
Vol.:(0123456789)

Automated Software Engineering (2021) 28:2
https://doi.org/10.1007/s10515-020-00278-3

1 3

ALBA: a model‑driven framework for the automatic
generation of android location‑based apps

Mohammadali Gharaat1 · Mohammadreza Sharbaf1 · Bahman Zamani1 ·
Abdelwahab Hamou‑Lhadj2

Received: 14 November 2019 / Accepted: 5 October 2020 / Published online: 21 January 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
In recent years, the number of smartphone users has increased dramatically. These
users download millions of apps and use them for various services. Due to the sig-
nificant demand for mobile apps, developers often seek faster development methods
and more effective tools and techniques to generate these apps. Many of these apps
are location-based apps in which users receive services based on their geographi-
cal location. In this paper, we propose a model-driven approach for the automatic
generation of Android location-based mobile apps. Our framework, called ALBA,
consists of a domain-specific modeling language, a modeling tool, and a plugin
which includes model to code transformations. The modeling tool enables a novice
designer to model a location-based app. The model is validated against the prede-
fined constraints and the editor prevents creating invalid models. The designer uses
the plugin to generate the Android code of the app. The evaluation of our work is
two fold. First, to evaluate the generalizability of the ALBA framework, we con-
ducted an experiment which includes the generation of four industrial location-based
apps. Second, to evaluate the usability and quality of both the framework and the
generated apps, we conducted a case study consists of three experiments. The results
of the evaluation are promising both in terms of the applicability of the framework
and the quality of the generated apps.

Keywords  Model-driven software engineering · Domain specific language ·
Location-based android apps · Software engineering for mobile apps · Automated
software engineering

 *	 Bahman Zamani
	 zamani@eng.ui.ac.ir

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-020-00278-3&domain=pdf

	 Automated Software Engineering (2021) 28:2

1 3

2  Page 2 of 45

1  Introduction

Mobile app development is one of the areas of software engineering that has seen
important growth in recent years (Clement 2019), due to the increasing number of
smartphones [more than 3 billion in 2019 Holst (2019a)]. While Android and iOS
are the two most predominant operating systems for smartphones (Okediran et al.
2014), the former has a larger market share. Android market share reached 89% in
the second quarter of 2019, while the iOS market share was approximately 10%
(Holst 2019b). In the fourth quarter of 2017, the number of downloads from the
Google Play store, a repository of Android apps, reached 19 billion (Sydow 2018).
This market calls for more apps of different categories, including location-based
apps, the focus of this paper (Raveh 2019).

Location-based apps provide users with customized information and services
based on their geographical location (Oh et al. 2019). We consider a location-based
app as any app that provides location-based services (LBS), which is defined by
Ferraro and Aktihanoglu (2011) as follows: “Typically you could define a location-
based service as an information service, accessible with mobile devices through the
mobile network and utilizing the ability to make use of the geographical position of
the mobile device.” To put it another way, LBS is a service where (1) the user can
specify his/her location, (2) the information provided is spatially related to the user’s
location, and (3) the user is offered dynamic or two-way interaction with the loca-
tion information or content (Raveh 2019).

Economically, location-based apps play an important role in the global loca-
tion analytics market size, which is expected to reach USD 22.8 billion by 2024.1
Therefore, similar to any other software development endeavor, Android developers
are looking for faster development paradigms, which can result in a shorter time to
market. The problem is that writing an Android app from scratch is a tedious and
time-consuming task (Zolotas et al. 2017; Meirelles et al. 2019). To alleviate this
problem, in this paper, we resort to the use of model-driven engineering (MDE).
MDE promises to cope with the complexity by rising the level of abstraction, and
speeding the development process by automatic generation of the code (Brambilla
et al. 2017). Several research studies (HoseinDoost et al. 2019; Benouda et al. 2016;
Heitkötter et al. 2013; Vaupel et al. 2018) showed that MDE can be applied to the
generation of software in different domains, including mobile app development.

To automate the process of creating location-based apps, we propose a model-
driven engineering framework, called ALBA (android location-based app genera-
tor), which developers can use to automatically generate location-based Android
apps in Java. ALBA consists of three components: (1) a domain-specific modeling
language (DSML) that supports the concepts of Android location-based apps, (2) a
graphical editor that enables developers to model an Android location-based app,
and (3) an Eclipse plugin that generates the final app code from the model, based on
the predefined transformations.

1  https://​www.​marke​tsand​marke​ts.​com/​Market-​Repor​ts/​locat​ion-​analy​tics-​market-​17719​3456.​html.

https://www.marketsandmarkets.com/Market-Reports/location-analytics-market-177193456.html

1 3

Automated Software Engineering (2021) 28:2	 Page 3 of 45  2

Developers use the ALBA modeling editor to design the app model based on
predefined requirements. The model is validated against the predefined constraints
and the editor prevents creating invalid models. Then, the app code will be auto-
matically generated from the models using the transformations that are embedded
in the code generation plugin. As such, we believe that the ALBA framework can
facilitate greatly the development of location-based mobile apps for both novice and
experienced developers. This is because of the high abstraction level that the ALBA
modeling language provides as well as the automatic code generation provided by
the framework. ALBA advances the development of location-based apps by benefit-
ing from the advantages of both model-driven and code-centric paradigms, which
can reduce the development time and maintenance costs compared to well-known
mobile app development frameworks with the same output quality.

To validate our framework, first, we performed a case study to demonstrate the
generalizability of our approach for developing real-world location-based apps in
different domains. Second, we evaluated the usability and quality aspects of the pro-
posed framework and generated apps by following a case study research, includ-
ing three experiments. In the first experiment, we assessed the impact of using the
ALBA framework on the development of the location-based app in a workshop with
14 participants. In the second experiment, we conducted an online user survey to
evaluate the usability of an ALBA generated app. Finally, in the third experiment,
we scrutinized the advantages of ALBA framework and quality of its generated apps
comparing to the peer frameworks such as React Native2 and MIT App Inventor.3
Analyzing the obtained results of this case study shows that ALBA is an effective
and efficient approach, which reduces the development time while generating high-
quality apps.

The rest of this paper is organized as follows. Section 2 presents the UniFy, as a
motivation example of a location-based app. The ALBA modeling language, as a
DSML, is discussed in Sect. 4. The ALBA framework and the process of using the
framework are covered in Sect. 5. The results of the evaluation, which shows the
usefulness of the ALBA framework, are depicted in Sect. 6. Section 7 is dedicated to
related work. Finally, we conclude the paper in Sect. 8, followed by future research
directions.

2 � Motivation

As a concrete example of the need for a location-based app, let us consider the UniFy
app, a real case in the University of Isfahan. The University of Isfahan campus occu-
pies about 650 acres and is one of the largest campuses in Iran, with more than 100
buildings, scattered around the campus. Every newcomer, including new students
who come to the University of Isfahan for the first time, experience the problem of
locating the buildings and classrooms on the campus. In the past, newcomers used

2  https://​faceb​ook.​github.​io/​react-​native/.
3  http://​appin​ventor.​mit.​edu.

https://facebook.github.io/react-native/
http://appinventor.mit.edu

	 Automated Software Engineering (2021) 28:2

1 3

2  Page 4 of 45

to find their destination on the university campus using a paper map, which was
neither useful nor informative. Paper maps are not as handy as mobile apps and do
not provide features such as fast searching among locations, classification of loca-
tions, and navigating around the campus. This encouraged the University of Isfahan
administration to develop a mobile app (university guide app) that locates and gives
full detail about more than 200 places inside the campus.

Figure 1 shows the wireframe prepared for the university guide app, which is
designed based on the app requirements. The following are the requirements for the
University of Isfahan guide app. The user should be able to select a category the
same as what is shown in Fig. 1a for filtering a large number of locations. This is
also used to prevent putting too many pins on a small area of the map. According to
the wireframe in Fig. 1b, each location on the university campus should be pinned
on the map. The current location of the user should be shown on the same page that
represents the location pins. By selecting a pin on the map, the detailed information
about that location is illustrated on another page, as indicated in Fig. 1c.

3 � Location‑based app development methodology

Before introducing our methodology, it should be noted that in model-driven
approaches the goal is to automatically generate the code from the models. Hence, in
every model-driven methodology we deal with elements such as models and trans-
formations. The models must conform to corresponding meta-models (i.e., mod-
eling languages). Transformations are written using the transformation languages.
The generated code will run on the target platform. Our methodology is inspired by
the methodology presented by Brambilla et al. (2017).

Brambilla et al. (2017) proposed a methodology, which is a comprehensive top-
down process for system development based on the model-driven software engineer-
ing (MDSE) philosophy. In this work, we adopted their methodology to develop our
model-driven approach for building Android location-based apps using the ALBA
framework. Our methodology is illustrated in Fig. 2.

In Fig. 2, we see the two main aspects of every model-driven approach, i.e., Con-
ceptualization and Implementation, as horizontal and vertical dimensions, respec-
tively. The Conceptualization dimension covers the abstraction aspects. This dimen-
sion is divided into three columns in the figure: Application, Application domain,
and Meta-Level. The Implementation dimension covers the development aspects.
This dimension is divided into three rows: Modeling, Automation, and Realization.

Figure 2 can be scanned column-wise or row-wise. From the one hand, if we look
at the figure column-wise, the first column (Application) shows the core flow of
MDSE, in which the model of app (App Model) is designed, and then by running
the written transformations (Transformation/Code generation), this model is con-
verted into the code of application (Java and XML Files), automatically. Due to the
fact that, this column is per se a process for developing apps using the ALBA frame-
work, we will come back to this column again and show it as a process in Sect. 5
(Fig. 6).

1 3

Automated Software Engineering (2021) 28:2	 Page 5 of 45  2

The second column (application domain) is in fact one level above the pre-
vious column, in terms of abstraction. This is the first meta-level, in which
we need to design our modeling language, or our meta-model (ALBA Mod-
eling Language), by which we can design our app model. Also, in this level,
the transformations (EGL Template Files) are written to convert a model to the
corresponding app. Finally, the platform on which the generated code will be
compiled to prepare the APK file, is specified at this level. In our work, the
generated code is supposed to be compiled on the Android Studio. This is why
Android Studio is indicated at this level.

The third column (meta-level) is more abstract than the previous column. In
this level, we specify the underlying languages both for designing our mode-
ling language and for writing our transformations. In ALBA, we designed our
modeling language using the Ecore concepts, and we wrote our transformations
using EGL transformation language. Clearly, we do not deal with the language
in which Android Studio is built, hence, that cell in the figure is left blank.

On the other hand, if we look at Fig. 2 row-wise, we see that the first row
(Modeling) shows that in ALBA, the App Model is built using the ALBA Mode-
ling Language, which is per se built based upon the Ecore language. The second
row clarifies that the Transformation/Code generation in ALBA is achieved by
writing EGL Templates using the EGL transformation language. The third row
indicates that the code that is generated by ALBA are JAVA and XML files that
will be fed to Android Studio for generating the corresponding APK file.

To summarize, in the following, we discuss the three primary steps to imple-
ment an Android location-based app using the ALBA framework based on the
methodology depicted in Fig. 2.

1.	 Modeling The first step is modeling the location-based apps; models of these apps
should be based on a modeling language, which is “ALBA Modeling Language”.
This shows that it is essential to have a modeling language (meta-model) which
specifies meta-classes, relations, and gives predictable structure to the models.
In Sect. 4, the ALBA Modeling Language is discussed. Besides, to facilitate
the modeling by the ALBA Modeling Language, a graphical modeling editor is
implemented. Section 5.1 provides detailed information about this editor. Mod-
eling editor is part of the ALBA framework, which is discussed in Sect. 5.

2.	 Automation After modeling, the model needs to be transformed into the desired
code. In our research, we have implemented various model-to-code transforma-
tions to generate all Java and XML layout files automatically from the input
model. In Sect. 5.2, we explain the ALBA transformations, as another part of the
ALBA framework.

3.	 Realization The output of the ALBA framework is the auto-generated files from
their co-responding model. These files can be edited by Android Studio as default
IDE for Android development. Section 5.2 gives information about the generated
files for our case studies.

	 Automated Software Engineering (2021) 28:2

1 3

2  Page 6 of 45

4 � ALBA modeling language

This section presents the proposed modeling language, ALBA DSML, which sup-
ports the concepts and features required for location-based Android app develop-
ment. To define the ALBA DSML, we followed the approach introduced by Mernik

Fig. 1   Wireframe of the UniFy app. (a) Categories, (b) map, and (c) location details

Fig. 2   A model-driven methodology for developing Location-based Apps using ALBA framework.
(Adapted from Brambilla et al. 2017)

1 3

Automated Software Engineering (2021) 28:2	 Page 7 of 45  2

et al. (2005). This approach consists of five phases: decision, analysis, design,
implementation, and deployment. In the decision phase, the rationale for developing
a new DSML is presented. In the analysis phase, the domain concepts and termi-
nology are discovered. After completing domain analysis, the design phase starts,
and the relationships between the concepts are specified. The result is also called
the meta-model of the language, in terms of the model-driven concepts. Indeed, the
meta-model as a class diagram is used to define the abstract syntax of the language
in terms of the model elements and their relationships (Brambilla et al. 2017). In
addition, OCL invariants are added to the abstract syntax to express the semantic
constraints on the language (Kurtev et al. 2006). In the implementation phase, the
language entities and their relationships, i.e., the meta-model, are implemented in a
tool. The deployment phase focuses on the use of the DSML on an executable plat-
form. For the ALBA modeling language, these phases are explained in Sects. 4.1 to
4.5, respectively.

4.1 � Decision

The rationale for proposing a new DSML for the domain of location-based app
development is two-fold. On the one hand, defining a new DSML for a domain
will result in a higher level of abstraction, which in turn results in more produc-
tivity (Brambilla et al. 2017; Alfraihi et al. 2018). On the other hand, it can help
developers satisfy the high demand for mobile apps, in general, and location-based
apps in particular (Dehlinger and Dixon 2011). Hence, a new DSML for designing
location-based Android apps is considered essential. As it will be discussed later (in
Sect. 7), and to the best of our knowledge, the domain of Android location-based
app development is not covered yet by any dedicated DSML, particularly consider-
ing the level of abstraction that ALBA provides to the user.

The goal of this research is to design a new DSML to be used by the Android
programmers. The DSML automates the implementation of code skeleton and map
configurations, and generates components of a location-based app, and adds them to
the skeleton using MDE techniques.

4.2 � Analysis

For the analysis phase, we applied the feature-oriented domain analysis (FODA)
approach (Kang et al. 1990). FODA describes a method for classifying features of
the applications in a special domain by distinguishing the mandatory and optional
features and their relations. To obtain a feature model for the domain of location-
based apps, we went through the following steps. First, we selected some of the most
popular apps in this domain from GooglePlay. Second, we classified the concepts
that are supported by these apps. Finally, we constructed a feature model for the fea-
tures of the apps in this domain, which are the ones supported by ALBA.

After a thorough analysis of several location-based apps available on the Google
Play store, we found five popular apps that are used worldwide. As it is depicted in
Table 1, these apps are considered “popular” due to the high number of downloads

	 Automated Software Engineering (2021) 28:2

1 3

2  Page 8 of 45

(indicated at the third column of table) and also their star ratings (indicated in the
second column of table). The selected apps are as follows:

1.	 Google Map4: A Google navigation app used for finding the best path between
two points and locating different locations.

2.	 Booking.com5: A popular app and website to facilitate renting hotels, apartments
and cars.

3.	 Trip Advisor6: The world’s biggest travel site with an average of 455 million
unique visitors every month.

4.	 Airbnb7: An app providing more than two million locations in 191 countries.
5.	 Foursquare8: A popular city guide app and a place recommender based on cus-

tomer needs.

To extract the domain concepts and terminology, we classified the essential con-
cepts of these apps based on their functionality see Table 2. The names chosen for
the concepts in the table are similar to the names of the pages of the apps. This is
because the same features are always organized together on a page. We observed that
the studied apps use mainly five pages dedicated to the following functionalities: (1)
Map, (2) Login and Sign Up, (3) Category Selection, (4) Subcategory Selection, and
(5) Location Details. Also, we found that existing apps use two navigation patterns
namely “Navigation Drawer” and “Tab Bar”, which are also described in Google
material design patterns.9 In the followings, we describe the details of the selected
pages and navigation patterns.

•	 Map page: It refers to the pages of these apps with a full-screen map view, rep-
resenting the positions of the locations on the map. The map used by these apps
relies usually on the Google map library. In addition, there are other functionali-
ties that are implemented on this page such as showing the current location on
the map.

•	 Login and sign up page: The Login and Sign Up is used in all the studied apps.
This helps the companies save histories of user navigation pattern for recom-
mending locations according to their needs.

•	 Category selection page: Since the number of locations could be quite large and
it is not possible to show all of them together on the map, all apps classify their
locations using a two-level categorization.

6  https://​www.​tripa​dvisor.​com.
7  https://​www.​airbnb.​com.
8  https://​fours​quare.​com.
9  https://​mater​ial.​io.

4  https://​map.​google.​com.
5  https://​www.​booki​ng.​com.

https://www.tripadvisor.com
https://www.airbnb.com
https://foursquare.com
https://material.io
https://map.google.com
https://www.booking.com

1 3

Automated Software Engineering (2021) 28:2	 Page 9 of 45  2

•	 Subcategory selection page: This page is necessary for narrowing down the
range of the locations. Some apps use a completely different page for their sub-
categories; others use pop-up windows.

•	 Location details page: This page is dedicated to showing complete information
about the desired location. Moreover, some functionalities such as bookmark-
ing, navigating to the location, leaving a comment, and rating the place could be
implemented on this page.

•	 Navigation drawer: This navigation pattern consists of a navigation drawer,
which appears on one side of the screen and shows a list of pages that the user
wants to jump to directly in the app.

•	 Tab bar: This navigation pattern consists of implementing a bottom tab bar that
represents a horizontal list of pages that a user can move to directly. The user can
also move to the neighbor pages by swiping the screen. “It is recommended to
have a Tab Bar that shows no more than five pages, which are at the same level of
importance. If the number of pages is higher than five, then it is better to use the
“Navigation drawer.”

In addition to the functional features described above, there is more location-based
features. Figure 3 shows other features that should also be supported by a location-
based app. These include: Device Type, OS Type, User Interface Modes, Geo Ser-
vices, and Data Management Models.

Device type refers to the type of devices on which the app can be installed.
ALBA supports both smartphones and tablets. User interface (UI) modes can be
either “Static” or “Dynamic”. A static UI means that the content of the UI compo-
nents is hard coded, while a dynamic UI changes displayed data dynamically based
on various settings. ALBA supports customized material theme color palettes10 and
icons. Additionally, ALBA can identify pre-designed cards inside its constant pages,
meaning that the user of ALBA can design a card in Android studio independent of
ALBA and then specify the name of the file and the card items in the ALBA mod-
eling editor to let ALBA recognize what is within the card view. Then ALBA gener-
ates code for connecting those card items to the server API given in the model.

Table 1   Selected apps for the
analysis phase

App name No. of stars (from
GooglePlay)

No. of downloads
(from Google-
Play)

Google Map 4.3/5 5,000,000,000+
Booking.com 4.8/5 100,000,000+
Trip Advisor 4.4/5 100,000,000+
Airbnb 4.7/5 50,000,000+
Four Square 4.3/5 10,000,000+

10  https://​mater​ial.​io/​devel​op/​andro​id/​themi​ng/​color.

https://material.io/develop/android/theming/color

	 Automated Software Engineering (2021) 28:2

1 3

2  Page 10 of 45

In the ALBA framework, we mixed the user interface and the app logic for the
sake of simplicity and consistency. Using ALBA, the app logic and user interface
can be implemented in three ways: (1) By the relationships between classes in the
model. For example, when a connection between a Fragment and a TabBar is mod-
eled, the ALBA framework will generate the related logic and user interface. (2) By
changing a Boolean attribute in the model. For example, the LocationDetailsFrag-
ment meta-class has some Boolean attributes which can add some special function-
ality to the final app. If we set the “ShowCommentOption” attribute to True, the
framework generates the app logic and user interface for showing comments about
each location to the app users. (3) By generating a skeleton code for the one who is
going to extend the app, ALBA gives a structure for implementing the rest of the
requirements that are not supported by ALBA. For instance, the Fragment meta-
class can be used for this purpose.

Geo services include a map and a GPS sensor. These are the most important fea-
tures of any location-based app and are supported by all studied apps. Data manage-
ment models play an essential role in location-based apps. There are two options
for data management: Local and Server. For example, Google Trip was known for
its ability to save all of the information locally, a helpful feature when an Internet
connection is not available. ALBA supports both data management options, which
means that it keeps the data locally and tries to update the data from the server when
an Internet connection is accessible. Due to the Google map cache mechanism, the
generated apps can be used offline.

As shown in Fig. 3, our framework covers most of the features that we expect of
any location-based application. This helps developers to focus on implementing the
key features related to the app instead of implementing the common ones.

Finally, despite the fact that all the studied apps are designed for both iOS and
Android, for the present time, our framework only supports Android.

4.3 � Design

We designed the ALBA DSML based on the concepts that are described in the
analysis phase. The design shows the elements that are required in the language, as
well as the relationships among these elements. The ALBA DSML was designed
using familiar terms since we assume that users of ALBA are not necessarily profi-
cient in programming. We refer to the concepts of the language and the relationships
between these concepts as the meta-model of the language (Combemale et al. 2016).

Table 2   Classification of the essential concepts of the selected location-based applications
Pages Navigation patterns

Concepts of
applications Map Login &

sign up
Category
selection

Sub category
selection

Location
details

Navigation
drawer Tab bar

Google Map
Booking.com
Trip Advisor
Airbnb
Foursquare

Legend: Fully implemented Partially implemented Not implemented

1 3

Automated Software Engineering (2021) 28:2	 Page 11 of 45  2

The ALBA meta-model not only supports all the features that are common to
the studied apps, but also accepts customization in user interfaces, navigation pat-
terns, and data providers for their content. ALBA can provide model and implement
Java code for the communication between the app and the data provider (e.g., web
service).

The ALBA meta-model is shown in Fig. 4. There is a root meta-class, called
APP, that represents the Android app that is modeled. It has three mandatory chil-
dren: (1) Configuration, (2) Theme, and (3) MainActivity. Every Android app has
configurations, e.g., package name, minimum SDK version, and target SDK version,
which are represented in the Build.gradle file and the manifest file in the Android
project. These configurations can be specified in the Configuration meta-class.
Android apps consist of three primary colors, as it is mentioned in the Google mate-
rial design principles. These colors and the name of the parent theme will be set
in the Theme meta-class. Android apps need at least one Activity for showing the
views and responding to user actions. Almost all activities interact with the user, so
the Activity class takes care of creating a window in which the designer can place
the UI elements.11

The ALBA meta-model consists of other meta-classes, described in the following.

•	 MainActivity: This is responsible for creating a window and producing a
response to user actions, so we involved MainActivity meta-class in the ALBA
meta-model, which controls the transition between different pages; these pages
are called fragments.

•	 Fragment: Fragments are considered as predefined pages with unique user
interfaces and logic, which are shown to the end-user by the MainActivity.
There exist five types of fragments in our DSML, including CategoryFragment,
LoginFragment, LocationsFragment, LocationDetailsFragment, and Emp-
tyFragment. We have some predefined fragments with their functionalities as
well as an empty fragment, which is only a skeleton for requirements that ALBA

Fig. 3   Feature model for location-based app (blue features are supported by our framework) (Color fig-
ure online)

11  https://​devel​oper.​andro​id.​com/​refer​ence/​andro​id/​app/​Activ​ity.​html.

https://developer.android.com/reference/android/app/Activity.html

	 Automated Software Engineering (2021) 28:2

1 3

2  Page 12 of 45

does not support yet. Each fragment has a primary role in the app; taking the
LoginFragment as an example, the login and signup screens and some functions
like mobile phone and email validation will be implemented due to presence of
LoginFragment in the app model. The next fragment is LocationsFragment,
which consists of a Map and could have two recycler views12 named Location-
sRecyclerView in the meta-model for representing the locations lists in a verti-
cal, and a horizontal recycler view.

•	 NavigationDrawer and TabBar: Navigation between fragments depends on the
navigation pattern preferred by the engineering team. It is mainly implemented
in two ways (1) TabBar, and (2) NavigationDrawer. These two concepts are
also supported in the ALBA meta-model.

•	 Api: The Api requests and responses can be defined in each fragment not only to
get the information from the server and show it in a CardView but also to store
it in the local database for offline use. It is advisable that all of the fragments can
communicate with a web service sending parameters to the server and expecting
to receive other parameters from the server by features of the Api, RequestItem,
and ResponseItem. After retrieving the data from the server, the framework

Fig. 4   ALBA meta-model

12  https://​devel​oper.​andro​id.​com/​guide/​topics/​ui/​layout/​recyc​lervi​ew.

https://developer.android.com/guide/topics/ui/layout/recyclerview

1 3

Automated Software Engineering (2021) 28:2	 Page 13 of 45  2

shows received information in the CardItems. Card items are either (1) ima-
geView or (2) textView.

ALBA-generated apps need to obtain data from an end-point, which is specified
by the Api class in the app model. For the sake of simplicity, the ALBA framework
forces Api responses to have some mandatory fields. For instance, every location
must have latitude and longitude. The data model, depicted in Fig. 5, shows the min-
imum entities that a location-based app requires in its database. It shows structures
that data of the app should satisfy in order to be supported by the ALBA. The loca-
tions, location categories, and subcategories with their relationships are essential for
ALBA.

4.4 � Implementation

The ALBA meta-model is implemented using the Eclipse Ecore tool, which is the
graphical modeling tool for defining modeling language concepts in the Eclipse IDE.
Ecore is the meta-language of the Eclipse Modeling Framework (EMF) (Steinberg
et al. 2008). To implement the ALBA meta-model by Ecore, all its meta-classes and
their relationships are defined using Ecore, which is enriched with OCL invariants.

4.5 � Deployment

The meta-model is, in fact, the abstract syntax of our DSML. To use an abstract
syntax, we need a concrete syntax and a modeling editor. In this phase, we build the
concrete syntax of the language, i.e., the notations that are selected for each concept
as well as the ALBA modeling editor, based upon the concepts that are defined in
the abstract syntax. Our editor is built using the Eugenia13 editor generator. Eugenia
is a tool that automatically generates a GMF editor from just an Ecore annotated file
(Kolovos et al. 2017). We will go through the details in Sect. 5.1.

5 � The ALBA framework

The ALBA framework allows the user to design an Android location-based app
using the ALBA editor, then the designed model is transformed into an Android app
using the ALBA code generator plugin. The source code of the ALBA framework is
available from GitHub14 under the Apache 2.0 license. Figure 6 shows the process of
building an Android app using the ALBA framework. This process is fully aligned
with the methodology shown in Fig. 2 of Sect. 3.

Similar to any software development process, the preliminary step is to collect
the requirements. Clearly, this step is out of the scope of the ALBA framework.

13  https://​www.​eclip​se.​org/​epsil​on/​doc/​eugen​ia/.
14  https://​github.​com/​Moham​adAli​22/​ALBA-​frame​work.

https://www.eclipse.org/epsilon/doc/eugenia/
https://github.com/MohamadAli22/ALBA-framework

	 Automated Software Engineering (2021) 28:2

1 3

2  Page 14 of 45

Next, as indicated by the dashed box labeled “Modeling”, the requirements and
user stories should be modeled by the modeler using the ALBA Modeling Editor
to describe the structure of the required app. The result is called App Model in the
figure. Next, as indicated by the dashed box labeled “Automation,” the app model
is transformed into the app code using the ALBA Code Generator. Finally, as indi-
cated by the dashed box labeled “Realization,” the app code is revised by the user
(if required) and then it will be compiled into an APK file using the Android Studio.
Since Android Studio is the primary IDE for developing Android apps, ALBA gen-
erates the code in a format that is fully compatible with Android Studio.

In the rest of this section, the ALBA Modeling Editor and the ALBA code gen-
erator as the main parts of the ALBA framework are further explained.

5.1 � ALBA modeling editor

After the meta-model is designed in the Ecore format that is supported by Eclipse
modeling tools, the meta-model file is annotated to specify the links between the
nodes, where every node can be placed by the user, and what are the visual proper-
ties of the node.

The ALBA modeling editor environment is shown in Fig. 7. The editor has three
main panes as follows: (1) design pane, (2) objects pane, and (3) connections pane.
The design pane is considered as the root node, which corresponds to the APP
node in the meta-model. The user can take advantage of the editor by selecting an
object and dropping it into the design pane. The editor dynamically and automati-
cally prevents the meaningless objects hierarchy or incorrect connections between
the objects. As an example, the model of a “locations fragment” is depicted in
Fig. 7. In the designed model, (4) the given card view has four parts: title, address,
phone number, and image. Three of them are text views, and another item is an
image view as these card items require to be connected to the response Api class
(5). When the page is being created, the app tries to get the data from the web ser-
vice, which is specified in the model, modeled as an Api class. However, if the data
is not available and the local database was created before, the app searches for the
information in the local storage instead of requesting data from the end-point.

Fig. 5   ALBA data model

1 3

Automated Software Engineering (2021) 28:2	 Page 15 of 45  2

5.2 � ALBA code generator plugin

The code generator is an Eclipse plugin which is responsible for importing mod-
els, and then running a list of Epsilon Generation Language (EGL) template files
in coordination with a single EGX file. The EGX files are role-based sub-languages
for template execution. They can generate different files based on a user-defined
model (Kolovos et al. 2010). The plugin generates code in folders structure, which
are handy to be opened by Android Studio. Table 3 shows the number of lines of
code implemented in the template files and the number of template files used in the
ALBA code generator.

To show more details of the implementations, two samples are explained in
the following. Listing 1 reveals the content of an EGX file that is responsible for

Fig. 6   The process of generating an app using ALBA framework (Aligned with Fig. 2)

Fig. 7   The ALBA modeling editor environment

	 Automated Software Engineering (2021) 28:2

1 3

2  Page 16 of 45

executing the EGL files regarding the model. The rules are executed one by one. For
example, if the Configuration class is present in the given model, at the run time of
the EGX file, rules R0 and R1 will be executed.

It happens because the rule R0 and R1 both are bound to the Configuration in the
EGX file of the framework. This means that the Configuration class from the model
along with its properties are passed to the buildGradleModule.egl and manifest.egl
file, and they will generate the code of the build.gradle file and manifest file of the
Android Studio project.

Listing 2 shows the content of one of the template files that we have used in the
ALBA framework that is the buildGradleModule file responsible for generating the
contents of the build.gradle file. The build.gradle file holds the Gradle toolkit build
settings.15 The compile setting of the project, based on the configurations made by
the user in the model, will be set as shown in Listing 2.

Table 3   Statistics about ALBA
code generator

Implemented transformations

Line of code Number of templates

4000 lines 24 files

15  https://​devel​oper.​andro​id.​com/​studio/​build/​index.​html.

https://developer.android.com/studio/build/index.html

1 3

Automated Software Engineering (2021) 28:2	 Page 17 of 45  2

6 � Evaluation

This section addresses the generalizability and usability of the proposed approach
on the development of Android location-based apps by analyzing both ALBA
framework and resulting apps in two main parts. In the first part (Sect. 6.1), the
generalizability of ALBA framework has been demonstrated by carrying out an
experiment, which consists of creating different real-world location-based apps.
The term generalizability refers to how far the generated apps are applicable and
valid in the context of location-based apps. To enhance the rigor of this experi-
ment, we follow the guidelines defined by Runeson and Höst (2009), which
include the definition of research questions, designing the case study, and dis-
cussing about the results. In the second part (Sect. 6.2), we evaluate the usabil-
ity and quality aspects of the proposed framework and generated apps. For this
evaluation, we perform a case study research following the guidelines suggested
by Wohlin et al. (2012). The steps recommended by this guideline are as follows:
evaluation setup, planning and data collection, and analyzing the results. In the
following sections, we go through the details of each activity for both parts of the
evaluation. Also, we address the threats to validity for our work in Sect. 6.3.

6.1 � Evaluating the generalizability of ALBA framework

In this section, we demonstrate the generalizability of ALBA framework for devel-
oping location-based apps on the basis of a variety of real-world location-based

	 Automated Software Engineering (2021) 28:2

1 3

2  Page 18 of 45

cases. In the following, we describe performed activities based on the guidelines
by Runeson and Höst (2009).

6.1.1 � Research questions

ALBA allows specifying a location-based app using a graphical modeling editor
in which the user can design an app model to satisfy his/her requirements. Based
on the app model, Android code are generated automatically using the ALBA code
generator. Thus, two essential factors that need to be assessed are the ability to sup-
port the requirements of location-based apps and the development effort. Therefore,
the research questions for this study are posed as follows.

RQ1. Is ALBA framework an appropriate solution to design and deploy the
requirements of location-based apps?
RQ2. How much effort is required to generate a location-based app using ALBA
framework?

6.1.2 � Case study design

Setup. We chose to analyze the development process of four location-based apps
coming from real-world needs. These apps are as follows: (1) UniFy, (2) Baha-
restan, (3) MedIUM, and (4) Covid-19 Dashboard. In our experiment, we consid-
ered the modeling and development of apps based on customer requirements. Each
app addresses different functional requirements, where displaying information about
locations is a key feature.

The first app is called UniFy, a guide app for the University of Isfahan, which
is a typical example of location-based apps. UniFy guides newcomers through the
university campus. It was made available to all students of the University of Isfahan
from October 2018. Figure 8 shows three main pages of UniFy app, and its require-
ments were wholly described in Sect. 2.

The second app is Baharestan, which provides information about economics, rec-
reational, and cultural places in the city of Baharestan16 to the citizens and investors.
In addition, this app provides an interactive user interface for receiving comments
and suggestions from the user about each location. The Baharestan app was ordered
by Baharestan city municipality and has been available to Baharestan residents since
2019. Three pages of this app are shown in Fig. 9.

The third app is MedIUM, which is a guide app that has been generated for
the Isfahan University of Medical Sciences.17 The MedIUM app requirements are
mainly similar to the UniFy app. However, compared to UniFy, it has three differ-
ent requirements, e.g., the News page. The MedIUM app was made available to all
students of the Isfahan University of Medical Sciences from April 2019. Figure 10
shows three main pages of the MedIUM app.

16  https://​en.​wikip​edia.​org/​wiki/​Bahar​estan​,_​Isfah​an.
17  http://​engli​sh.​mui.​ac.​ir/.

https://en.wikipedia.org/wiki/Baharestan,_Isfahan
http://english.mui.ac.ir/

1 3

Automated Software Engineering (2021) 28:2	 Page 19 of 45  2

The fourth app is Covid-19 dashboard, which is generated due to the coronavirus
pandemic to show the latest statistics about the coronavirus outbreak all around the
world. In this app, users can find real-time information such as the number of con-
firmed coronavirus cases and mortality rate for all the countries in the world. Three
pages of this app are shown in Fig. 11.

To conduct this experiment, first, we modeled four mentioned apps and their
Android code was generated using the ALBA framework. Then, the generated code
was reviewed based on the customer requirements, and if needed, the code were
manually edited. During the experiment, the time for doing each required task has
been independently collected. Therefore, by comparing the data obtained from our
experiment, the research questions can be answered appropriately.

Measures. For determining the generalizability of the ALBA framework, we con-
sider quantitative measures that are related to the required effort and the complete-
ness of the requirements.

Firstly, to investigate the required effort, we need the size and development time
of the generated apps. The size of apps can be measured in terms of lines of code
(LOC). LOC is a general metric for all kinds of software and does not show the
effort saved in the automatic code generation using the ALBA framework. Thus, we
also need another metric that indicates the extent of automatically generated code
compared to the manually-written code. The development time can be computed
based on the number of hours spent on the development process. However, for iden-
tifying the usefulness of the ALBA framework, we need to determine how much
development time has been spent on modeling. Consequently, we define LOC, the
percentage of automatically generated code, the overall time consumed for the app
development, and the time spent on the modeling, as measures for investigating the
size and development time for apps generated by the ALBA framework.

Secondly, to investigate completeness of requirements, we need the number of
completely supported requirements comparing to the total number of requirements.
A requirement is fully supported by an app if all needed features and its associations
are developed correctly. Hence, we define the number of modeled requirements and
the total number of requirements as the measures for investigating the completeness
of the requirements in the ALBA modeling process.

6.1.3 � Results

We gathered data for the mentioned apps during the development process by the
ALBA framework. Then, we computed the quantitative measures for the require-
ments completeness and the cost of the development process for each app. The
results of our experiment are depicted in Table 4.

RQ1: Is ALBA framework an appropriate solution to design and deploy the
requirements of location-based apps?

As shown in Table 4, for the UniFy app, 20 out of 25 requirements (80%) are
supported by modeling capabilities. The five requirements that are not supported
by modeling are creating help for the user, adding the Persian language, finding
the distance to the destination, and calculating the cost of Snapp and Tapsi internet
taxi services, which are not considered as location-based requirements. Also, the

	 Automated Software Engineering (2021) 28:2

1 3

2  Page 20 of 45

percentage of covered requirements for the MedIUM app is about 83%, which is
very close to UniFy. This is due to high similarity between the requirements of these
two apps.

As a different case, for Baharestan app with 23 requirements, 18 require-
ments are supported by the modeling capabilities, which shows more than 78%
coverage. In the Baharestan app, in addition to creating help for the user and
adding the Persian language, three other requirements, including adding About

Fig. 8   Three main pages of UniFy App

Fig. 9   Three main pages of Baharestan App

1 3

Automated Software Engineering (2021) 28:2	 Page 21 of 45  2

Baharestan page, adding News page and adding the capability of receiving the
user suggestions, are not entirely supported by the modeling. For these require-
ments that are not inherently location-based, ALBA creates a skeleton, which
needs a little manual coding. In addition, for Covid-19 dashboard app, which is
an app with only location-based requirements, we reached 100% coverage using
the ALBA modeling capability.

Fig. 10   Three main pages of MedIUM App

Fig. 11   Three main pages of Covid-19 dashboard App

	 Automated Software Engineering (2021) 28:2

1 3

2  Page 22 of 45

In summary, we found that the ALBA framework could support most frequent
requirements of location-based apps. Based on the percentage of modeled require-
ments in Table 4, ALBA covers approximately 80% of the overall requirements of
our experiment by the modeling capabilities. Most of the unsupported requirements
were not originally location-based requirements. However, the ALBA framework
supports the development of such requirements, mostly by providing code skeletons.

RQ2: How much effort is required to generate a location-based app using
ALBA framework?

As we mentioned earlier, the first step of the development process in the ABLA
framework is modeling. After modeling, the Android code is generated automati-
cally and is modified if required. As shown in Table 4, the overall time for develop-
ing the Unify app was 10 h, of which 6 h were spent on modeling. However, the
result of modeling time was generating approximately 95% of the total 2000 lines of
code of the UniFy app. The modeling time for MedIUM is roughly equal to the time
for Unfiy. However, because of similarities between the requirements of MedIUM
and Unify, the MdeIUM app model was primarily reused from the UniFy app model
and reduced the modeling time by about 1 h. Reusing the previous models to create
similar apps is one of the main advantages of the ALBA framework.

As shown in Table 4, the total time required to develop the MedIUM and the
Barharestn apps are more than UniFy. However, their modeling times and their total
number of requirements are almost the same. This extra required time is due to the
lower percentage of automatically generated code for these apps that leads to writ-
ing more manual codes. In general, considering the overall time of development, we
found out that with the decreasing percentage of automatically generated code from
models, the overall development effort spent on manual code witting was increased
quickly.

In contrast to other apps, the Covid-19 dashboard app was generated entirely
automatically. The overall time for developing the Covid-19 app was 2 h, of which,
half an hour was spent on modeling, and the rest was used for preparing APIs and
app generation. Furthermore, compared to the manual coding, based on the produc-
tivity of average programmers (Dalmasso et al. 2013), the Covid-19 app needs 12
person-day effort to be built and tested. However, using the ABLA framework, we
generated it with only 1/4 person-day effort.

Table 4   Results of evaluating the generalizability of ALBA

App name # Total
require-
ments

Modeled
require-
ments

% Require-
ments (%)
covered in
model

Mode-
ling time
(h)

Overall time
(h)

#LOC % Auto
generated
code (%)

UniFy 25 20 80 ~ 6 ~ 10 ~ 2000 95
Baharestan 23 18 78 ~ 5 ~ 22 ~ 3000 80
MedIUM 24 20 83 ~ 6 ~ 14 ~ 2400 90
Covid-19 6 6 100 ~ 0.5 ~ 2 ~ 1200 100

1 3

Automated Software Engineering (2021) 28:2	 Page 23 of 45  2

6.2 � Evaluating the usability and quality aspects

In this section, we evaluate the proposed approach based on the usability and qual-
ity aspects. In order to evaluate the usability, the most reliable approach is to con-
duct a case study with users (Dillon 2001). To assess the quality of the apps gener-
ated using the ALBA framework, an option is to perform a case study based on the
real-world cases and then compare the results using quantitative measures. To this
end, we conducted a descriptive case study, which consists of three experiments,
designed based on the guidelines of Wohlin et al. (2012).

6.2.1 � Evaluation setup

We define two types of users of the ALBA framework: developers and the end-users.
Developers use the framework to create location-based apps, whereas end-users are
users of the resulting apps. Note that developers can also be end-users. We use the
GQM (Goal Question Metric) paradigm (Basili et al. 1994) to decompose the goals
of the evaluation into specific research questions and metrics. We use the evalua-
tion model for mobile apps proposed by Hussain (2013) to assess the effectiveness,
efficiency, and satisfaction of ALBA’s generated apps. We formulate the following
research questions that we aim to answer by this case study.

RQ3. What is the effectiveness, efficiency, and satisfaction of the ALBA framework?
RQ4. What is the effectiveness, efficiency, and satisfaction of the resulting apps
generated by the ABLA framework?
RQ5. What perception of satisfaction does the ALBA approach present, com-
pared to the existing approaches?

6.2.2 � Planning and data collection

The study was carried out in three experiments. In the first experiment, we designed
an empirical study with 14 users to assess the usability of the ALBA modeling edi-
tor and its code generator. In the second experiment, we conducted an online user
survey for evaluating the usability and quality of the apps generated by the ALBA
framework, in which we review UniFy as a real-world app that is generated using
the ALBA framework. Finally, in the third experiment, we designed an experiment,
including two studies to compare the ALBA framework to the MIT App Inventor
and the React Native, two well-known frameworks for developing mobile apps. In
the following, we describe the activities that were performed for each experiment.

Experiment 1: Workshop to Build the UniFy App Using ALBA
As introduced earlier, UniFy is the name chosen for the University of Isfahan guide

app that was described in Sect. 2. Unify aims to help people finding various places
on the university campus. The app has been built using the ALBA framework and
is available on our research group web site18 and in the Cafebazar Android market.19

18  http://​mdse.​ui.​ac.​ir/​tools/.
19  https://​cafeb​azaar.​ir/​app/​ir.​moham​adali​ghara​at.​mdsegp.​eng/?l=​en.

http://mdse.ui.ac.ir/tools/
https://cafebazaar.ir/app/ir.mohamadaligharaat.mdsegp.eng/?l=en

	 Automated Software Engineering (2021) 28:2

1 3

2  Page 24 of 45

It is worth mentioning that more than 95% of the UniFy app code, which represents
2000 lines of code, are generated automatically by the ALBA framework. Considering
the productivity of average programmers that enables them to implement 100 lines of
code per day (Kung 2013), the UniFy app needs 21 person-day effort to be built and
tested. However, we modeled and made 95% line of code of UniFy from the require-
ments using the ALBA framework with only 3/4 person-day effort.

Figure 12 shows three pages of the UniFy app. Figure 12a shows the selected
category fragment in which we have a grid recycler view (indicated by no. 1 in the
figure) that handles the card views (no. 2). The number of columns for such pages
can be set in the app model. In category fragment node, we have a property “col-
Number” that is responsible for the number of columns of this grid view. It must
be emphasized that, the developer can use any card view for showing the categories
(no. 2) without any limitation. To do this, the developer should design a card view
in Android Studio and set its Children (image views and text views) in the model.
Hence, when the data is received from the server or local database, they will be fed
into the card view to be shown to the user. Figure 12b illustrates the map fragment
of the UniFy app, which has two primary views, map view (no. 4) and a horizontal
list view (no. 5), which shows the list of the locations on the map. This figure also
shows how subcategories are depicted in the app. They are placed in a scrollable
tab bar above the map (no. 3). Figure 12c shows the details of each location. There
could be six different choices with particular functionalities, namely bookmarking,
navigating, calling, comments, and rating. On the figure, only the navigation button
(no. 6) and the calling button (no. 7) are represented.

To evaluate the effectiveness, efficiency, and satisfaction of the modeling process
of the ALBA framework for the developer, we conducted a user study with 14 par-
ticipants. The participants are divided into three segments: undergraduate software
engineering students, graduate software engineering students, and software develop-
ers. Table 5 shows the characteristics of the population used in this study. All three
participant segments were divided into four categories regarding their expertise in
the fields of MDE and Android app development. Those categories are as follows:
(1) modeler, (2) Android developer, (3) both modeler, and Android developer, and
(4) none.

The participants were asked to model an app, which is functionally similar to
three pages of the UniFy app. Before we started the modeling part of the workshop,
we spent 30 min to present the ALBA framework and the tool for the participants,
and then we gave the participants the user stories and asked them to model it. User
stories consisted of three pages of an app similar to the UniFy with a category selec-
tion page. By selecting a category, a map page would be opened which shows the
locations that belong to the selected category, on the map. We had prepared the
required web services, and their request and response parameters were described in
detail.

1 3

Automated Software Engineering (2021) 28:2	 Page 25 of 45  2

We prepared a questionnaire consisting of 12 questions and asked the participants
to answer the questions and rate features of the ALBA Framework. The questions
and the statistics of participants’ feedback are shown in Table 6.

The average rating to each question for each segment of participants is depicted in
Fig. 13. Two participants were experienced in both MDD and Android app develop-
ment. As it was expected, they firmly believed that ALBA is successful in the asked
challenges, as they did not give anything less than 1 to any question. For the three
software developers, the answers were 0 or 1 for all of the questions. Since they
were more hesitant that ALBA can be used in the industry. Getting these ratings
from them shows that they were convinced about the ALBA framework features.
The answers given by the group which were only experienced in the MDD were less
than those who were only experienced in Android development.

The drop of ratings from those who were experienced in both MDD and Android
app development (blue line) to those who were only experienced in the Android
app development (red line) is also worth to mention. This shows that those who are
familiar with MDD and Android, have lower expectations from the framework in
comparison with those who are only experienced in Android, and as the participants
knowledge of coding became less, their rating of the ALBA features became less
too.

We compared these groups in more detail and figured out that those who were
experienced in the Android programming were more likely to implement an app
with the framework in less time. Figure 14 shows the time spent by each partici-
pant in producing the app using the ALBA framework. The average production time
for modeling and implementing the UniFy app based on the requirements using the
ALBA framework were about 1.28 h.

Experiment 2: Online User Survey on the UniFy App
Reliable assessment of effectiveness, efficiency, and satisfaction as three quality

characteristics of an app, requires to conduct a survey with users. Meanwhile, it is
challenging to measure the usability or other quality characteristics for a mobile app
in terms of absolute metrics. To handle this issue, we extended the usability evalua-
tion model, proposed by Hussain (2013) for mobile apps, such that it considers the
specific characteristics of the location-based apps. The proposed evaluation model
for the location-based apps can be found in the “Appendix”. This evaluation model,
which follows the GQM approach, is designed carefully to assess the three men-
tioned quality characteristics (effectiveness, efficiency, and satisfaction) by refining
the related goals into several questions which are measurable.

According to the questions of the proposed evaluation model, we conducted
an online user survey for evaluating the effectiveness, efficiency, and satisfaction
of the UniFy app, as the first app generated by the ALBA framework. UniFy is
a real-world app with more than 500 active users, which has been used in the
University of Isfahan for the last 2 years. We created an online questionnaire20
and made it available to all users. The participants were asked to assign a value
between 1 and 5 to each question. If a participant had no idea about a question,
she/he had to select number 6. The ranking was as follows: (1) Strongly disagree,

20  https://​forms.​gle/​e4gHM​L8iVT​BBWWX​J9.

https://forms.gle/e4gHML8iVTBBWWXJ9

	 Automated Software Engineering (2021) 28:2

1 3

2  Page 26 of 45

(2) Disagree, (3) Neutral, (4) Agree, (5) Strongly agree, and (6) No idea. Twenty
people took part in the survey. Table 7 summarizes the results of this survey.

The questions in Table 7 are grouped using horizontal lines. The first five ques-
tions designed to determine the effectiveness of the UniFy app in the context of
simplicity and accuracy. The second five questions contain questions concerning
the efficiency of the UniFy app, which designed mostly based on the location-based
capabilities. The last group are questions that aim to evaluate the satisfaction of par-
ticipants in general, as well as the safety goals.

Experiment 3: Comparing ALBA to other frameworks
In this experiment, we aim to scrutinize the advantages and perception of satisfac-

tion of ALBA framework compared to other mobile app development frameworks.
The initial step for designing this experiment was to choose the frameworks to

Fig. 12   Different fragments of the UniFy App. (a) Categories, (b) map, and (c) location details

Table 5   The characteristics of participants in the evaluation workshop

Segment No. of
modeler

No. of
android
developers

No. of android
developers and
modelers

No. of not android
developer and not
modeler

Sum

Undergraduate students 0 3 1 3 7
Graduate students 3 0 1 0 4
Software engineers 0 3 0 0 3
No. of participants 3 6 2 3 14

1 3

Automated Software Engineering (2021) 28:2	 Page 27 of 45  2

Ta
bl

e 
6  

T
he

 a
ns

w
er

s t
o

th
e

qu
es

tio
ns

 o
f t

he
 w

or
ks

ho
p

Q
#

Q
ue

sti
on

St
ro

ng
ly

di

sa
gr

ee

(−
 2

)

D
is

a-
gr

ee

(−
 1

)

N
eu

rtr
al

 (0
)

A
gr

ee
 (1

)
St

ro
ng

ly

ag
re

e
(2

)

Q
1

Th
e

30
 m

in
 w

al
kt

hr
ou

gh
 w

as
 e

no
ug

h
fo

r l
ea

rn
in

g
al

l f
ea

tu
re

s a
va

ila
bl

e
in

 th
e

A
LB

A
 m

od
el

in
g

ed
ito

r
0

0
3

5
6

Q
2

Th
e

te
rm

in
ol

og
ie

s u
se

d
in

 th
e

A
LB

A
 m

od
el

in
g

ed
ito

r a
re

 re
le

va
nt

 to
 th

ei
r t

as
k

0
0

6
6

2
Q

3
Th

e
m

od
el

s o
f t

he
 a

pp
s a

re
 c

le
ar

 a
nd

 u
nd

er
st

an
da

bl
e

1
1

6
5

1
Q

4
A

LB
A

 is
 a

pp
lic

ab
le

 fo
r d

es
ig

ni
ng

 a
nd

 im
pl

em
en

tin
g

lo
ca

tio
n-

ba
se

d
A

nd
ro

id
 a

pp
s

0
2

2
4

6
Q

5
A

LB
A

 c
an

 m
ak

e
lo

ca
tio

n-
ba

se
d

A
nd

ro
id

 a
pp

 d
ev

el
op

m
en

t e
as

ie
r i

n
co

m
pa

ris
on

 w
ith

 o
th

er
 m

et
ho

ds
0

1
2

7
4

Q
6

A
LB

A
 c

an
 re

du
ce

 p
ro

du
ct

io
n

tim
e

fo
r l

oc
at

io
n-

ba
se

d
A

nd
ro

id
 a

pp
s

0
1

2
5

6
Q

7
Th

e
gr

ap
hi

cs
 u

se
d

in
 th

e
A

LB
A

 m
od

el
in

g
ed

ito
r a

re
 a

ttr
ac

tiv
e

fo
r d

es
ig

ne
r

1
1

1
8

3
Q

8
Th

e
gr

ap
hi

cs
 u

se
d

in
 th

e
A

LB
A

 m
od

el
in

g
ed

ito
r a

re
 re

le
va

nt
 to

 th
ei

r t
as

k
0

1
2

6
5

Q
9

Th
e

A
LB

A
 m

od
el

in
g

ed
ito

r i
s u

se
r-f

rie
nd

ly
1

2
8

0
3

Q
10

Th
e

A
LB

A
 m

od
el

in
g

ed
ito

r i
s a

 h
an

dy
 e

di
to

r f
or

 m
od

el
in

g
lo

ca
tio

n-
ba

se
d

A
nd

ro
id

 a
pp

s
1

0
5

6
2

Q
11

A
LB

A
 is

 e
as

y
to

 u
nd

er
st

an
d

fo
r s

om
eo

ne
 w

ith
ou

t a
ny

 e
xp

er
ie

nc
e

in
 A

nd
ro

id
 d

ev
el

op
m

en
t

1
3

1
4

5
Q

12
A

LB
A

 is
 e

as
y

to
 u

nd
er

st
an

d
fo

r s
om

eo
ne

 w
ith

ou
t a

ny
 e

xp
er

ie
nc

e
in

 M
D

E
0

2
6

2
4

	 Automated Software Engineering (2021) 28:2

1 3

2  Page 28 of 45

which the ALBA framework should be compared. We decided to go with MIT App
Inventor and React Native because of their popularity and maturity (Dabit 2018;
Kloss 2012). MIT App Inventor is the most comparable framework to our frame-
work as it also supports the idea of model-based app development. Unlike MIT App
Inventor, React Native is a framework that only supports manual coding. However,
when comparing our framework with React Native, the comparison would allow us
to evaluate the quality of the resulting apps. In the following, first we introduce the
React Native and MIT App Inventor frameworks. Then we describe two comparison
studies. The first comparison study focuses on the experts to develop a similar app,

Fig. 13   Average rate to each question by participant segments

Fig. 14   Production time of each workshop participant

1 3

Automated Software Engineering (2021) 28:2	 Page 29 of 45  2

Ta
bl

e 
7  

R
es

ul
ts

 o
f o

nl
in

e
us

er
 su

rv
ey

 to
 a

ss
es

s U
ni

Fy
 a

pp

Q
#

Q
ue

sti
on

St
ro

ng
ly

 d
is

ag
re

e
(1

) (
%

)
D

is
ag

re
e

(2
)

(%
)

N
eu

rtr
al

 (3
)

(%
)

A
gr

ee
 (4

) (
%

)
St

ro
ng

ly
 a

gr
ee

(5

) (
%

)
N

o
id

ea
 (6

) (
%

)

Q
1

H
ow

 e
as

y
is

 it
 to

 in
st

al
l t

he
 a

pp
lic

at
io

n?
5

0
5

40
50

0
Q

2
Is

 th
e

ap
pl

ic
at

io
n

ea
sy

 to
 le

ar
n?

5
15

15
35

30
0

Q
3

Is
 it

 si
m

pl
e

to
 fi

nd
 lo

ca
tio

ns
?

5
10

10
35

40
0

Q
4

Is
 th

e
ap

pl
ic

at
io

n
ac

cu
ra

te
?

5
10

10
45

30
0

Q
5

A
re

 m
an

y
ta

sk
s s

uc
ce

ss
fu

l a
t t

he
 fi

rs
t u

se
?

0
5

25
35

30
5

Q
6

D
oe

s t
he

 a
pp

lic
at

io
n

re
sp

on
d

qu
ic

kl
y?

0
5

10
45

40
0

Q
7

D
oe

s t
he

 a
pp

lic
at

io
n

pr
ov

id
e

ap
pr

op
ria

te
 h

el
p?

10
10

10
45

25
0

Q
8

D
oe

s t
he

 a
pp

lic
at

io
n

pr
ov

id
e

ap
pr

op
ria

te
 m

en
u?

0
0

15
45

40
0

Q
9

D
oe

s t
he

 a
pp

lic
at

io
n

pr
ov

id
e

lo
ca

tio
n

de
ta

ils
?

5
5

5
50

35
0

Q
10

A
re

 fe
w

 re
so

ur
ce

s b
ei

ng
 u

se
d

by
 th

e
ap

pl
ic

at
io

n?
0

5
25

20
30

20
Q

11
D

oe
s t

he
 u

se
r e

nj
oy

 w
hi

le
 u

si
ng

 th
e

ap
pl

ic
at

io
n?

0
0

5
55

40
0

Q
12

Is
 th

e
ap

pl
ic

at
io

n
se

cu
re

 to
 u

se
?

0
10

30
25

15
20

Q
13

Is
 th

e
us

er
 h

ap
py

 w
ith

 th
e

in
te

rfa
ce

?
0

5
15

50
30

0
Q

14
Is

 th
e

us
er

 fa
m

ili
ar

 w
ith

 th
e

us
er

 in
te

rfa
ce

?
0

5
 5

55
35

0

	 Automated Software Engineering (2021) 28:2

1 3

2  Page 30 of 45

and the second comparison study trains beginners to develop different real-world
apps with all three frameworks. Finally, we report on the results of two comparison
studies, in which the two types of participants were asked to quantitatively evaluate
whether ALBA advances the quality in comparison to other frameworks?

React native: The React Native framework, with 73,969 stars, and being 11th
most stared repository on GitHub, is the first cross-platform general-purpose frame-
work. The React Native is the finest cross-platform framework among Ionic21 and
PhoneGap22 frameworks (Quazi and Sinha 2018). However, React Native has some
significant issues in performance and processing.

React Native does not support parallel multi-threading. Programmers often
request Facebook to add this feature to the React Native framework for developers.23
However, React Native has four threads: one UI thread, one JS thread, one Native
Modules thread, and one Render thread (Android 5 and up) while native Android
and ALBA enable the developer to implement a multi-thread app completely. Thus,
the core components of the Java code used in ALBA are implemented using this
multi-thread feature for async tasks for network and database communications.
Overall, ALBA provides the programmer with full multi-threading capability due to
its reliance on the Java multi-threading mechanism.

Background processing is another issue in React, since it can affect the user expe-
rience. This deals with how the framework runs tasks when the app is running in the
background. React Native requires some native code for implementing this feature.
In this case, React Native cannot help as a cross-platform framework. It is worth
to mention that this feature called “headless JS” and is only available for Android
release.24 Developers are asking the React Native community for implementing this
feature for iOS generated apps as well.25

MIT app inventor: MIT App Inventor is a web-based visual programming envi-
ronment that facilitates designing both the business logic and GUI layout of Android
apps. The objective of the tool is to teach kids and assist inexperienced people in
building simple mobile apps. MIT App Inventor has two main parts as follows: (1)
designer which is for designing the UI of the app, and (2) blocks which is a drag-
and-drop environment helping the user to implement the business logic of the app
using connectable puzzles. While the framework is very helpful for teaching pur-
poses and the target domain of the generated apps is general, yet, it is incomplete
for building serious apps. More importantly, the website does not provide its users
with the app code. This is while ALBA provides users with app code and the user
can benefit from Android Studio features. Overall, if a minor change is required in
the app designed by the website and it is not supported, the user will lose all of the
effort investigated to implement the app due to the lack of completeness. Take lay-
outs (a view item which orients the child items, e.g., linear layout) as an example,

24  https://​faceb​ook.​github.​io/​react-​native/​docs/​headl​ess-​js-​andro​id.
25  https://​react-​native.​canny.​io/​featu​re-​reque​sts/p/​headl​ess-​js-​for-​ios.

21  https://​ionic​frame​work.​com.
22  https://​phone​gap.​com.
23  https://​react-​native.​canny.​io/​featu​re-​reque​sts/p/​paral​lel-​multi​threa​ding--​worke​rs.

https://facebook.github.io/react-native/docs/headless-js-android
https://react-native.canny.io/feature-requests/p/headless-js-for-ios
https://ionicframework.com
https://phonegap.com
https://react-native.canny.io/feature-requests/p/parallel-multithreading--workers

1 3

Automated Software Engineering (2021) 28:2	 Page 31 of 45  2

the MIT App Inventor only supports some Horizontal, Table, and Vertical Arrange-
ments. While layouts which are supported by the Android studio is more than these
layouts.

Both MIT App Inventor and React Native are general purpose frameworks, while,
ALBA has a narrower domain. To the best of our knowledge there is no DSML for
generating location-based apps. Subsequently, we chose these two languages for our
comparison study.

Comparison study 1: To identify the advantages of the ALBA framework for
developing a location-based app by an expert, we carried out an experiment to com-
pare the apps generated by ALBA with the results of React Native and MIT App
Inventor frameworks. The experiment was conducted with the participation of three
developers, each of them has expertise in one of the frameworks: ALBA, React
Native, and MIT App Inventor. In this experiment, we asked three developers to
build the UniFy app. The first developer, who had 1 year of experience with ALBA
and 1 year of experience on location-based apps, generated the app using ALBA.
The second developer, who had 6 months of experience with MIT App Inventor
and 1 year of experience on location-based apps, developed the app using MIT App
Inventor. The third developer, who had 4 years of experience with React Native and
1 year of experience on location-based apps, developed the app using React Native.

We gave the participants a list of full requirements of the UniFy real-world app,
introduced in Sect. 6.1.2. Then, we asked the participants to develop the UniFy app
using a framework that they are most familiar with. Once they accomplished their
tasks, they have been asked to fill out a questionnaire. Finally, we installed all three
developed apps on one mobile phone to compute the performance metrics for per-
forming an identical scenario on each of these apps. Figure 15 shows three main
pages of the developed apps. We also present summaries of the data gathered in our
experiment for each framework in Table 8.

In order to find the functional correctness of the apps that were generated in this
experiment, we performed different scenarios to test the functionality of each app.
In these scenarios, we consider a functionality as correct if it worked without any
errors. Table 8 shows that only ALBA has met all the requirements and achieved
100% functional correctness, while React Native and MIT App Inventor have man-
aged to cover 96% and 48% of the requirements, respectively. In addition, the gener-
ated app using ALBA has less average response time compared to two other frame-
works. React Native is a code-driven approach that has the longest development time
and highest lines of code (LOC). In contrast, the MIT App Inventor used a model-
based approach that has led to the least development time. However, the MIT App
Inventor only covered half of the requirements. Among the generated apps, the one
generated with ALBA had the smallest APK size and App storage. Also, for a spe-
cific scenario, all three apps used the same amount of memory and battery.

Comparison study 2: To identify the advantages of the ALBA framework in
developing location-based apps by the beginners, we carried out another experi-
ment in four working sessions that was conducted with three students of the 8th
semester of the Computer Engineering program at the University of Isfahan. They
had finished basic courses in computer science, such as Introduction to Java Pro-
gramming, Object-Oriented Analysis and Design, and Software Engineering. All

	 Automated Software Engineering (2021) 28:2

1 3

2  Page 32 of 45

three students had enough knowledge in programming and modeling, but had no
prior experience in Android development and location-based apps. They also had
no prior knowledge about any of the three frameworks, ALBA, MIT App Inven-
tor, and React Native.

The first session (100 min long) was divided into two stages that focused on
the ALBA framework. In the first stage (30 min long), we presented ALBA to the
participants and trained them how to model and generate apps using the ALBA
framework. In the second stage (70 min long), the participants received a list of
requirements for a simplified version of the MedIUM app, which consisted of 10
requirements. Then, they started the modeling process and continued with the code
generation process to prepare the corresponding APK file. Afterward, we investi-
gated the correctness of the generated apps considering the list of initial require-
ments. All the requirements were satisfied, hence, we calculated the functional cor-
rectness of 100% for all the participants.

The second session (95 min long) was divided into two stages that focused on
the MIT App Inventor framework. In the first stage (30 min long), we presented the
MIT App Inventor to the participants and trained them how to generate apps using
the MIT App Inventor. In the second stage (65 min long), the participants received
a list requirements for the simplified version of the Baharestan app, consisting of
10 requirements. They modeled the app using MIT App Inventor and generated the
corresponding APK file. Afterward, we investigated the correctness of the generated
apps considering the list of the initial requirements. We calculated the functional
correctness of 80% for all the participants.

The third session (285 min long) was divided into two stages that focused on
the React Native framework. In the first stage (90 min long), we trained the partici-
pants how to develop apps using the React Native framework. In the second stage
(195 min long), they received a list of requirements for the Covid-19 dashboard app,
which consisted of six requirements. They developed the corresponding APK file,
and then we investigated the correctness of the generated apps considering the list of
the initial requirements. We calculated the functional correctness of 100% for all the
participants.

The fourth session (410 min long) was divided into three stages. In this session,
we investigated the generation of the simplified version of the UniFy app consisted
of 10 requirements using all three frameworks. In the first stage (60 min long), the
participants developed the introduced app using the ALBA framework. Considering
the initial requirements, the average functional correctness was 100%. In the sec-
ond stage (55 min long), they generated the simplified UniFy app using the MIT
App Inventor. Two participants had 70% functional correctness and the third one
had 80% functional correctness. In this stage, we consider the average functional
correctness (73%) as a notable functional correctness. Finally, in the third stage (295
min long), the participants developed the defined app using React Native, and the
average functional correctness was 100%.

At the end of this experiment, the participants were asked to answer a question-
naire for any of the three frameworks. The questionnaire focused on the measuring
the satisfaction of the participants on working with a framework, concerning a vari-
ety of the system usability aspects (Bangor et al. 2009). In the questionnaire, each

1 3

Automated Software Engineering (2021) 28:2	 Page 33 of 45  2

question has a score ranging from 1 to 5, where value closer to 5 indicates higher
value of satisfaction. The data collected from this experiment for each framework,
including the average satisfaction score, are presented in Table 9.

6.2.3 � Analysis of the result

Having obtained the data presented in the previous section, we proceed with analyz-
ing the results of experiments and draw some conclusions for each research question
of Sect. 6.2.1.

RQ3: What is the effectiveness, efficiency, and satisfaction of the ALBA
framework?

Considering the results obtained from the first experiment (Table 6), we observe
that all participants completed the app development process using ALBA. Also, as
depicted in Table 6, 9 out of 14 participants agreed that ALBA is easy to understand
by developers who are not very experienced in Android development (Q11). In
addition, about 80% of the participants indicated that ALBA makes location-based
Android app development easier. According to these answers, we may safely draw
the conclusion that ALBA is effective for developing location-based Android apps.
Also 8 out of 14 participants confirmed that ALBA editor is a handy editor for mod-
eling, and around 80% of them stated that ALBA could reduce productivity time
for location-based apps. Thus, the efficiency of ALBA framework is predictable.
Based on the answers of questions Q7 and Q8 in Table 6, approximately 79% of the
participants indicated that graphical elements that are used in ALBA are attractive
and satisfactory. However, only 3 out of 14 participants agreed that ALBA modeling
editor is user-friendly (Q9). More precisely, to investigate the satisfaction of ALBA
framework, only two participants reported that models of app are not clear(Q3),
and 10 out of 14 participants confirmed that ALBA is applicable for designing and

Fig. 15   Three main pages of UniFy developed with (a) ALBA; (b) react native; (c) MIT app inventor

	 Automated Software Engineering (2021) 28:2

1 3

2  Page 34 of 45

Ta
bl

e 
8  

R
es

ul
ts

 o
f t

he
 fi

rs
t c

om
pa

ris
on

 st
ud

y
to

 d
ev

el
op

 th
e

U
ni

Fy
 a

pp
 b

y
ex

pe
rts

 in
 d

iff
er

en
t f

ra
m

ew
or

ks

Fr
am

ew
or

k
%

 C
ov

er
ed

 re
q.

(f

un
ct

. c
or

re
ct

ne
ss

)
A

vg
. r

es
p.

tim

e
(m

s)
D

vl
pm

t.
tim

e
(h

)
#L

O
C

A
PK

 si
ze

 (M
B

)
St

or
ag

e
(M

B
)

M
em

or
y

(M
B

)
%

 B
at

te
ry

us

ag
e

(%
)

A
LB

A
(2

5/
25

) 1
00

%
~

72
0

~
10

~
20

00
4.

59
25

96
<

 1
Re

ac
t N

at
iv

e
(2

4/
25

) 9
6%

~
81

0
~

40
~

34
00

9.
61

28
97

<
 1

M
IT

 A
pp

 In
ve

nt
or

(1
2/

25
) 4

8%
~

94
0

~
7

–
5.

37
26

96
<

 1

1 3

Automated Software Engineering (2021) 28:2	 Page 35 of 45  2

implementing location-based Android apps (Q4). Overall, the participants were sat-
isfied with working with the ALBA framework.

RQ4: What is the effectiveness, efficiency, and satisfaction of the resulting
apps generated by the ABLA framework?

The results of this experiment are shown in Table 7. As it is indicated in questions
Q1 and Q2, 90% of the participants agreed that UniFy is installed easily, and 65% of
them reported that Unify has been easy to learn and use. Regarding the answers to
questions Q3 and Q4, we realize that UniFy, as a real-world result of ALBA was rec-
ognized as an effective app by 75% of the participants. Also, 65% of the participants
stated that UniFy successfully did many tasks at the first use (Q5). These answers
confirm that UniFy, as a resulting app of ALBA, was an effective app for end-users.
Based on the answers of the participants to question Q6, 85% indicated that UniFy
responds efficiently to their needs. As it is indicated in questions Q8 and Q9, 85% of
the participants confirmed that the UniFy app provide appropriate menu and loca-
tion details, whereas 75% of the participants were satisfied with the provided help
for app (Q7), only 50% of the participants stated that the app used a few resources
(Q10). Nevertheless, these results are comprehensible, because few people know
about resource consumption by apps. Around 90% of the participants reported that
they are familiar with UniFy user interface (Q14), and 80% indicated that they are
happy with the app interface (Q13). The fraction of participants, who consider the
app as a secure app, is only 40% (Q12), although 95% stated that they enjoy while
using UniFy (Q11). We believe that the reason for the low number 40% (Q12) is the
user uncertainty about the information non-disclosure. As a result, we conclude that
the participants were satisfied with the UniFy app; however, the relative safety crite-
ria as a necessary but non-functional feature for location-based app, was low for this
study and should be considered in the extensions of the ALBA framework.

RQ5: What perception of satisfaction does the ALBA approach present,
compared to the existing approaches?

As depicted in Table 8, when experts on three different frameworks tried to
develop the same location-based app, only ALBA was able to cover 100% of the
requirements. ALBA advances the development of location-based apps by benefit-
ing from the advantages of both model-driven and code-driven approaches. ALBA
increases productivity four times more than React Native, a purely code-centric
platform, and covers more requirements than MIT App Inventor, a model-based
framework. In addition, ALBA generated apps with a small size, more functional

Table 9   Results of the second comparison study to develop simplified version of the UniFy app by
beginners in different frameworks

Framework % Covered requirements (aver-
age functional correctness) (%)

Training
time (min)

Average develop-
ment time (min)

Average satisfac-
tion score (#
of 5)

ALBA 100 30 ~ 60 ~ 3.97
MIT app inventor 73 30 ~ 55 ~ 1.95
React native 100 90 ~ 295 ~ 3.03

	 Automated Software Engineering (2021) 28:2

1 3

2  Page 36 of 45

correctness rate, and faster response time, while maintaining the same memory and
battery usage as the other two frameworks, which indicate better quality for the
ALBA outputs. Furthermore, Table 9 shows that for generating location-based apps,
the ALBA framework is a better choice for beginners who had no prior knowledge
in location-based app development. Regarding the average satisfaction score, ALBA
obtained a higher level of satisfaction of the participants, where they were able to
successfully develop all the app requirements. The average functional correctness
for React Native was similar to ALBA. However, the average development time of
ALBA was about 20% of the required time for React Native. Also, more training
was necessary to learn how to generate location-based apps with React Native. In
addition, MIT App Inventor had lower level of satisfaction and functional correct-
ness rate. As a result, we conclude that ALBA has obtained an acceptable level of
satisfaction of participants with similar knowledge and training. It was accepted
among the participants and proposed as the best solution in comparison to other
frameworks that can be used for generating location-based apps.

6.3 � Threats to validity

In this section, we explain threats to validity of this study.
Construct validity: Construct validity threats concern the accuracy of the obser-

vations with respect to the theory. We designed ALBA domain-specific modeling
language to support the features required for location-based Android app develop-
ment. To define the ALBA DSML, we followed the approach introduced by Mernik
et al. (2005). This approach consists of five phases: decision, analysis, design,
implementation, and deployment. Thus, we argue that there is no threat to the con-
struct validity.

Internal validity: Internal validity threats concern the factors that might influence
our results. The selection of the five apps used to define ALBA’s features is one
possible threat. We may have missed relevant features. We mitigated this threat by
examining apps that are widely used. Two of the authors also reviewed the features
of the selected apps thoroughly to ensure that they fit this study. Another threat con-
cerns the way we implemented ALBA using Eclipse modeling tools. An error may
have occurred during implementation. To mitigate this threat, the first two authors
tested and reviewed the code. We also made ALBA available online for the commu-
nity to use it and report bugs.

Reliability validity: Reliability validity concerns possibility of replicating this
study. We studied five location-based apps but we cannot claim that these are repre-
sentative of all existing apps. Based on the review that we conducted, we argue that
these apps are representative of existing location-based apps. Moreover, we put on-
line the ALBA meta-model and implementation to allow other researchers to repro-
duce this study by generating other location-based apps.

External validity: External validity is related to the generalizability of the results.
Firstly, we evaluated ALBA by automatically generating a location-based app for
the campus of the University of Isfahan and by conducting a user study. While the
results show promising results, in order to generalize these results, we selected and

1 3

Automated Software Engineering (2021) 28:2	 Page 37 of 45  2

generated apps for three more real-world cases from different domains. This demon-
strates the ALBA framework can be used in the development of different location-
based apps from different domains. However, we need to conduct additional user
studies, preferably with experienced app developers to further assess the usability
and learnability of ALBA and its effectiveness in improving productivity.

7 � Related work

The study on cross-platform tools for developing mobile apps has been an active
research topic in recent years (Benouda et al. 2016; Bernaschina et al. 2017; Usman
et al. 2017). Among 21 tools surveyed by Tufail et al. (2018) and our survey, we
found that MDD tools for automatic generation of mobile apps have been used in
many domains such as management, games, e-commerce, field force automation,
and so on. However, to the best of our knowledge, there is no MDD framework that
is tailored to the automatic generation of Android location-based apps. These apps
require working with GPS sensor battery efficiently, configuration of map libraries,
and integration of map with other parts of the app.

Parada and De Brisolara (2012) proposed a tool for developing Android apps
using their previous tool called (Parada et al. 2011). The proposed tool can generate
Java code from UML class diagrams and sequence diagrams. This is fine in imple-
menting structures of Java Android classes since the UML diagrams are familiar
for domain experts. Their tool requires extensive effort modeling an Android app
behavior using sequence diagrams. In contrast, based on our evaluation results, the
ALBA framework can automatically generate approximately 95% of the Unify app,
which contains most of the domain concepts in a very short time, because most of
the implementation details are encapsulated and they are not visible to the frame-
work user.

Heitkötter et al. (2013) proposed an approach named MD2 for model-driven
cross-platform app development. MD2 is developed in close collaboration with
industry, and the language is designed based on the MVC (Model-View-Controller)
pattern. However, it is not clear if the tool supports any operation other than Create,
Read, Update, and Delete (CRUD) operations. MD2 generates the server-side code,
limiting the user to servers that are required to Java EE app, which is the only plat-
form supported by MD2. The MAML framework designed by Rieger and Kuchen
(2018) is based on MD2, which represented a graphical DSL that solves the trade-off
between technical complexity and graphical oversimplification. ALBA focuses on
location-based features such as integration of the business logic with map librar-
ies (e.g., Google Map) that go beyond simple CRUD operations. In addition, with
ALBA, the user can specify the endpoint for receiving data from server and com-
municate with web services implemented by any server-side language (e.g., PHP,
Microsoft .net, Python, Ruby, Java, Scala) and not only Java EE.

Vaupel et al. (2018) presented a modeling language that is considered as a native
Android and iOS app generator with the support of role-based app variability. They
proposed three meta-models for modeling the app layout, data, and app behavior.
The layout meta-model is incomplete, and some user interface components are not

	 Automated Software Engineering (2021) 28:2

1 3

2  Page 38 of 45

supported (e.g., Navigation drawer or Tab bar). Moreover, obtaining mobile location
from the GPS sensor is not supported, while ALBA supports it while being cautious
about energy efficiency.

Applause26 is another cross-platform toolkit for generating native mobile apps for
major mobile platforms (iOS, Android, Windows Phone 7). The toolkit uses a DSL
implemented by Xtext on Eclipse to transform app models to apps. Thanks to Xtext,
the Eclipse plugin has an IDE features, e.g., auto-completion and error-highlighting.
The next version of this toolkit, Applause 2, is under development, while its last
update occurred in 2015 (Gaouar et al. 2015). It is not clear whether Applause sup-
ports GUI generation, while ALBA generates all of the model, controller, and view
classes together.

Mobl, introduced by Hemel and Visser (2011), is an open-source language used
for modeling Android and iOS apps using a DSL, which can be compiled to JavaS-
cript, HTML, and CSS code. This language has a good IDE support. Similarly,
ALBA modeling editor prevents user errors in the modeling phase. Mobl does not
provide native code generation, which can lead to slow app performance in location-
based apps.

Among the hybrid frameworks for developing mobile apps, the most popular MDD
approach for generating mobile apps is Ionic Creator.27 The Ionic Creator is a web-
site designed for generating Android and iOS apps using the Ionic framework. It is
useful for developing static apps using a website with a drag-and-drop environment.
However, implementing dynamic apps that obtain their information from an end-point
or a sensor requires the modeler to write JavaScript code. Similar to ALBA, naviga-
tion patterns are supported, namely the navigation drawer and tab bar. But there is no
option for communication with the server except implementing the code in the website
code pane, while ALBA supports complete code generation to connect to any server
API using the ALBA modeling tool without writing a single line of code. Also, Ionic,
like other cross-platform technologies, face efficiency issues (Hemel and Visser 2011).

MIT App Inventor is a website for designing both business logic and views of
Android apps. The tool has a drag-and-drop environment for modeling the app
logic. Commands are puzzle shaped, and the user can understand which command
to choose based on the free slot in the puzzles. This tool is handy for students wish
to learn Android programming. The main limitation of MIT App Inventor is that it
covers a few number of Android view items. The ALBA framework is dedicated
to the location-based app domain and offers more capabilities than the MIT App
Inventor. ALBA DSML is more abstract and can assist users to achieve their goal
faster. Moreover, ALBA provides the user with the app source code, which is some-
thing that MIT App Inventor does not support.

Interaction Flow Modeling Language (IFML28) is a model-driven tool for design-
ing web app user interfaces that respond to user actions with respect to a control
flow. The tool has become a standard for integrating the front-end design in models
science 2015 by Object Management Group29 (OMG). It is not clear whether the

28  https://​www.​omg.​org/​spec/​IFML.
29  https://​www.​omg.​org.

26  https://​github.​com/​appla​use/​appla​use.
27  https://​creat​or.​ionic.​io/.

https://www.omg.org/spec/IFML
https://www.omg.org
https://github.com/applause/applause
https://creator.ionic.io/

1 3

Automated Software Engineering (2021) 28:2	 Page 39 of 45  2

access to device-specific features such as GPS sensors is guaranteed by IFML, but
ALBA generates native code for communicating with GPS sensors.

8 � Conclusion and future work

In this paper, we introduced a framework called ALBA, which consists of a DSML,
a modeling tool, and a code generator plugin for Eclipse. DSML supports many of
the common features of the popular location-based apps. The modeling tool has
been created in order to help the users model their apps. The plugin transforms the
models to Java native code as logic and XML layout code as view.

Having a framework that generates the app code in the structure of the Android
projects, gives a boost to the development of these app types. As we surveyed,
there is no DSML in the field of location-based apps. We showed how ALBA could
enhance the development process of Android location-based apps. We evaluated our
framework in the workshop from the audience perspective and compared the code
of a similar app generated with best practices of other approaches. The participants
of the evaluation workshop consisted of developers, model-driven engineers, and
early bachelor computer engineering students. Generally, they were satisfied with the
framework and were also surprised to generate an Android app in less than 2 h. We
also conducted another case study research in which we assessed the usability of the
ALBA framework and its generated app with real users. Furthermore, we investigated
the development of UniFy app using ALBA in comparison to React Native, MIT App
Inventor frameworks. The results of the evaluation are promising both in terms of the
applicability and usability of the framework and the quality of the generated apps.

Going forward, first, we plan to define more features in the DSML and add compiling
feature to the ALBA framework. Second, we aim to support iOS platform and imple-
ment iOS transformation code such that the iOS users can take advantage of the gen-
erated apps. Although some changes regarding advancement in software development
in Android is needed in the future, while, we keep supporting the previously designed
models and let them be valid. Finally, we need to conduct further studies to see how
ALBA can be used in the context of complex apps with diverse application logic and in
which location-based services are not the primary focus (e.g., TripAdvisor and Expedia).

Appendix: The usability evaluation model for location‑based apps

Table 10 presents the usability evaluation model for location-based mobile apps based
on the GQM approach. In this table, effectiveness, efficiency, and satisfaction are
defined as three main quality characteristics to focus on evaluating the usability based
on ISO 9241-11. According to quality characteristics, six goals are established. Then,
the questions are described to assess each goal. Finally, a set of metrics based on the
location-based features are explained to collect information to answer related questions.

	 Automated Software Engineering (2021) 28:2

1 3

2  Page 40 of 45

Ta
bl

e 
10

  
Ev

al
ua

tio
n

m
od

el
 fo

r l
oc

at
io

n-
ba

se
d

m
ob

ile
 a

pp
lic

at
io

ns
. (

A
da

pt
ed

 fr
om

 H
us

sa
in

 2
01

3)

Q
ua

lit
y

ch
ar

ac
te

ris
tic

s
G

oa
ls

Q
ue

sti
on

s
M

et
ric

s

Eff
ec

tiv
en

es
s

Si
m

pl
ic

ity
H

ow
 e

as
y

is
 it

 to
 in

st
al

l t
he

 a
pp

lic
at

io
n?

Sa
tis

fa
ct

io
n

w
ith

 th
e

in
st

al
la

tio
n

pr
oc

es
s

Sa
tis

fa
ct

io
n

w
ith

 h
el

p
pr

ov
id

ed
Ti

m
e

ta
ke

n
to

 in
st

al
l

Th
e

nu
m

be
r o

f i
nt

er
ac

tio
ns

 w
hi

le
 in

st
al

lin
g

th
e

ap
pl

ic
at

io
n

Is
 th

e
ap

pl
ic

at
io

n
ea

sy
 to

 le
ar

n?
Sa

tis
fa

ct
io

n
w

ith
 h

el
p

pr
ov

id
ed

N
um

be
r o

f m
ist

ak
es

 w
hi

le
 le

ar
ni

ng
Ti

m
e

ta
ke

n
to

 le
ar

n
Is

 it
 si

m
pl

e
to

 fi
nd

 lo
ca

tio
ns

?
N

um
be

r o
f e

rr
or

s w
hi

le
 se

ar
ch

in
g

th
e

lo
ca

tio
n

of
 in

te
re

st
Ti

m
e

ta
ke

n
to

 fi
nd

 a
 lo

ca
tio

n
Sa

tis
fa

ct
io

n
w

ith
 se

ar
ch

 U
I

A
cc

ur
ac

y
Is

 th
e

ap
pl

ic
at

io
n

ac
cu

ra
te

?
Sa

tis
fa

ct
io

n
w

ith
 o

ut
pu

t
N

um
be

r o
f e

rr
or

s
A

re
 m

an
y

ta
sk

s s
uc

ce
ss

fu
l a

t t
he

 fi
rs

t u
se

?
Ti

m
e

ta
ke

n
to

 c
om

pl
et

e
th

e
ta

sk
N

um
be

rs
 o

f t
as

ks
 su

cc
es

sf
ul

 a
t t

he
 fi

rs
t u

se

1 3

Automated Software Engineering (2021) 28:2	 Page 41 of 45  2

Ta
bl

e 
10

  (
co

nt
in

ue
d)

Q
ua

lit
y

ch
ar

ac
te

ris
tic

s
G

oa
ls

Q
ue

sti
on

s
M

et
ric

s

Effi
ci

en
cy

Ti
m

e
Ta

ke
n

D
oe

s t
he

 a
pp

lic
at

io
n

re
sp

on
d

qu
ic

kl
y?

Ti
m

e
ta

ke
n

to
 st

ar
t t

he
 a

pp
lic

at
io

n

Ti
m

e
ta

ke
n

to
 lo

ad
 m

ap

Ti
m

e
ta

ke
n

to
 re

sp
on

d
lo

ca
tio

n
se

ar
ch

Ti
m

e
ta

ke
n

to
 sh

ow
 lo

ca
tio

n
de

ta
ils

Ti
m

e
ta

ke
n

to
 c

on
ne

ct
 to

 th
e

ne
tw

or
k

Fe
at

ur
es

D
oe

s t
he

 a
pp

lic
at

io
n

pr
ov

id
e

ap
pr

op
ria

te
 h

el
p?

Sa
tis

fa
ct

io
n

w
ith

 h
el

p
pr

ov
id

ed

D
oe

s t
he

 a
pp

lic
at

io
n

pr
ov

id
e

ap
pr

op
ria

te
 m

en
u?

Sa
tis

fa
ct

io
n

w
ith

 ta
bs

, n
av

ig
at

io
ns

, a
nd

 c
at

eg
or

ie
s

D
oe

s t
he

 a
pp

lic
at

io
n

pr
ov

id
e

lo
ca

tio
n

de
ta

ils
?

Sa
tis

fa
ct

io
n

w
ith

 lo
ca

tio
n

de
ta

ils

N
um

be
r o

f d
et

ai
l fi

el
ds

 p
ro

vi
de

d
fo

r a
 lo

ca
tio

n

A
re

 fe
w

 re
so

ur
ce

s b
ei

ng
 u

se
d

by
 th

e
ap

pl
ic

at
io

n?
Pe

rc
en

ta
ge

 o
f b

at
te

ry
 u

se
d

du
rin

g
th

e
in

st
al

la
tio

n

Pe
rc

en
ta

ge
 o

f b
at

te
ry

 u
se

d
pe

r h
ou

r

Pe
rc

en
ta

ge
 o

f C
PU

 u
se

d
pe

r h
ou

r

Pe
rc

en
ta

ge
 o

f R
A

M
 u

se
d

pe
r h

ou
r

	 Automated Software Engineering (2021) 28:2

1 3

2  Page 42 of 45

Ta
bl

e 
10

  (
co

nt
in

ue
d)

Q
ua

lit
y

ch
ar

ac
te

ris
tic

s
G

oa
ls

Q
ue

sti
on

s
M

et
ric

s

Sa
tis

fa
ct

io
n

Sa
fe

ty
D

oe
s t

he
 u

se
r e

nj
oy

 w
hi

le
 u

si
ng

 th
e

ap
pl

ic
at

io
n?

St
re

ss

En
jo

ym
en

Sa
tis

fa
ct

io
n

w
ith

 c
on

te
nt

s

Is
 th

e
ap

pl
ic

at
io

n
se

cu
re

 to
 u

se
?

Sa
tis

fa
ct

io
n

w
ith

 u
se

r a
ut

he
nt

ic
at

io
n

Sa
tis

fa
ct

io
n

w
ith

 u
se

r i
nf

or
m

at
io

n
no

n-
di

sc
lo

su
re

Sa
fe

ty
 w

hi
le

 w
al

ki
ng

Sa
fe

ty
 w

hi
le

 d
riv

in
g

A
ttr

ac
tiv

en
es

s
Is

 th
e

us
er

 h
ap

py
 w

ith
 th

e
in

te
rfa

ce
?

Ea
sy

 to
 fi

nd
 h

el
p

Sa
tis

fa
ct

io
n

w
ith

 h
in

ts

Sa
tis

fa
ct

io
n

w
ith

 th
e

m
ap

Sa
tis

fa
ct

io
n

w
ith

 te
xt

Sa
tis

fa
ct

io
n

w
ith

 sy
ste

m
 n

av
ig

at
io

n

Is
 th

e
us

er
 fa

m
ili

ar
 w

ith
 th

e
us

er
 in

te
rfa

ce
?

Sa
tis

fa
ct

io
n

w
ith

 in
te

rfa
ce

 g
ra

ph
ic

s

Sa
tis

fa
ct

io
n

w
ith

 in
te

rfa
ce

 a
rr

an
ge

m
en

t

Sa
tis

fa
ct

io
n

w
hi

le
 le

ar
ni

ng

1 3

Automated Software Engineering (2021) 28:2	 Page 43 of 45  2

References

Alfraihi, H., Lano, K., Kolahdouz-Rahimi, S., Sharbaf, M., Haughton, H.: The impact of integrating agile
software development and model-driven development: a comparative case study. In: International
Conference on System Analysis and Modeling, pp. 229-245. Springer, Copenhagen (2018)

Bangor, A., Kortum, P., Miller, J.: Determining what individual SUS scores mean: adding an adjective
rating scale. J. Usability Stud 4, 114–123 (2009)

Basili, V.R., Caldiera, G., Rombach, H.D.: The goal question metric approach. In: Encyclopedia of Soft-
ware Engineering, pp. 528–532 (1994)

Benouda, H., Azizi, M., Esbai, R., Moussaoui, M.: MDA approach to automate code generation for
mobile applications. In: International Conference on Mobile and Wireless Technologies, pp. 241–
250. Springer, Singapore (2016)

Bernaschina, C., Comai, S., Fraternali, P.: IFMLEdit. org: model driven rapid prototyping of mobile apps.
In: Proceedings of the 4th International Conference on Mobile Software Engineering and Systems,
pp. 207–208. IEEE Press, Buenos Aires (2017)

Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in Practice, 2nd edn. Mor-
gan & Claypool, San Rafael (2017)

Clement, J.: Number of apps available in leading app stores (2019). https://​www.​stati​sta.​com/​stati​stics/​
276623/​number-​of-​apps-​avail​able-​in-​leadi​ng-​app-​stores/. Accessed 11 Nov 2019

Combemale, B., France, R., Jézéquel, J.M., Rumpe, B., Steel, J., Vojtisek, D.: Engineering Modeling
Languages: Turning Domain Knowledge into Tools. Chapman and Hall/CRC, London (2016)

Dabit, N.: React Native in Action. Manning Publications Company, New York (2018)
Dalmasso, I., Datta, S.K., Bonnet, C., Nikaein, N.: Survey, comparison and evaluation of cross platform

mobile application development tools. In: 9th International Wireless Communications and Mobile
Computing Conference, pp. 323–328. IEEE, Sardinia (2013)

Dehlinger, J., Dixon, J.: Mobile application software engineering: Challenges and research directions. In:
Workshop on Mobile Software Engineering, pp. 29–32. Lille (2011)

Dillon, A.: The Evaluation of Software Usability. Taylor and Francis, London (2001)
Ferraro, R., Aktihanoglu, M.: Location-Aware Applications. Manning Publications Co, New York (2011)
Gaouar, L., Benamar, A., Bendimerad, F.T.: Model driven approaches to cross platform mobile develop-

ment. In: Proceedings of the International Conference on Intelligent Information Processing, Secu-
rity and Advanced Communication, pp. 19–23. ACM, Batna (2015)

Heitkötter, H., Majchrzak, T.A., Kuchen, H.: Cross-platform model-driven development of mobile appli-
cations with MD2. In: Proceedings of the 28th Annual ACM Symposium on Applied Computing,
pp. 526–533. ACM, Coimbra (2013)

Hemel, Z., Visser, E.: Declaratively programming the mobile web with Mobl. In: Proceedings of the
2011 ACM International Conference on Object Oriented Programming Systems Languages and
Applications, pp. 695–712. ACM, Portland (2011)

Holst, A.: Smartphone users worldwide 2016–2021 (2019a). https://​www.​stati​sta.​com/​stati​stics/​330695/​
number-​of-​smart​phone-​users-​world​wide/. Accessed 11 Nov 2019

Holst, A.: Global market share held by leading smartphone vendors from 4th quarter 2009 to 3rd quarter
(2019b). https://​www.​stati​sta.​com/​stati​stics/​271496/​global-​market-​share-​held-​by-​smart​phone-​vendo​
rs-​since-​4th-​quart​er-​2009/. Accessed 11 Nov 2019

HoseinDoost, S., Adamzadeh, T., Zamani, B., Fatemi, A.: A model-driven framework for developing
multi-agent systems in emergency response environments. Softw. Syst. Model. 18(3), 1985–2012
(2019)

Hussain, A.: A metric-based evaluation model for applications on mobile phones. J. Inf. Commun. Tech-
nol. 12, 55–71 (2013)

Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented domain analysis
(FODA) feasibility study (No. CMU/SEI-90-TR-21). Carnegie-Mellon Univ Pittsburgh Pa Software
Engineering Inst (1990)

Kloss, J.H.: Android Apps with App Inventor: The Fast and Easy Way to Build Android Apps. Addison-
Wesley, Boston (2012)

Kolovos, D., Rose, L., Paige, R., García-Domínguez, A.: The Epsilon Book. Eclipse (2010)
Kolovos, D.S., García-Domínguez, A., Rose, L.M., Paige, R.F.: Eugenia: towards disciplined and auto-

mated development of GMF-based graphical model editors. Softw. Syst. Model. 16(1), 229–255
(2017)

https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/271496/global-market-share-held-by-smartphone-vendors-since-4th-quarter-2009/
https://www.statista.com/statistics/271496/global-market-share-held-by-smartphone-vendors-since-4th-quarter-2009/

	 Automated Software Engineering (2021) 28:2

1 3

2  Page 44 of 45

Kung, D.: Object-Oriented Software Engineering: An Agile Unified Methodology. McGraw-Hill Higher
Education, New York (2013)

Kurtev, I., Bézivin, J., Jouault, F., Valduriez, P.: Model-based DSL frameworks. In: Companion to the
21st ACM SIGPLAN Symposium on Object-oriented Programming Systems. Languages, and
Applications, pp. 602–616. ACM, New York (2006)

Meirelles, P., Aguiar, C.S., Assis, F., Siqueira, R., Goldman, A.: A students’ perspective of native and
cross-platform approaches for mobile application development. In: International Conference on
Computational Science and Its Applications. Lecture Notes in Computer Science, vol. 11623, pp.
586–601. Springer, Cham (2019)

Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific languages. ACM
Comput. Surv. CSUR 37(4), 316–344 (2005)

Oh, Y.J., Park, H.S., Min, Y.: Understanding location-based service application connectedness: model
development and cross-validation. Comput. Hum. Behav. 94, 82–91 (2019)

Okediran, O.O., Arulogun, O.T., Ganiyu, R.A., Oyeleye, C.A.: Mobile operating systems and application
development platforms: a survey. Int. J. Adv. Netw. Appl. 6(1), 2195–2201 (2014)

Parada, A.G., Siegert, E., De Brisolara, L.B.: Generating Java code from UML class and sequence dia-
grams. In: Brazilian Symposium on Computing System Engineering, pp. 99–101. IEEE, Floriano-
polis (2011)

Parada, A.G., De Brisolara, L.B.: A model driven approach for Android applications development. In:
Brazilian Symposium on Computing System Engineering, pp. 192–197. IEEE, Natal (2012)

Quazi, F.U.R., Sinha, N.: Android-platform based determination of fastest cross-platform framework. Int.
J. Comput. Sci. Mob. Comput. 7(9), 1–12 (2018)

Raveh, J.: Use of location-based services in 2019 (2019). https://​www.​thene​ura.​com/​use-​of-​locat​ion-​
based-​servi​ces-​in-​2019/. Accessed 11 Nov 2019

Rieger, C., Kuchen, H.: A process-oriented modeling approach for graphical development of mobile busi-
ness apps. Comput. Lang. Syst. Struct. 53, 43–58 (2018)

Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in software engineer-
ing. Empir. Softw. Eng. 14(2), 131–164 (2009)

Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF: Eclipse Modeling Framework. Pearson
Education, London (2008)

Sydow, L.: Record levels of app downloads and app store consumer spend in Q4 2017 (2018). https://​
www.​stati​sta.​com/​stati​stics/​330695/​number-​of-​smart​phone-​users-​world​wide/. Accessed 11 Nov
2019

Tufail, H., Azam, F., Anwar, M.W., Qasim, I.: Model-driven development of mobile applications: a sys-
tematic literature review. In: 9th Annual Information Technology. Electronics and Mobile Commu-
nication Conference, pp. 1165–1171. IEEE, Vancouver (2018)

Usman, M., Iqbal, M.Z., Khan, M.U.: A product-line model-driven engineering approach for generating
feature-based mobile applications. J. Syst. Softw. 123, 1–32 (2017)

Vaupel, S., Taentzer, G., Gerlach, R., Guckert, M.: Model-driven development of mobile applications
for android and iOS supporting role-based app variability. Softw. Syst. Model. 17(1), 35–63 (2018)

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimentation in Software
Engineering. Springer, Berlin (2012)

Zolotas, C., Diamantopoulos, T., Chatzidimitriou, K.C., Symeonidis, A.L.: From requirements to source
code: a model-driven engineering approach for RESTful web services. Autom. Softw. Eng. 24(4),
791–838 (2017)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://www.theneura.com/use-of-location-based-services-in-2019/
https://www.theneura.com/use-of-location-based-services-in-2019/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/

1 3

Automated Software Engineering (2021) 28:2	 Page 45 of 45  2

Authors and Affiliations

Mohammadali Gharaat1 · Mohammadreza Sharbaf1 · Bahman Zamani1 ·
Abdelwahab Hamou‑Lhadj2

	 Mohammadali Gharaat
	 mohamadali.gharat@mehr.ui.ac.ir

	 Mohammadreza Sharbaf
	 m.sharbaf@eng.ui.ac.ir

	 Abdelwahab Hamou‑Lhadj
	 wahab.hamou-lhadj@concordia.ca

1	 MDSE Research Group, Department of Software Engineering, University of Isfahan, Isfahan,
Iran

2	 Department of Electrical and Computer Engineering, Concordia University, Montreal, QC,
Canada

	ALBA: a model-driven framework for the automatic generation of android location-based apps
	Abstract
	1 Introduction
	2 Motivation
	3 Location-based app development methodology
	4 ALBA modeling language
	4.1 Decision
	4.2 Analysis
	4.3 Design
	4.4 Implementation
	4.5 Deployment

	5 The ALBA framework
	5.1 ALBA modeling editor
	5.2 ALBA code generator plugin

	6 Evaluation
	6.1 Evaluating the generalizability of ALBA framework
	6.1.1 Research questions
	6.1.2 Case study design
	6.1.3 Results

	6.2 Evaluating the usability and quality aspects
	6.2.1 Evaluation setup
	6.2.2 Planning and data collection
	6.2.3 Analysis of the result

	6.3 Threats to validity

	7 Related work
	8 Conclusion and future work
	References

