event, and the command or
event type. RobotStudio records the stack traces directly into the interaction
log, so the two distinct data types considered here are already combined into
one single trace.

The evaluation plan is as follows. First, we conduct a “held-out” document
evaluation, i.e., we divide the documents into two sets, training dataset to learn
the model, and held-out dataset to test the model. The purpose of the held-out
document evaluation are two-fold. We want to know whether the training data
set is sufficient to produce a stable model and to assess whether the parameters
used in the learning process is reasonable. Second, we conduct a user survey
to assess the usefulness of the model in understanding and debugging software
faults. Figure 3 illustrates the overall processing pipeline used for evaluation.

4.1 Held-out Document Evaluation

Unsupervised learning algorithms, like NHDP, are typically more challeng-
ing to evaluate, as there is no ground truth to compare to. Perplexity and
predictive likelihood are two standard metrics for informational retrieval eval-
uation that corresponds to a model’s ability to infer an unseen document
from the same corpus. These two are a single metric in two different repre-
sentations since perplexity is, in effect, the inverse of the predictive power
of the model. The worse the model is, the more perplexed it is with un-
seen data, resulting in greater values for the perplexity metric. Similarly,
the better the model is, the more likely that the model is able to infer the

14 Hui Chen, Kostadin Damevski, David Shepherd, Nicholas A. Kraft

Forming
Corpus

Learning
Model

Assessing
Parameters

Evaluating
Model

Fig. 3 The processing pipeline consists of the following steps, which, although presented
linearly, are iterative. (a) Forming Corpus – we divide interaction traces into sessions, and
each session into one or more windows. Scanning the windows, we obtain the vocabulary
of the corpus. To improve computational efficiency and numerical statbility, we remove the
words that are overly frequent and those too rare. (b) Learning Model – we divide the corpus
into the training dataset and the testing (held-out) dataset, and start with an initial set
of parameters to infer a model, and vary these parameters. For each set of parameters,
we obtain a model. (c) Assessing Parameters – by computing perplexity on the held-out
dataset, we determine whether the model converges and whether the model is sensitive to
parameters, which informs us an appropriate set of parameters. Use the parameters, we
obtain a final model for evaluation. (d) Evaluating Model – using a set of randomly selected
stack traces and their usage contexts, we evaluate the quality of the model by analyzing the
responses of the developers to the survey.

model of an unseen document. To further explain these two concepts and
their relationship and how we compute them, let us divide the dataset into
two subsets, one is a training dataset that we consider as observed, and the
other a held-out dataset that we consider as unseen. We denote the former
as Dobs and later as Dheld-out. We consider Dobs has Nobs documents, and
Dobs = {dobs,1, dobs,2, . . . , dNobs

}, and Dheld-out has Nheld-out documents, and
Dheld-out = {dheld-out,1, dheld-out,2, . . . , dheld-out,Nheld-out

}. Given that we learn
a model M from the training dataset Dobs, we define the predictive power of
the learned model is the following conditional probability, i.e., the probability
of observing the unseen documents given the model learned from the observed
document,

P (Dheld-out|Dobs,M)

= P (dheld-out,1,

. . . dheld-out,Nheld-out
|dobs,1, . . . , dobs,Nobs

,M)

=

Nheld-out∏
i=1

P (dheld-out,i|dobs,1, . . . , dobs,Nobs
,M) (1)

where we assume that held-out documents are independent to one another.
Since the probability in equation (1) varies on the size of the held-out

dataset, Nheld-out, the probability is not comparable for held-out datasets of
different sizes. To make it comparable among held-out dataset of different
sizes, we take a geometric mean of the probability as follows,

P (Dheld-out|Dobs,M)

= P (Dheld-out|Dobs,M)
1∑Nheld-out

i=1
|dheld-out,i| (2)

where |dheld-out,i| is the sum of all word counts in document dheld-out,i.

Modeling Hierarchical Usage Context of Software Exceptions 15

We call P (Dheld-out|Dobs,M) the predictive likelihood of the modelM on
the unseen dataset Dheld-out. We can then define the predictive log likelihood
as,

L(Dheld-out|Dobs,M)

= logP (Dheld-out|Dobs,M)

=
1∑Nheld-out

i=1 |dheld-out,i|
logP (Dheld-out|Dobs,M) (3)

and define the perplexity as the inverse of the predictive likelihood,

Perplexity(Dheld-out|Dobs,M)

=
1

P (Dheld-out|Dobs,M)

= e−L(Dheld-out|Dobs,M) (4)

which establish the correspondence between perplexity and predictive log like-
lihood.

In the following, we describe the procedure to compute the perplexity and
show the result. This evaluation method, inspired by earlier work in [30, 35],
is frequently used to evaluate topic models, such as in [25,26]. The procedure
below is adopted from [26].

1. Form training and testing datasets. We divide interaction traces into
a training dataset and a testing dataset based on a reasonable ratio rtd,
e.g., 0.9. To obtain the training dataset, randomly select rtdM documents
from the M documents of interaction traces. The remaining (1 − rtd)M
documents are in the testing dataset.

2. Form observed dataset and held-out dataset. Select a document
partition ratio rdp, e.g., 0.9. For each document d in the testing dataset,
and the Fd appearances of words in the document, partition Fd into two
partitions. The first rdpFd words goes to the first partition, and the second
(1− rdp)Fd words the second partition. Consider the two partitions as two
documents, dh and do. Then all the dh form the held-out dataset and all
the do forms all the observed dataset, i.e., we obtain Dheld-out and Dobs in
equation (4).

3. Train the model. Use NHDP on the training dataset, i.e., infer the global
topic tree T using the training dataset. The model is M in equation (4).

4. Compute perplexity. Use the definition in equation (4).

Figure 4 is a result of the perplexity obtained when we gradually increase the
number of documents seen and the use the rest as the testing data. We take an
approach inspired by N -fold cross-validation. For each training dataset size,
we randomly select the training dataset from the collected dataset and then
compute the perplexity. We illustrate 10 computed perplexities at each training

16 Hui Chen, Kostadin Damevski, David Shepherd, Nicholas A. Kraft

dataset size in an x-y plot with error bar in Figure 4. The figure shows that
both the perplexity and the variation of the perplexity decreases as training
dataset size increases, indicative of the convergence of the algorithm and a
stable model. In particular, when the document seen is at 40% of documents,
we observe a significant drop of perplexity, and the magnitude of the drop
is consistent with those in the topic modeling literature, such as, [4, 25, 26].
This suggests that the obtained model has converged to a stable state and the
model provides a stable representation of the underlying data. We can now use
the model for the purpose of interpreting the context of software exceptions.

Fig. 4 Perplexity versus percent of documents seen. For each number of document seen,
the standard deviation of the perplexities of 10 runs is also shown. The graph indicates the
convergence of the training process to a stable model.

4.2 Sensitivity Analysis

As a Bayesian hierarchical model, for NHDP, we infer marginal and conditional
probability distributions from the data for the parameters in the model, as
such, the model does not overfit. As a non-parametric model, we parametrize
the model with infinite number of parameters, as such, the model does not
underfit [16, page 101].

One challenge is that we specify the prior of a Bayesian non-parametric
model by giving the values of the hyperparameters of the prior and the values
are sometimes difficult to choose. We ought to assess the effect of these values.
A common method is via sensitivity analysis. This is particularly important
for Bayesian hierarchical models [29]. For sensitivity analysis, we examine how
the hierarchy obtained varies with hyperparameters in the prior. Their values

Modeling Hierarchical Usage Context of Software Exceptions 17

control the base distribution in the NHDP process, and the switching prob-
abilities between levels of the tree. For a document, we draw the topics at
a node from a Dirichlet distribution, specifically, draw them from Dir(η), a
symmetric Dirichlet distribution controlled by the concentration parameter η;
however, we need to choose which branch to visit to draw topics for its children,
for which we must know hyperparameter β. When we generate a document,
we decide whether to go to next level of the tree based on Beta distribution,
Beta(γ1, γ2). We explain the effects of these parameters in Section 3.

We use a number of statistics to evaluate how sensitive the learned model is
to the hyperparameters. These statistics include the number of topics at each
level of the tree for each document and the number of words at each topic.
Figure 5 shows the average number of topics per document at tree levels 1, 2,
and 3 when we increase hyperparameter β from 0.1 to 1.0 when we infer the
model from a set of 40% of randomly selected documents. The graph shows
that the inferred model is insensitive to the hyperparameter β.

Figure 6 shows the average number of topics per document at tree levels
1, 2, and 3 when we increase hyperparameter γ1 from 0.2 to 1.0 and hold
γ1 + γ2 = 2. It shows that the model is somewhat sensitive to γ1 and γ2;
however, the variation of the number of topics is mostly less than 10%, which
is not a major change, particularly for the average number of topics at levels
2 and 3.

In summary, these sensitivity tests indicate that the inferred model is ro-
bust as it tolerates uninformed selections of hyperparameters. The hyperpa-
rameters does have an impact on the learned tree structure, but only in a minor
way. A specific caution is that one should choose γ1 and γ2 with more care
than do β. Practically, one may compare the perplexities at different values of
γ1 and γ2, and elect the pair with lower perplexity.

4.3 Example RobotStudio Topic Hierarchy

The result of our approach is a topic hierarchy learned from the combined
interaction and software crash dataset. The tree hierarchy communicates a
succinct model of the observed interactions, where each topic represents a
group of commonly co-occurring interactions and the hierarchy encodes a re-
lationship between general or popular topics and ones that are more specific
and rare.

One may explore the hierarchy either bottom-up or top-down to observe
its structure, or begin with a specific event, such as an exception or stack
trace, and move in both directions with the idea of understanding the context
of user behavior that produces the exception. For instance, Figure 7(b) shows
a topic hierarchy learned from the dataset centered on an exception. The hier-
archy shows a parent topic and two of its child topics. Since the messages with
dominant probabilities are about simulation, we interpret the parent topic to
indicate that developers are starting, stopping, and stepping through a sim-
ulation using RobotStudio. The two child topics exhibit two sub-interactions

18 Hui Chen, Kostadin Damevski, David Shepherd, Nicholas A. Kraft

Fig. 5 The average number of topics per document at tree levels 1 – 3 versus hyperparam-
eter β. The graph indicates the desired characteristic of the model that it is insensitive to
the hyperparameter β of the prior.

Fig. 6 The average number of topics per document at tree levels 1 – 3 versus γ1. When we
vary γ1, we hold γ1 + γ2 = 2. When γ1 = γ2 = 1, the Beta distribution becomes a uniform
distribution in [0, 1]. As γ1 increases, we become less likely to draw smaller probabilities
from the Beta distribution, which results in words more likely to stay on the current level
of the tree.

when the user is doing the simulation. The first child, illustrated immediately
below its parent indicates that the user conducts a conveyor simulation. The
second child indicates that the simulation includes the user’s action that leads
the simulated robot moving to a different location, which is often accompanied
with saving project state, perhaps, because it is prudent to save the project

Modeling Hierarchical Usage Context of Software Exceptions 19

state before a path change. Thus, we may conclude that this topic hierarchy
suggests that the user starts with a more generic activity, simulating a robot,
and the simulation consists of multiple sub-interactions. It also shows that the
exception indicated by the message . . .RobApiException. . . often occurs with
the simulation for controlling a conveyor.

4.4 RobotStudio Developer Survey

In order to assess the interpretability and value of our technique, we conducted
a survey of RobotStudio developers using the model we extracted from the user
interaction dataset of this application. Note that they are the individuals who
develop and maintains RobotStudio, and are not users who use RobotStudio
in production. One important goal is to help the developers from using the
model built from the data collected from the users. The survey consisted of a
sample of five random RobotStudio exceptions that we show to the developers
one at a time together with their surrounding context hierarchy in the survey.

We sent the composed survey via e-mail to the entire RobotStudio devel-
opment team. The team consists of 17 individuals, out of which we received 6
responses. All but one of the respondents had 3 or more years of experience on
the RobotStudio team and all of them had worked as software developers for at
least 3 years. Five out of six respondents were familiar with the RobotStudio
interaction dataset, and had examined it in the past, and all of them believed
that knowing which commands in the interaction log an exception co-occurs
with could be helpful in debugging. Figure 7 displays two of the images shown
in the survey, which depict an exception and its nearby surrounding command
context hierarchy. Below, we highlight the salient conclusion from the study,
coupled with the evidence to support them, including any additional relevant
explanation extracted from open-ended questions in the survey.

The model was very useful for understanding and debugging some
exceptions, but not useful for others. The survey showed a strong vari-
ance between the responses for the usefulness of specific parts of the model and
specific exceptions. For instance, for RobApiException, listed in Figure 7(b),
the respondents rated the usefulness of the usage context in understanding the
exception an average of 7.83 (s = 1.52) on a scale of 1 (least useful) to 10 (most
useful). This high rating can be contrasted to the usefulness rating received by
the usage context of the remaining 4 exceptions: FormatException - 4.0/10.0
(s = 2.83); ApplicationException - 3.66/10.0 (s = 3.44); KeyNotFoundEx-
ception - 4.0/10.0 (s = 1.3); GeoException - 3.83/10.0 (s = 2.92). Three of
the developers already formed the same hypothesis for the fault by examining
the model for RobApiException, stating the following:
[...] VC returns an error saying that we cannot set the program pointer to main
in the current execution state. Perhaps RobotStudio tries to move the program
pointer when it is in running state.

20 Hui Chen, Kostadin Damevski, David Shepherd, Nicholas A. Kraft

RapidEditorShow
RapidApplyAll
RibbonTabChanged
System.FormatException

EditUndo.RapidControllerTextEditorWindow
ProgramSaveModuleAs
ControllerRequestWriteAccess
ProgramFollowPP

Input string was not in a correct format.
at System.Version.VersionResult.SetFailure(...)
at System.Version.TryParseComponent(...)
at System.Version.TryParseVersion(...)
at System.Version.Parse(...)
at RobotStudio.API.Internal.ExtensionManagement.DistributionPackage.Load(...)

RibbonTabChanged
AddedController
BackstageVisibilityChanged
ToolsOneClickConnect
ControllerRequestWriteAccess
ControllerBackup
OnlineConnectController
ControllerIOWindow
ControllerConfigurationEditor
RecentControllers

ControllerRequestWriteAccess
ControllerReleaseWriteAccess
RapidCheckProgram
ProgramLoadModule
OutputWindowClear.OutputViewWindow
EditDelete
ProgramLoadProgram
ControllerRestore

RapidStart
ProgramShowPP
RapidStop
ProgramSetPPMain
RapidApplyAll
ProgramSetPPRoutine

(a) Context hierarchy for FormatException.

SimulationPlay
ControllerSyncToVC
SimulationSetup
ToolEditInstruction
ResetConveyor
ConfigurePath
SimulationStop
Configurations
RobotStudio.Services.RobApi.RobApiException

ViewRobotAtTarget

Operation is illegal in current task state.
ERROR: rapid.c[8212]: org_code: -1054 new_code: 0xc0049008;
Url:/RAPID/T_ROB1 Cmd:SET Prop:PP Args:-ExLev N -Routine main
at System.Runtime.CompilerServices.TaskAwaiter.ThrowForNonSuccess(..)
at System.Runtime.CompilerServices.TaskAwaiter.HandleNonSuccessAndDebuggerNotification(...)
at RobotStudio.Services.Controller.VcSimHelper<SetProgramPointer>d__29.MoveNext()

SimulationStep
SimulationPlay
SimulationStop
SimulationReset
ToolProperties
SmartComponentEditor
LibGalleryBaseComponents
EditDelete
StationEditor

ProjectStateList
PathView_Button_Execute_MoveTo
SaveProjectState

(b) Context hierarchy for RobApiException.

Fig. 7 Two of the exception hierarchies presented to RobotStudio developers in survey,
where font size coarsely approximates the probability of a message in a particular context.
RobApiException (right) resulted in much higher usefulness ratings by the survey respon-
dents relative to all the remaining exception in the survey.

Modeling Hierarchical Usage Context of Software Exceptions 21

For the less useful exception models, a number of the RobotStudio devel-
opers suggested a concrete set of improvements that they believed would raise
its level of usefulness, including labeling each of the contexts and providing
additional command characteristics, whenever available, to make the model
clearer. For instance, one participant stated:
“Its like watching the user over the shoulder but too far away. I can see which
tools and windows he or she opens, which commands are issued. But I cannot
see any name of an object, no version number of a controller, no file name,
not really anything concrete and specific. I think that needs to be tied in.”

Additionally, the survey result that some exceptions are more useful while
the others are not based on the users’ ratings may be in part attributed to the
following observation. Some exceptions, e.g., FormatException and KeyNot-

FoundException may actually not results of program faults because program-
mer often use them for input validation2. And yet, when asked about Forma-
tException, one developer stated:
“[...] it tells me that the user explicitly or implicitly (as far as I remember it
is always done explicitly) was loading a distribution package. The package has
it version number defined as part of the root folder name. The version part of
the folder name could not be parsed to a .NET Version object.”
In contrast, the developers view exceptions like RobApiException and their
corresponding stack traces are more useful because these exceptions are about
the movement and the control of the industrial robot, and perceive them as
the results of actual program faults as discussed above.

5 Threats to Validity

This paper presents an exploratory study of using hierarchical topic modeling
on large-scale interaction data for the purpose of building a hierarchy of usage
contexts surrounding stack traces. Such contexts can be useful to understand
or debug software faults that exhibit specific stack traces. The assumptions em-
bedded in a hierarchical topic model, such as, the “bag of words” assumption
for words in a document, the windowing method, and the modeling approach,
are a source of internal threats to validity of our study. To mitigate this threat,
we follow prior established techniques for applying topic models. Also, prior
studies have successfully analyzed interaction data using topic models with
the “bag of words” assumption and a windowing method [11,33].

In our study, we relied solely on RobotStudio interaction traces to build
our model. Therefore, our studys results may not transfer to other interaction
traces or platforms. To mitigate this threat we posit that the long timespan and
large scale of the Robot Studio interaction traces, including this development

2 See the Stack Overflow discussion “Is it a good or bad idea throwing Excep-
tions when validating data?” at https://stackoverflow.com/questions/1504302/

is-it-a-good-or-bad-idea-throwing-exceptions-when-validating-data and many
other discussions on the subject.

https://stackoverflow.com/questions/1504302/is-it-a-good-or-bad-idea-throwing-exceptions-when-validating-data
https://stackoverflow.com/questions/1504302/is-it-a-good-or-bad-idea-throwing-exceptions-when-validating-data

22 Hui Chen, Kostadin Damevski, David Shepherd, Nicholas A. Kraft

environment’s use of extensions that extend its capability, offer a significant
amount of diversity to our technique.

We surveyed RobotStudio developers to evaluate the usefulness of our hier-
archy of contexts. Although the evaluation shows positively that the hierarchy
is helpful to debug software faults, the survey sample size is too small to pro-
vide robust and generalizable conclusions.

The work also suffers from external threats to validity because we surveyed
developers to assess the usefulness of the hierarchy of usage contexts. One
threat is that the surveyed developers may be prone to offer positive answers as
they know that we will analyze their responses to the survey, i.e., the observer
effect. The other is that our approach may be new to them, and this novelty
may influence them to respond positively. To mitigate this threat, we followed
standard approaches for creating developer surveys and frequently prompted
the survey respondents to specify a rationale for their opinions.

6 Related Work

Although researchers have applied topic models to analyze software engineer-
ing data [8,11,27,33], they have not explored hierarchical topic models, in par-
ticular, Bayesian non-parametric hierarchical topic models that offers severarl
advantages to analyze software engineering data, such as interaction traces.
We focus our related work discussion on the set of prior work that exists,
separately, for both of the data types used in this work, i.e., for mining and
understanding both application crash reports and interaction data.

As interaction data is large-scale, consisting of multiple messages per minute
of user interaction with the application, a common goal is to extract high-level
behaviors from the data that express common behavioral patterns exhibited
by a significant cluster of users. Numerous approaches have been suggested to
extract such behaviors from IDE data, using hidden Markov models, sequential
patterns, Petri nets, and others [1,10,24], with the purpose of extracting high-
level common behaviors exhibited by developers in the field. Our prior work
explores the use of the Latent Dirichlet Allocation topic modeling technique,
more specifically its temporal variant, for the prediction and recommendation
of IDE commands for a specific developer [11].

Mining software crash reports have been a popular area of study in recent
years, with the ubiquity of systems that collect these reports and the availabil-
ity of public datasets. Here we highlight only the most relevant studies, which
focus on mining exceptions and stack traces in a corpus of crash reports.

Han et al. built wait graphs from stack traces and other messages to diag-
nose performance bugs [19]. Dang et al. clustered crash reports based on call
stack similarity [13], while Wu et al. located bugs by expanding crash stack
with functions in static call graphs from crash reports that contains stack
traces [38]. Davie et al. researched whether a new bug in the same source code
as known bug can be found via bug report similarity measures [14].

Modeling Hierarchical Usage Context of Software Exceptions 23

Crash reports that contains stack traces can be too numerous for engineers
to manage. Dhaliwal et al. investigated how to group crash reports based on
bugs [15]. Kaushik and Tahvildari applied information retrieval methods or
models to detect duplicate bug reports. They compared multiple information
retrieval methods and models including both word-based models and topic-
based models [21]. Williams and Hollingsworth used source code change history
of a software project to drive and help to refine the search for bugs [37].

Since bug reports are duplicative and prior knowledge may be used to fix
new bugs, crash reports can help reuse debugging knowledge. Gu et al. created
a system to query similar bugs from a bug reports database [18].

Different from prior work, our aim here is to produce a contextual under-
standing of stack traces, and their relationship with user interactions. This is
based on a large set of interaction traces with embedded stack traces, where
a stack trace can be considered as a special message in the interaction traces.
While in this paper we always assume a dataset with already combined inter-
action and stack traces, they need not be a priori, as long as relatively reliable
timestamps exist in both data sources. The proposed approach is also resilient
to minor clock synchronization issues that may arise if combining stack traces
and interaction traces that are collected on disparate machines, since it does
not require perfect message ordering.

7 Conclusions

Large quantities of software interaction traces are gathered from complex soft-
ware daily. It is advantageous to leverage such data to improve software qual-
ity by discovering faults, performance bottlenecks, or inefficient user interface
design. We posit that high-level comprehension of these datasets, via unsu-
pervised approaches to dimension reduction, is useful to improving a myriad
of software engineering activities. In this paper, we aim at modeling a large
set of user interaction data combined with software crash reports. We leverage
a combined dataset collected from ABB RobotStudio a software application
with many thousands of active users. The described approach is novel in at-
tempting to model the combination of the two datasets.

As a modeling technique, hierarchical models, such as, the Nested Hierar-
chical Dirichlet Process (NHDP) Bayesian non-parametric topic model enable
human interpretation of complex datasets. The model allows us to extract
topics, i.e., probability distributions of interactions and crashes, from the doc-
ument collections and assemble these topics into tree-like structure. The hier-
archical structure of the model allows browsing from a more generic topic to a
more specific topic. The tree also reveals certain structure among users’ inter-
action with the software. Most importantly, the structure also demonstrates
an understanding how an exception co-occur with other messages, and thus
provide a context on these messages. We surveyed ABB RobotStudio develop-
ers who consistently found parts of the model very useful, although significant
more work is required to understand and predict the parts of the model that

24 Hui Chen, Kostadin Damevski, David Shepherd, Nicholas A. Kraft

yielded no insight to the developers. The future work also includes investigat-
ing semi-supervised learning models that can leverage developer feedback in
formulating an interpretable and useful model.

Acknowledgements The authors would like to thank the RobotStudio team at ABB Inc
for providing the interaction dataset and responding to the survey. The authors are also
grateful to the anonymous reviewers’ constructive comments.

References

1. van der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: discovering process
models from event logs. IEEE Transactions on Knowledge and Data Engineering 16(9),
1128–1142 (2004). DOI 10.1109/TKDE.2004.47

2. Agrawal, A., Fu, W., Menzies, T.: What is wrong with topic modeling? and how to fix
it using search-based software engineering. Information and Software Technology 98,
74–88 (2018)

3. Arnold, D.C., Ahn, D.H., De Supinski, B.R., Lee, G.L., Miller, B.P., Schulz, M.: Stack
trace analysis for large scale debugging. In: 2007 IEEE International Parallel and Dis-
tributed Processing Symposium, p. 64. IEEE (2007)

4. Blei, D.M., Griffiths, T.L., Jordan, M.I.: The nested chinese restaurant process and
bayesian nonparametric inference of topic hierarchies. J. ACM 57(2), 7:1–7:30 (2010).
DOI 10.1145/1667053.1667056. URL http://doi.acm.org/10.1145/1667053.1667056

5. Blei, D.M., Moreno, P.J.: Topic segmentation with an aspect hidden markov model. In:
Proceedings of the 24th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’01, pp. 343–348. ACM, New York, NY,
USA (2001). DOI 10.1145/383952.384021. URL http://doi.acm.org/10.1145/383952.

384021

6. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. Journal of machine
Learning research 3(Jan), 993–1022 (2003)

7. Cao, L., Fei-Fei, L.: Spatially coherent latent topic model for concurrent segmentation
and classification of objects and scenes. In: 2007 IEEE 11th International Conference
on Computer Vision, pp. 1–8 (2007). DOI 10.1109/ICCV.2007.4408965

8. Chen, T.H., Thomas, S.W., Hassan, A.E.: A survey on the use of topic models when min-
ing software repositories. Empirical Software Engineering 21(5), 1843–1919 (2016). DOI
10.1007/s10664-015-9402-8. URL http://dx.doi.org/10.1007/s10664-015-9402-8

9. Chou, A., Yang, J., Chelf, B., Hallem, S., Engler, D.: An empirical study of operating
systems errors. SIGOPS Oper. Syst. Rev. 35(5), 73–88 (2001). DOI 10.1145/502059.
502042. URL http://doi.acm.org/10.1145/502059.502042

10. Damevski, K., Chen, H., Shepherd, D., Pollock, L.: Interactive exploration of devel-
oper interaction traces using a hidden markov model. In: Proceedings of the 13th
International Conference on Mining Software Repositories, MSR ’16, pp. 126–136.
ACM, New York, NY, USA (2016). DOI 10.1145/2901739.2901741. URL http:

//doi.acm.org/10.1145/2901739.2901741

11. Damevski, K., Chen, H., Shepherd, D.C., Kraft, N.A., Pollock, L.: Predicting future
developer behavior in the IDE using topic models. IEEE Transactions on Software
Engineering 44(11), 1100–1111 (2018). DOI 10.1109/TSE.2017.2748134

12. Damevski, K., Shepherd, D.C., Schneider, J., Pollock, L.: Mining sequences of devel-
oper interactions in visual studio for usage smells. IEEE Transactions on Software
Engineering 43(4), 359–371 (2017). DOI 10.1109/TSE.2016.2592905

13. Dang, Y., Wu, R., Zhang, H., Zhang, D., Nobel, P.: Rebucket: A method for clustering
duplicate crash reports based on call stack similarity. In: Proceedings of the 34th Inter-
national Conference on Software Engineering, ICSE ’12, pp. 1084–1093. IEEE Press,
Piscataway, NJ, USA (2012). URL http://dl.acm.org/citation.cfm?id=2337223.

2337364

http://doi.acm.org/10.1145/1667053.1667056
http://doi.acm.org/10.1145/383952.384021
http://doi.acm.org/10.1145/383952.384021
http://dx.doi.org/10.1007/s10664-015-9402-8
http://doi.acm.org/10.1145/502059.502042
http://doi.acm.org/10.1145/2901739.2901741
http://doi.acm.org/10.1145/2901739.2901741
http://dl.acm.org/citation.cfm?id=2337223.2337364
http://dl.acm.org/citation.cfm?id=2337223.2337364

Modeling Hierarchical Usage Context of Software Exceptions 25

14. Davies, S., Roper, M., Wood, M.: Using bug report similarity to enhance bug localisa-
tion. In: 2012 19th Working Conference on Reverse Engineering, pp. 125–134 (2012).
DOI 10.1109/WCRE.2012.22

15. Dhaliwal, T., Khomh, F., Zou, Y.: Classifying field crash reports for fixing bugs: A
case study of mozilla firefox. In: 2011 27th IEEE International Conference on Software
Maintenance (ICSM), pp. 333–342 (2011). DOI 10.1109/ICSM.2011.6080800

16. Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian data analysis, vol. 2, 3
edn. Chapman & Hall/CRC Boca Raton, FL, USA (2014)

17. Glerum, K., Kinshumann, K., Greenberg, S., Aul, G., Orgovan, V., Nichols, G., Grant,
D., Loihle, G., Hunt, G.: Debugging in the (very) large: ten years of implementation
and experience. In: Proceedings of the ACM SIGOPS 22nd symposium on Operating
systems principles, pp. 103–116. ACM (2009)

18. Gu, Z., Barr, E.T., Schleck, D., Su, Z.: Reusing debugging knowledge via trace-based
bug search. In: Proceedings of the ACM International Conference on Object Oriented
Programming Systems Languages and Applications, OOPSLA ’12, pp. 927–942. ACM,
New York, NY, USA (2012). DOI 10.1145/2384616.2384684. URL http://doi.acm.

org/10.1145/2384616.2384684

19. Han, S., Dang, Y., Ge, S., Zhang, D., Xie, T.: Performance debugging in the large via
mining millions of stack traces. In: Proceedings of the 34th International Conference on
Software Engineering, ICSE ’12, pp. 145–155. IEEE Press, Piscataway, NJ, USA (2012).
URL http://dl.acm.org/citation.cfm?id=2337223.2337241

20. Hindle, A., Barr, E.T., Su, Z., Gabel, M., De booktitle=2012 34th International Con-
ference on Software Engineering (ICSE) pages=837–847, y.o.: On the naturalness of
software

21. Kaushik, N., Tahvildari, L.: A comparative study of the performance of ir models on
duplicate bug detection. In: 2012 16th European Conference on Software Maintenance
and Reengineering, pp. 159–168 (2012). DOI 10.1109/CSMR.2012.78

22. Li, Z., Tan, L., Wang, X., Lu, S., Zhou, Y., Zhai, C.: Have things changed now?: An
empirical study of bug characteristics in modern open source software. In: Proceed-
ings of the 1st Workshop on Architectural and System Support for Improving Soft-
ware Dependability, ASID ’06, pp. 25–33. ACM, New York, NY, USA (2006). DOI
10.1145/1181309.1181314. URL http://doi.acm.org/10.1145/1181309.1181314

23. Lu, S., Park, S., Seo, E., Zhou, Y.: Learning from mistakes: A comprehensive study on
real world concurrency bug characteristics. SIGOPS Oper. Syst. Rev. 42(2), 329–339
(2008). DOI 10.1145/1353535.1346323. URL http://doi.acm.org/10.1145/1353535.

1346323

24. Murphy-Hill, E., Jiresal, R., Murphy, G.C.: Improving software developers’ fluency by
recommending development environment commands. In: Proceedings of the ACM SIG-
SOFT 20th International Symposium on the Foundations of Software Engineering, FSE
’12, pp. 42:1–42:11. ACM, New York, NY, USA (2012). DOI 10.1145/2393596.2393645.
URL http://doi.acm.org/10.1145/2393596.2393645

25. Nguyen, V.A., Boyd-Graber, J.L., Resnik, P., Chang, J.: Learning a concept hierar-
chy from multi-labeled documents. In: Z. Ghahramani, M. Welling, C. Cortes, N.D.
Lawrence, K.Q. Weinberger (eds.) Advances in Neural Information Processing Sys-
tems 27, pp. 3671–3679. Curran Associates, Inc. (2014). URL http://papers.nips.cc/

paper/5303-learning-a-concept-hierarchy-from-multi-labeled-documents.pdf

26. Paisley, J., Wang, C., Blei, D.M., Jordan, M.I.: Nested hierarchical dirichlet processes.
IEEE Transactions on Pattern Analysis and Machine Intelligence 37(2), 256–270 (2015).
DOI 10.1109/TPAMI.2014.2318728

27. Panichella, A., Dit, B., Oliveto, R., Di Penta, M., Poshyvanyk, D., De Lucia, A.: How
to effectively use topic models for software engineering tasks? an approach based on
genetic algorithms. In: Proceedings of the 2013 International Conference on Software
Engineering, ICSE ’13, pp. 522–531. IEEE Press, Piscataway, NJ, USA (2013). URL
http://dl.acm.org/citation.cfm?id=2486788.2486857

28. Pritchard, J.K., Stephens, M., Donnelly, P.: Inference of population structure using
multilocus genotype data 155(2), 945–959 (2000)

29. Roos, M., Martins, T.G., Held, L., Rue, H., et al.: Sensitivity analysis for bayesian
hierarchical models. Bayesian Analysis 10(2), 321–349 (2015)

http://doi.acm.org/10.1145/2384616.2384684
http://doi.acm.org/10.1145/2384616.2384684
http://dl.acm.org/citation.cfm?id=2337223.2337241
http://doi.acm.org/10.1145/1181309.1181314
http://doi.acm.org/10.1145/1353535.1346323
http://doi.acm.org/10.1145/1353535.1346323
http://doi.acm.org/10.1145/2393596.2393645
http://papers.nips.cc/paper/5303-learning-a-concept-hierarchy-from-multi-labeled-documents.pdf
http://papers.nips.cc/paper/5303-learning-a-concept-hierarchy-from-multi-labeled-documents.pdf
http://dl.acm.org/citation.cfm?id=2486788.2486857

26 Hui Chen, Kostadin Damevski, David Shepherd, Nicholas A. Kraft

30. Rosen-Zvi, M., Griffiths, T., Steyvers, M., Smyth, P.: The author-topic model for authors
and documents. In: Proceedings of the 20th Conference on Uncertainty in Artificial In-
telligence, UAI ’04, pp. 487–494. AUAI Press, Arlington, Virginia, United States (2004).
URL http://dl.acm.org/citation.cfm?id=1036843.1036902

31. Snipes, W., Nair, A.R., Murphy-Hill, E.: Experiences gamifying developer adoption of
practices and tools. In: Companion Proceedings of the 36th International Conference on
Software Engineering, ICSE Companion 2014, pp. 105–114. ACM, New York, NY, USA
(2014). DOI 10.1145/2591062.2591171. URL http://doi.acm.org/10.1145/2591062.

2591171

32. Soh, Z., Drioul, T., Rappe, P.A., Khomh, F., Gueheneuc, Y.G., Habra, N.: Noises
in interaction traces data and their impact on previous research studies. In: 2015
ACM/IEEE International Symposium on Empirical Software Engineering and Mea-
surement (ESEM), pp. 1–10 (2015). DOI 10.1109/ESEM.2015.7321209

33. Sun, X., Liu, X., Li, B., Duan, Y., Yang, H., Hu, J.: Exploring topic models in software
engineering data analysis: A survey. In: 2016 17th IEEE/ACIS International Conference
on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed
Computing (SNPD), pp. 357–362 (2016). DOI 10.1109/SNPD.2016.7515925

34. Teh, Y.W., Jordan, M.I., Beal, M.J., Blei, D.M.: Hierarchical dirichlet processes. Journal
of the American Statistical Association 101(476), 1566–1581 (2006). DOI 10.1198/
016214506000000302. URL http://dx.doi.org/10.1198/016214506000000302

35. Wallach, H.M., Murray, I., Salakhutdinov, R., Mimno, D.: Evaluation methods for
topic models. In: Proceedings of the 26th Annual International Conference on Ma-
chine Learning, ICML ’09, pp. 1105–1112. ACM, New York, NY, USA (2009). DOI
10.1145/1553374.1553515. URL http://doi.acm.org/10.1145/1553374.1553515

36. Wang, Y., Agichtein, E., Benzi, M.: TM-LDA: Efficient online modeling of latent topic
transitions in social media. In: Proceedings of the 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’12, pp. 123–131. ACM,
New York, NY, USA (2012). DOI 10.1145/2339530.2339552. URL http://doi.acm.

org/10.1145/2339530.2339552

37. Williams, C.C., Hollingsworth, J.K.: Automatic mining of source code repositories to
improve bug finding techniques. IEEE Transactions on Software Engineering 31(6),
466–480 (2005). DOI 10.1109/TSE.2005.63

38. Wu, R., Zhang, H., Cheung, S.C., Kim, S.: Crashlocator: Locating crashing faults based
on crash stacks. In: Proceedings of the 2014 International Symposium on Software
Testing and Analysis, ISSTA 2014, pp. 204–214. ACM, New York, NY, USA (2014).
DOI 10.1145/2610384.2610386. URL http://doi.acm.org/10.1145/2610384.2610386

39. Yin, Z., Caesar, M., Zhou, Y.: Towards understanding bugs in open source router soft-
ware. SIGCOMM Comput. Commun. Rev. 40(3), 34–40 (2010). DOI 10.1145/1823844.
1823849. URL http://doi.acm.org/10.1145/1823844.1823849

http://dl.acm.org/citation.cfm?id=1036843.1036902
http://doi.acm.org/10.1145/2591062.2591171
http://doi.acm.org/10.1145/2591062.2591171
http://dx.doi.org/10.1198/016214506000000302
http://doi.acm.org/10.1145/1553374.1553515
http://doi.acm.org/10.1145/2339530.2339552
http://doi.acm.org/10.1145/2339530.2339552
http://doi.acm.org/10.1145/2610384.2610386
http://doi.acm.org/10.1145/1823844.1823849

	1 Introduction
	2 Background
	3 Hierarchical Topic Modeling for Interaction Data
	4 Evaluation
	5 Threats to Validity
	6 Related Work
	7 Conclusions

