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Abstract
Model transformations are central to model-driven software development. Applica-
tions of model transformations include creating models, handling model co-evolu-
tion, model merging, and understanding model evolution. In the past, various (semi-)
automatic approaches to derive model transformations from meta-models or from 
examples have been proposed. These approaches require time-consuming handcraft-
ing or the recording of concrete examples, or they are unable to derive complex 
transformations. We propose a novel unsupervised approach, called Ockham, which 
is able to learn edit operations from model histories in model repositories. Ockham 
is based on the idea that meaningful domain-specific edit operations are the ones 
that compress the model differences. It employs frequent subgraph mining to dis-
cover frequent structures in model difference graphs. We evaluate our approach in 
two controlled experiments and one real-world case study of a large-scale industrial 
model-driven architecture project in the railway domain. We found that our approach 
is able to discover frequent edit operations that have actually been applied before. 
Furthermore, Ockham is able to extract edit operations that are meaningful—in the 
sense of explaining model differences through the edit operations they comprise—to 
practitioners in an industrial setting. We also discuss use cases (i.e., semantic lift-
ing of model differences and change profiles) for the discovered edit operations in 
this industrial setting. We find that the edit operations discovered by Ockham can be 
used to better understand and simulate the evolution of models.
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1  Introduction

Software and systems become increasingly complex. Various languages, methodolo-
gies, and paradigms have been developed to tackle this complexity. One widely-used 
methodology is model-driven engineering (MDE) (Rodrigues Da Silva 2015), which 
uses models as first class entities and facilitates generating documentation and 
(parts of the) source code from these models. Usually, domain-specific modeling 
languages are used and tailored to the specific needs of a domain. This reduces the 
cognitive distance between the domain experts and technical artifacts. A key ingre-
dient of many tasks and activities in MDE are model transformations (Sendall and 
Kozaczynski 2003).

We are interested in edit operations as an important subclass of model transforma-
tions. An edit operation is an in-place model transformation and usually represents 
regular evolution (Van Deursen et al 2007) of models. For example, when moving 
a method from one class to another in a class diagram, also a sequence diagram 
that uses the method in message calls between object lifelines needs to be adjusted 
accordingly. To perform this in a single edit step, one can create an edit operation 
that executes the entire change, including all class and sequence diagram changes. 
Some tasks can even be completely automatized and reduced to the definition of 
edit operations: Edit operations are used for model repair, quick-fix generation, auto 
completion (Ohrndorf et al 2018; Hegedüs et al 2011; Kögel et al 2016), model edi-
tors (Taentzer et al 2007; Ehrig et al 2005), operation-based merging (Kögel et al 
2009; Schmidt et  al 2009), model refactoring (Mokaddem et  al 2018; Arendt and 
Taentzer 2013), model optimization (Burdusel et  al 2018), meta-model evolution 
and model co-evolution (Rose et al 2014; Arendt et al 2010; Herrmannsdoerfer et al 
2010; Getir et al 2018; Kolovos et al 2010), semantic lifting of model differences 
(Kehrer et al 2011, 2012a; ben Fadhel et al 2012; Langer et al 2013; Khelladi et al 
2016), model generation (Pietsch et al 2011), and many more.

In general, there are two main problems involved in the specification of edit 
operations or model transformations in general. Firstly, creating the necessary trans-
formations for the task and the domain-specific modeling languages at hand using 
a dedicated transformation language requires a deep knowledge of the language’s 
meta-model and the underlying paradigm of the transformation language. It might 
even be necessary to define project-specific edit operations, which causes a large 
overhead for many projects and tool providers (Kehrer et al 2017; Mokaddem et al 
2018; Kappel et al 2012). Secondly, for some tasks, domain-specific transformations 
are a form of tacit knowledge (Polanyi 1958), and it will be hard for domain experts 
to externalize this knowledge.

As, on the one hand, model transformations play such a central role in MDE, 
but, on the other hand, it is not easy to specify them, attempts have been made 
to support their manual creation or even (semi-)automated generation. As for 
manual support, visual assistance tools (Avazpour et al 2015) and transformation 
languages derived from a modeling language’s concrete syntax (Acreţoaie et  al 
2018; Hölldobler et al 2015) have been proposed to release domain experts from 
the need of stepping into the details of meta-models and model transformation 
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languages. However, they still need to deal with the syntax and semantics of 
certain change annotations, and edit operations must be specified in a manual 
fashion. To this end, generating edit operations automatically from a given meta-
model has been proposed (Kehrer et al 2016; Mazanek and Minas 2009; Kehrer 
et al 2013). However, besides elementary consistency constraints and basic well-
formedness rules, meta-models do not convey any domain-specific information 
on how models are edited. Thus, the generation of edit operations from a meta-
model is limited to rather primitive operations as a matter of fact. Following the 
idea of model transformation by-example (MTBE) (Brosch et al 2009; Sun et al 
2011; Kappel et al 2012), initial sketches of more complex and domain-specific 
edit operations can be specified using standard model editors. However, these 
sketches require manual post-processing to be turned into general specifications, 
mainly because an initial specification is derived from only a single transforma-
tion example. Some MTBE approaches (Kehrer et al 2017; Mokaddem et al 2018) 
aim at getting rid of this limitation by using a set of transformation examples as 
input, which are then generalized into a model transformation rule. Still, this is a 
supervised approach, which requires sets of dedicated transformation examples 
that need to be defined by domain experts in a manual fashion. As discussed by 
Kehrer et al (2017), a particular challenge is that domain experts need to have, at 
least, some basic knowledge on the internal processing of the MTBE tool to come 
up with a reasonable set of examples. Moreover, if only a few examples are used 
as input for learning, Mokaddem et al (2018) discuss how critical it is to carefully 
select and design these examples.

To address these limitations of existing approaches, we propose a novel unsuper-
vised approach, Ockham, for mining edit operations from existing models in a model 
repository, which is typically available in large-scale modeling projects (cf. Sect. 2). 
Ockham is based on an Occam’s razor argument, that is, the useful edit operations 
are the ones that compress the model repository. In a first step, Ockham discovers 
frequent change patterns using frequent subgraph mining on a labeled graph rep-
resentation of model differences. It then uses a compression metric to filter and 
rank these patterns. We evaluate Ockham using two controlled experiments with 
simulated data and one real-world large-scale industrial case study from the railway 
domain. In the controlled setting, we can show that Ockham is able to discover the 
edit operations that have been actually applied before by us, even when we apply 
some perturbation. In the real-world case study, we find that our approach is able to 
scale to real-world model repositories and to derive edit operations deemed reason-
able by practitioners. We evaluated Ockham by comparing the results to randomly 
generated edit operations in five interviews with practitioners of the product line. 
We find that the edit operations represent typical edit scenarios and are meaning-
ful to the practitioners. Additionally, we evaluate the practical applicability of the 
derived edit operations based on a concrete real-world scenario.

In a summary, we make the following contributions:

•	 We propose an unsupervised approach, called Ockham, that is based on frequent 
subgraph mining to derive edit operations from model repositories, without 
requiring any further information.
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•	 We evaluate Ockham empirically based on two controlled simulated experiments 
and show that the approach is able to discover the applied edit operations.

•	 We evaluate the approach using an interview with five experienced system engi-
neers and architects from a real-world industrial setting in the railway domain 
with more than 200 engineers, 300GB of artifacts, and more than 6 years of 
modeling history. We show that our approach is able to detect meaningful edit 
operations in this industrial setting and that it scales to real-world repositories.

•	 We apply the automatically derived edit operations in the concrete use case of 
condensing large model differences and show their practical impact in this case. 
We furthermore argue how the edit operations can be used to analyze and simu-
late model evolution.

This article is an extension of a conference paper published at ASE’21 (Tinnes et al 
2021). In the conference version, we presented and evaluated Ockham, an unsuper-
vised learning approach for mining domain-specific edit operations from model his-
tories. In this article, we include two major additions. First, we evaluate the practi-
cal implications of the obtained edit operations using a real-world case study. More 
specifically, motivated by our aim to facilitate the analysis of model differences, we 
evaluate the extent to which the edit operations can be used to compress and filter 
model differences. Second, we discuss key observations that we made in the case 
study when further analyzing model differences after a semantic lifting using the 
edit operations mined by Ockham. In particular, we have found that the frequency 
distribution of the edit operations in the model differences gives rise to a change 
profile that describes the model difference from a statistical perspective and can be 
used for classifying the model differences. We discuss applications of these profiles, 
including the statistical analysis of model differences and the use of the change pro-
files to simulate model evolution.

2 � Motivation: an industrial scenario

Our initial motivation to automatically mine edit operations from model repositories 
arose from a long-term collaboration with practitioners from a large-scale industrial 
model-driven software product line in the railway domain. The modeling is done in 
MagicDraw1 using SysML, and there is an export to the Eclipse Modeling Frame-
work (EMF), which focuses on the SysML parts required for subsequent MDE activ-
ities (e.g., code generation). Modeling tools such as MagicDraw come with support 
for model versioning. In our setting, the models are versioned in the MagicDraw 
Teamwork Server. We therefore have access to a large number of models and change 
scenarios.

Discussing major challenges with the engineers of the product line, we 
observed that some model changes appear very often together in this repository. 
For example, when the architect creates an interface between two components, s/

1  https://​docs.​nomag​ic.​com/.

https://docs.nomagic.com/
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he will usually add some Ports to Components and connect them via the Con-
nectorEnds of a Connector. Expressed in terms of the meta-model, there are 
17 changes to add such an interface  (see Fig. 1). We are therefore interested to 
automatically detect these patterns in the model repository. More generally, our 
approach, Ockham, is based on the assumption that it should be possible to derive 
“meaningful” patterns from the repositories. These patterns could then be used 
for many applications (Ohrndorf et al 2018; Kögel et al 2016; Taentzer et al 2007; 
Arendt and Taentzer 2013; Getir et al 2018; Kehrer et al 2012a; ben Fadhel et al 
2012; Langer et al 2013; Khelladi et al 2016).

The background is that, in our case study, the models have become huge over 
time (approx. 1.2 million elements split into 100 submodels) and model differ-
ences between different products have become huge (up to 190,000 changes in 
a single submodel). The analysis of these differences, for example, for quality 
assurance of the models or domain analysis, has become very tedious and time-
consuming. To speed-up the analysis of the model differences, it would be desir-
able to reduce the “perceived” size of the model difference by grouping fine-
grained differences to higher-level, more coarse-grained and more meaningful 
changes. For this semantic lifting of model differences, the approach by Kehrer 
et  al (2011), which uses a set of edit operations as configuration input, can be 
used but the approach requires the edit operations to be defined already. Based on 
a set of edit operations this semantic lifting approach will group changes into so 
called change sets.

Large model differences occurring in some of the activities in this setting have 
actually been our main motivation to investigate how we can derive the required edit 
operations (semi-)automatically.

We will use the data from this real-world project to evaluate Ockham in Sect. 5.

Fig. 1   Semantic lifting can be used to group many fine-grained changes into change sets
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3 � Background

In this section, we provide basic definitions that are important to understand our 
approach presented in Sect. 4.

3.1 � Graph theory

As usual in MDE, we assume that a meta-model specifies the abstract syntax and 
static semantics of a modeling language. Conceptually, we consider a model as a 
typed graph (aka. abstract syntax graph), in which the types of nodes and edges are 
drawn from the meta-model. Figure 2 illustrates how a simplified excerpt from an 
architectural model of our case study from Sect. 2 in concrete syntax is represented 
in abstract syntax, typed over the given meta-model.

We further assume models to be correctly typed. We abstain from a formal defini-
tion of typing using type graphs and type morphisms (Biermann et al 2012), though. 
Instead, to keep our basic definitions as simple as possible, we work with a vari-
ant of labeled graphs in which a fixed label alphabet represents node and edge type 
definitions of a meta-model. Given a label alphabet L, a labeled directed graph G is 
a tuple (V ,E, �) , where V is a finite set of nodes, E is a subset of V × V  , called the 
edge set, and � ∶ V ∪ E → L is the labeling function, which assigns a label to nodes 

Fig. 2   We consider models as labeled graphs, where labels represent types of nodes and edges defined by 
a meta-model. For the sake of brevity, types of edges are omitted in the figure
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and edges. If we are only interested in the structure of a graph and typing is irrel-
evant, we will omit the labeling and only refer to the graph as G = (V ,E).

Given two graphs G = (V ,E, �) and G� = (V �,E�, ��) , G′ is called a subgraph 
of G, written G′ ⊆ G , if V ′ ⊆ V  , E′ ⊆ E , and �(x) = ��(x) for each x ∈ V � ∪ E� . 
A (weakly) connected component (component, for short) C = (VC,EC) ⊆ G 
is a subgraph of G in which every two vertices are connected by a path, that is, 
∀u, v ∈ VC ∶ ∃n ∈ ℕ s. t.

{
(v, v1), (v1, v2),… , (vn, u)

}
⊆ EC ∪ ẼC , where ẼC is the 

set of all reversed edges, that is, (u, v) ∈ EC becomes (v, u) ∈ ẼC , and every vertex 
in G that is connected to a vertex in VC by a path is an element of VC.

3.2 � Frequent subgraph mining

We will use frequent subgraph mining as the main ingredient for Ockham. We dis-
tinguish between graph-transaction-based frequent subgraph mining and single-
graph-based frequent subgraph mining. In particular, we are considering graph-
transaction-based frequent subgraph mining, which typically takes a database (i.e., 
a set) of graphs and a threshold t as input. It then outputs all the subgraphs with, 
at least, t occurrences in the database. An overview of frequent subgraph mining 
algorithms can be found in the literature (Jiang et al 2013). A general introduction 
to graph mining is given by Cook and Holder (2006), who also proposed a compres-
sion-based subgraph miner called Subdue (Ketkar et al 2005). Subdue has also been 
one of our main inspirations for a compression-based approach. Ockham is based on 
Gaston (Nijssen and Kok 2005), which mines frequent subgraphs by first focusing 
on frequent paths, then extending to frequent trees, and finally extending the trees 
to cyclic graphs. Since deciding if a graph G′ is a subgraph of another graph G is 
already NP-complete, there is no polynomial time algorithm for frequent subgraph 
mining. Usually, if there are large graphs in the database or the threshold is too low, 
the problem becomes computationally intractable. In these situations, the number of 
subgraphs typically also becomes intractable. In many scenarios though, one is not 
interested in a complete list of all frequent subgraphs. In these cases, huge graphs in 
the database can be filtered out or the threshold can be increased such that the fre-
quent subgraph mining becomes feasible.

3.3 � Model transformations and edit operations

The goal of Ockham is to learn domain-specific edit operations from model histo-
ries. In general, edit operations can be informally understood as editing commands 
that can be applied to modify a given model. In turn, a difference between two 
model versions can be described as a (partially) ordered set of applications of edit 
operations, transforming one model version into the other. Comparing two models 
can thus be understood as determining the applications of the edit operation applica-
tions that transform one model into the other. A major class of edit operations are 
model refactorings, which induce syntactical changes without changing a models’ 
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semantics. Other classes of edit operations include recurring bug fixes and evolu-
tionary changes.

In a classification by Van Deursen et al (2007), edit operations can describe regu-
lar evolution, that is, “the modeling language is used to make changes”, but they 
are not meant to describe meta-model evolution, platform evolution, or abstraction 
evolution. More technically, in Mens et al.’s taxonomy (Mens and Van Gorp 2006), 
edit operations can be classified as endogenous (i.e., source and target meta-model 
are equal), in-place (i.e., source and target model are equal) model transformations. 
For the purpose of this paper, we define an edit operation as an in-place model trans-
formation which represents regular model evolution.

The model transformation tool Henshin  (Arendt et al 2010) supports the speci-
fication of in-place model transformations in a declarative manner. It is based on 
graph transformation concepts (Ehrig et al 2004), and it provides a visual language 
for the definition of transformation rules, which is used, for example, in the last step 
of Fig. 3. Roughly speaking, transformation rules specify graph patterns that are to 
be found and created or deleted.

4 � Approach

We address the problem of automatically identifying edit operations from a graph 
mining perspective. As discussed in Sect.  3, we will work with labeled graphs 
instead of typed graphs. There are some limitations related to this decision, which 
we discuss in Sect. 6.3.

Ockham consists of the five steps illustrated with a running example in Fig. 3. 
Our main technical contributions are Step 2 and Step 4. For Step  1, Step  3, and 
Step 5 we apply existing tooling: SiDiff, Gaston, and Henshin (cf. Sect. 3).

Step 1: Compute Structural Model Differences: To learn a set of edit opera-
tions in an unsupervised manner, Ockham analyzes model changes that can be 
extracted from a model’s development history. For every pair of successive model 
versions n and n + 1 in a given model history, we calculate a structural model dif-
ference Δ(n, n + 1) to capture these changes. As we do not assume any informa-
tion (e.g., persistent change logs) to be maintained by a model repository, we use 
a state-based approach to calculate a structural difference, which proceeds in two 
steps (Kehrer 2015). First, the corresponding model elements in the model graphs 
Gn and Gn+1 are determined using a model matcher (Kolovos et al 2009). In many 
cases, the model elements will carry identifiers, which can utilized in the matching. 
Second, the structural changes are derived from these correspondences: All the ele-
ments in Gn that do not have a corresponding partner in Gn+1 are considered to be 
deleted, whereas, vice versa, all the elements in Gn+1 that do not have a correspond-
ing partner in Gn are considered to be newly created.

For further processing in subsequent steps, we represent a structural difference 
Δ(n, n + 1) in a graph-based manner, referred to as difference graph (Ohrndorf et al 
2018). A difference graph GΔ(n,n+1) is constructed as a unified graph over Gn and 
Gn+1 . That is, corresponding elements being preserved by an evolution step from 
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Fig. 3   The 5-step process for mining edit operations with Ockham 
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version n to n + 1 appear only once in GΔ(n,n+1) (indicated by the label prefix “Pre-
serve_”), while all other elements that are unique to model Gn and Gn+1 are marked 
as deleted and created, respectively (indicated by the label prefixes “Add_” and 
“Remove_”).

For illustration, assume that the architectural model shown in Fig. 2 is the revised 
version n + 1 of a version n by adding the ports along with the connector and its 
associated requirement. Figure 3 illustrates a matching of the abstract syntax graphs 
of the model versions n and n + 1 . For the sake of brevity, only correspondences 
between nodes in Gn and Gn+1 are shown in the figure, while two edges are corre-
sponding when their source and target nodes are in a correspondence relationship. 
The derived difference graph GΔ(n,n+1) is illustrated in Fig. 3. For example, the cor-
responding nodes of type Component occur only once in GΔ(n,n+1) , and the nodes of 
type Port are indicated as being created in version n + 1.

Our implementation is based on the Eclipse Modeling Framework. We use the 
tool SiDiff (Schmidt and Gloetzner 2008; Kehrer et al 2012b) to compute structural 
model differences. Our requirements on the model differencing tool are: (1) support 
for EMF, (2) the option to implement a custom matcher, because modeling tools 
such as MagicDraw usually provide IDs for every model element, which can be 
employed by a custom matcher, and (3) an approach to semantically lift model dif-
ferences based on a set of given edit operations, because we intend to use the seman-
tic lifting approach for the compression of differences in the project mentioned in 
Sect. 2. Other tools such as EMFCompare could also be used for the computation 
of model differences and there are no other criteria to favour one over the other. An 
overview of the different matching techniques is given by Kolovos et al (2009); a 
survey of model comparison approaches is given by Stephan and Cordy (2013).

Step 2: Derive Simple Change Graphs: Real-world models maintained in a 
model repository, such as the architectural models in our case study, can get huge. 
It is certainly fair to say that, compared to a model’s overall size, only a small num-
ber of model elements is actually subject to change in a typical evolution step. 
Thus, in the difference graphs obtained in the first step, the majority of difference 
graph elements represent model elements that are simply preserved. To this end, 
before we continue with the frequent subgraph mining in Step 3, in Step 2, differ-
ence graphs are reduced to simple change graphs (SCGs) based on the principle of 
locality relaxation: only changes that are “close” to each other can result from the 
application of a single edit operation. We discuss the implications of this princi-
ple in Sect. 6.3. By “close”, we mean that the respective difference graph elements 
representing a change must be directly connected (i.e., not only through a path of 
preserved elements). Conversely, this means that changes being represented by ele-
ments that are part of different connected components of a simple change graph are 
independent of each other (i.e., they are assumed to result from different edit opera-
tion applications).

More formally, given a difference graph GΔ(n,n+1) , a simple change graph 
SCGΔ(n,n+1) ⊆ GΔ(n,n+1) is derived from GΔ(n,n+1) in two steps. First, we select all the 
elements in GΔ(n,n+1) representing a change (i.e., nodes and edges that are labeled as 
“Remove_*” and “Add_*”, respectively). In general, this selection does not yield a 
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graph, but just a graph fragment F ⊆ GΔ(n,n+1) , which may contain dangling edges. 
Second, preserved nodes adjacent to dangling edges are also selected to be included 
in the simple change graph. Formally, the simple change graph is constructed as the 
boundary graph of F, which is the smallest graph SCGΔ(n,n+1) ⊆ GΔ(n,n+1) completing 
F to a graph (Kehrer 2015). The derivation of a simple change graph from a given 
difference graph is illustrated in the second step of Fig. 3. In this example, the sim-
ple change graph comprises only a single connected component. In a realistic set-
ting, however, a simple change graph typically comprises a larger set of connected 
components, like the one illustrated in Step 3 of Fig. 3. The simple change graph can 
also be considered as a blueprint for the edit operation. It contains all the changes 
performed by the edit operation and the “anchors” it needs in the current model.

We implemented a generator for the simple change graphs in EMF. In our imple-
mentation, we loop through all the changes in the symmetric difference and for each 
change c, we add nodes and edges as below:

AddNode: For an AddNode change, we add a node with label Add_{TypeName} 
to the graph.

RemoveNode: For a RemoveNode change, we add a node with label 
Remove_{TypeName} to the graph.

AddEdge: For a change of type AddEdge, the source object and the target object 
of the added reference have to be either preserved or also been added to the model 
mi+1 . If the source/target node have not yet been added to the graph, we add a node 
vsource/vtarget with the labels Add_{TypeName} or Preserve_{TypeName} , respec-
tively. We then add an edge e = (vsource, vtarget) between source and target node to the 
edge set E of the graph.

RemoveEdge: We add an edge for a change c of type RemoveEdge but the source 
and target nodes can be either removed or preserved in this case.

AttributeValueChange: An attribute value needs to belong to a pre-
served object in the model. The corresponding Preserve_{TypeName} node 
is added to the graph if it is not yet there. Then, we add a node with label 
Change_{AttributeName}_On_{TypeName} . The preserved node and the node rep-
resenting the changed attribute will then be connected by an edge with the same 
label.

Step 3: Apply Frequent Connected Subgraph Mining: Using the previous two 
steps for a given model repository that contains a set of model revisions, we can 
compute a set of Simple Change Graphs. These change graphs contain information 
about fine-grained, meta-model-based changes between two successive revisions of 
models. We believe that these fine-grained changes can be grouped to more coarse-
grained changes. In the example in Fig. 3, a connector, together with its ports and 
a requirement, are added. The underlying idea of the approach is that changes that 
can be grouped together should also frequently appear together in our model dif-
ferences. When we apply the first two steps to a model history, we obtain a set of 
simple change graphs

{
SCGΔ(n,n+1) ∣ n ∈ {1,… ,N − 1}

}
,
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where N is the number of revisions in the repository. In this set, we want to identify 
recurring patterns and therefore find some frequent connected subgraphs. A small 
support threshold might lead to a huge number of frequent subgraphs. For example 
a support threshold of one would yield every subgraph in the set of connected com-
ponents. This does not only cause large computational effort, but also makes it diffi-
cult to find relevant subgraphs. As it would be infeasible to recompute the threshold 
manually for every dataset, we pre-compute it by running an approximate frequent 
subtree miner for different thresholds up to some fixed size of frequent subtrees. We 
fix the range of frequent trees and adjust the threshold accordingly. More precisely, 
we perform a binary search for the threshold until the number of subtrees lies in a 
predefined range. We use this threshold for the exact subgraph mining. This effec-
tively replaces the support threshold hyper-parameter by a hyper-parameter STmax 
which satisfies

where ST(level = 8,miner) denotes the number of subtrees found up to level (num-
ber of nodes) 8 with the frequent subtree miner used. We therefore do not need to 
(manually) find a good support threshold for the datasets and, in many cases, we can 
be sure that the miner is able to terminate in a reasonable amount of time.

Alternatively, a relative threshold could be used, but we found in a pilot study 
that our pre-computation works better in terms of average precision. We discuss the 
effect of the support threshold further in Sect. 6.

We run the frequent subgraph miner for the threshold found via the approximate 
tree miner. Step 3 of Fig. 3 shows this for our running example. We start with a set 
of connected components, and the graph miner returns a set of frequent subgraphs, 
namely {g1, g2, g3} with g1 ⊂ g2 ⊂ g3 . We use the Gaston  (Nijssen and Kok 2005) 
graph miner, since it performed best (in terms of runtime) among the miners that we 
experimented with (gSpan, Gaston, and DIMSpan) in a pilot study. In our pilot study, 
we ran the miners on a small selection of our datasets and experimented with the 
parameters of the miners. For many datasets, gSpan and DIMSpan did not terminate 
at all (we canceled the execution after 48 h). Gaston (with embedding lists) was able 
to terminate in less then 10 s on most of our datasets but consumes a lot of memory, 
typically between 10GB–25GB, which was not a problem for our 32GB machine in 
the pilot study. To rule out any effects due to approximate mining, we considered only 
exact miners. Therefore, we also could not use Subdue (Ketkar et  al 2005), which 
directly tries to optimize compression. Furthermore, Subdue was not able to discover 
both edit operations in the second experiment (see Sect. 5), without iterative mining 
and allowing for overlaps. Enabling these two options, Subdue did not terminate on 
more than 75% of the pilot study datasets. For frequent subtree mining, we use Hops 
(Welke et al 2020) because it provides low error rates and good runtime guarantees.

Step 4: Select the most Relevant Subgraphs: Motivated by the minimum 
description length principle, which has been successfully applied to many different 
kinds of data (Grünwald and Grunwald 2007), the most relevant patterns should not 
be the most frequent ones but the ones that give us a maximum compression for our 
original data (Djoko 1994). That is, we want to express the given SCGs by a set of 

ST(level = 8,miner) < STmax
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subgraphs such that the description length for the subgraphs together with the length 
of the description of the SCGs in terms of the subgraphs becomes minimal. This 
reasoning can be illustrated by looking at the corner cases: (1) A single change has 
a large frequency but is typically not interesting. (2) The entire model difference is 
large in terms of changes but has a frequency of only one and is typically also not an 
interesting edit operation. “Typical edit operations” are therefore somewhere in the 
middle. We will use our experiments in Sect. 5 to validate whether this assumption 
holds. We define the compression value by

where supp(g) is the support of g in our set of input graphs (i.e., the number of 
components in which the subgraph is contained). The “ −1 ” in the definition of the 
compression value comes from the intuition that we need to store the definition of 
the subgraph, to decompress the data again. The goal of this step is to detect the 
subgraphs from the previous step with a high compression value. Subgraphs are 
organized in a subgraph lattice, where each graph has pointers to its direct sub-
graphs. Most of the subgraph miners already compute a subgraph lattice, so we do 
not need a subgraph isomorphism test here. Due to the downward closure property 
of the support, all subgraphs of a given (sub-)graph have, at least, the same fre-
quency (in transaction-based graph mining). When sorting the output, we need to 
take this into account, since we are only interested in the largest possible subgraphs 
for some frequency. These largest possible subgraphs for some frequency are called 
closed subgraphs and typically the number of closed subgraphs is much smaller than 
the number of all frequent subgraphs (Yan and Han 2003). Therefore, we prune the 
subgraph lattice. The resulting list of recommendations is then sorted according to 
the compression value. Other outputs are conceivable, but in terms of evaluation, a 
sorted list is a typical choice for a recommender system (Schröder et al 2011).

More technically, let SG be the set of subgraphs obtained from Step 3, we then 
remove all the graphs in the set

Our list of recommendations is then SG ⧵ SG− , sorted according to the compression 
metric.

For our running example in Step 4 of Fig. 3, assume that the largest subgraph 
g3 occurs 15 times (without overlaps). Even though the smaller subgraph g1 occurs 
twice as often, we find that g3 provides the best compression value and is therefore 
ranked first. Subgraph g2 will be pruned, since it has the same support as its super-
graph g3 , but a lower compression value.

We implement the compression computation and pruning using the NetworkX2 
Python library. The algorithm outputs a compression-ranked and pruned list of fre-
quent subgraphs.

compr(g) =
(
supp(g) − 1

)
⋅

(
∣ Vg ∣ + ∣ Eg ∣

)
,

SG− =
{
g ∈ SG ∣ ∃g̃ ∈ SG, with g ⊆ g̃

∧ supp(g) = supp(g̃) ∧ compr(g) ≤ compr(g̃)
}
.

2  https://​netwo​rkx.​org/.

https://networkx.org/
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Step 5: Generate Edit Operations: As a result of Step 4, we have an ordered list 
of “relevant” subgraphs of the simple change graphs. We need to transform these 
subgraphs into model transformations that specify the mined edit operations. As 
illustrated in Step 5 of Fig. 3, the subgraphs can be transformed to Henshin trans-
formation rules in a straightforward manner. The added elements are added to the 
right hand side graph of the Henshin transformation rule, the deleted elements are 
added to the left hand side graph of the Henshin transformation rule, and preserved 
elements are added to both graphs and a corresponding matching is added to the 
rule. At this point, we can also use the information from the meta-model to com-
plete the edit operations. For example, when a created element requires another ele-
ment or attribute, which is not yet present, it can be added. This is done similarly to 
the derivation of consistency preserving edit operations by Kehrer et al (2016). A 
domain expert can add some (non-)application conditions to the rules or add further 
parameters for the rules. We use Henshin because it is used for the semantic lifting 
approach in our case study from Sec. 2. In principle, any transformation language 
that allows us to express endogenous, in-place model transformations could be used. 
A survey of model transformation tools is given by Kahani et al (2019).

5 � Evaluation

In this section, we will evaluate our approach in two controlled experiments and one 
real-world industry case study in the railway domain.

5.1 � Research questions

We evaluate Ockham w.r.t. the following research questions:

•	 RQ 1: Is Ockham able to identify edit operations that have actually been applied 
in model repositories? If we apply some operations to models, Ockham should 
be able to discover these from the data. Furthermore, when different edit opera-
tions are applied and overlap, it should still be possible to discover them.

•	 RQ 2: Is Ockham able to find typical edit operations or editing scenarios in a 
real-world setting? Compared to the first research question, Ockham should also 
be able to find typical scenarios in practice, in scenarios where we do not know 
which operations have been actually applied to the data. Furthermore, it should 
be possible to derive these edit operations in a real-world setting with large mod-
els and complex meta-models.

•	 RQ 3: What are the main drivers for Ockham to succeed or fail? We want to 
identify the characteristics of the input data or parameters having a major influ-
ence on Ockham.

•	 RQ 4: What are the main parameters for the performance of the frequent sub-
graph mining? Frequent subgraph mining has a very high computational com-
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plexity for general cyclic graphs. We want to identify the characteristics of the 
data in our setting that influence the mining time.

•	 RQ 5: What is the practical impact of the edit operations discovered by Ockham 
in the context of the case study introduced in Section 2? One of our main motiva-
tions is to compress differences in our case study of Sect. 2. We evaluate which 
degree of compression our mined operations provide in this scenario.

For RQ 1, we want to rediscover the edit operations from our ground truth, whereas 
in RQ 2, the discovered operations could also be some changes that are not applied 
in “only one step” but appear to be typical for a domain expert. We refer to both 
kinds of change patterns as “meaningful” edit operation.

5.2 � Experiment setup

We conduct four experiments to evaluate our approach. In the first two experiments, 
we run the algorithm on synthetic model repositories. We know the “relevant edit 
operations” in these repositories, since we define them, and apply them to sample 
models. We can therefore use these experiments to answer RQ 1. Furthermore, since 
we are able to control many properties of our input data for these simulated reposi-
tories, we can also use them to answer RQ 3 and RQ 4. In the third experiment, we 
apply Ockham to the dataset from our case study presented in Sect. 2 to answer RQ 
2. The first two experiments help us to find the model properties and the parameters 
the approach is sensible to. Their purpose is to increase the internal validity of our 
evaluation. To increase external validity, we apply Ockham in a real-world setting 
as well. None of these experiments alone achieves sufficient internal and external 
validity (Siegmund et al 2015), but the combination of all experiments is suitable to 
assess whether Ockham can discover relevant edit operations. In the fourth experi-
ment, we use the edit operations from the third experiment to semantically lift the 
low-level differences using the approach of Kehrer et al (2011). We then compute 
the compression ratio on a sample of model differences to answer RQ 5.

We run the experiments on an Intel CoreTM i7-5820K CPU @ 3.30GHz× 12 and 
31.3 GiB RAM. For the synthetic repositories, we use 3 cores per dataset.

Experiment 1: As a first experiment, we simulate the application of edit opera-
tions on a simple component model. The meta-model is shown in Fig. 2.

For this experiment, we only apply one kind of edit operation (the one from our 
running example in Fig. 3) to a random model instance. The Henshin rule specify-
ing the operation consists of a graph pattern comprising 7 nodes and 7 edges. We 
create the model differences as follows: We start with an instance m0 of the sim-
ple component meta-model with 87 Packages, 85 Components, 85 SwImple-
mentations, 172 Ports, 86 Connectors, and 171 Requirements. Then, the edit 
operation is randomly applied e times to the model obtaining a new model revi-
sion m1 . This procedure is applied iteratively d times to obtain the model his-
tory m0 �→ m1 �→ …md−1 �→ md. Each evolution step mi �→ mi+1 yields a difference 
Δ(mi,mi+1).
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Since we can not ensure completeness of Ockham (i.e., it might not discover all 
edit operations in a real-world setting), we also have to investigate how sensible the 
approach is to undiscovered edit operations. Therefore, to each application of the 
edit operation, we apply a random perturbation. More concretely, a perturbation is 
another edit operation that we apply with a certain probability p. This perturbation 
is applied such that it overlaps with the application of the main edit operation. We 
use the tool Henshin (Biermann et al 2012) to apply model transformations to one 
model revision. We then build the difference of two successive models as outlined 
in Sect. 4. In our experiment, we control the following parameters for the generated 
data.

•	 d: The number of differences in each simulated model repository. For this exper-
iment, d ∈ {10, 20}.

•	 e: The number of edit operations to be applied per model revision in the reposi-
tory, that is, how often the edit operation will be applied to the model. For this 
experiment, e ∈ {1,… , 100}.

•	 p: The probability that the operation will be perturbed. For this experiment, we 
use p ∈ {0.1, 0.2,… , 1.0}.

This gives us 2000 ( = 2 × 100 × 10 ) datasets for this experiment. A characteristics 
of our datasets is that, increasing e, the probability of changes to overlap increases, 
as well. Eventually, adding more changes even decreases the number of components 
in the SCG while increasing the average size of the components.

Ockham suggests a ranking of the top k subgraphs (which eventually yield the 
learned edit operations). In the ranked suggestions of the algorithm, we then look 
for the position of the “relevant edit operation” by using a graph isomorphism test. 
To evaluate the ranking, we use the “mean average precision at k” (MAP@k), which 
is commonly used as an accuracy metric for recommender systems (Schröder et al 
2011):

where D is the family of all datasets (one dataset represents one repository) and 
AP@k is defined by

where P(i) is the precision at i, and rel(i) indicates if the graph at rank i is relevant.
For this experiment, the number of relevant edit operations (or subgraphs to be 

more precise) is always one. Therefore, we are interested in the rank of the correct 
edit operation. Except for the case that the relevant edit operation does not show up 
at all, MAP@∞ gives us the mean reciprocal rank and therefore serves as a good 
metric for that purpose.

MAP@k ∶=
1

|D|
∑

D

AP@k ,

AP@k ∶=

∑k

i=1
P(i) ⋅ rel(i)

�total set of relevant subgraphs�
,
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For comparison only, we also compute the MAP@k scores for the rank of the 
correct edit operations according to the frequency of the subgraphs. Furthermore, 
we investigate how the performance of subgraph mining depends on other param-
eters of Ockham. We are also interested in how average precision (AP), that is, 
AP@∞ , depends on the characteristics of the datasets. Note that for the first two 
experiments, we do not execute the last canonical step of our approach (i.e., deriving 
the edit operation from a SCG), but we directly evaluate the resulting subgraph from 
Step 4 against the simple change graph corresponding to the edit operation.

To evaluate the performance of the frequent subgraph miner on our datasets, we 
fixed the relative threshold (i.e., the support threshold divided by the number of 
components in the graph database) to 0.4. We re-run the algorithm for this fixed 
relative support threshold and p ≤ 0.4.

Experiment 2: In contrast to the first experiment, we want to identify in the sec-
ond experiment more than one edit operation in a model repository. We therefore 
extent the first experiment by adding another edit operation, applying each of the 
operations with the same probability. To test whether Ockham also detects edit oper-
ations with smaller compression than the dominant (in terms of compression) edit 
operation, we choose a smaller second operation. The Henshin rule graph pattern for 
the second operation comprises 4 nodes and 5 edges. It corresponds to adding a new 
Component with its SwImplementation and a Requirement to a Package.

Since the simulation of model revisions consumes a lot of compute resources, 
we fixed d = 10 and considered only e <= 80 for this experiment. The rest of the 
experiment is analogous to the first experiment.

Experiment 3: The power of the simulation to mimic a real-world model evo-
lution is limited. Especially, the assumption of random and independent applica-
tions of edit operations is questionable. Therefore, for the third experiment, we use 
a real-world model repository from the railway software development domain (see 
Sect. 2). For this repository, we do not know the operations that have actually been 
applied. We therefore compare the mined edit operations with edit operations ran-
domly generated from the meta-model, and want to show that the mined edit opera-
tions are significantly more “meaningful” than the random ones.

The models in this case are SysML models in MagicDraw but there is an EMF 
export of the SysML models, which we can use to apply our toolchain.

For this experiment, we mined 546 pairwise differences, with 4109 changes, 
on average, which also contain changed attribute values (one reason for that many 
changes is that the engineering language has changed from German to English). The 
typical model size in terms of their abstract syntax graphs is 12081 nodes; on aver-
age, 50 out of 83 meta-model classes are used as node types.

To evaluate the quality of our recommendations, we conducted a semi-structured 
interview with five domain experts of our industry partner: 2 system engineers 
working with one of the models, 1 system engineer working cross-cutting, 1 chief 
system architect responsible for the product line approach and the head of the tool 
development team. We presented them 25 of our mined edit operations together with 
25 edit operations that were randomly generated out of the meta-model. We selected 
the mined edit operations that were top-ranked according to compression metric. We 
omitted repeated edit operations that result from multi-object structures (e.g., if the 
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recommendations included edit operations for adding two activity diagram swim-
lanes, adding three swimlanes, etc., we only included one of them). We used the 
compression-based ranking since it is arguably superior to the purely frequency-
based ranking, as we have seen empirically in the first two experiments. Further-
more, there is also more evidence for this choice in the literature (Ketkar et al 2005; 
Bariatti et al 2020). The edit operations were presented in the visual transformation 
language of Henshin, which we introduced to our participants before. On a 5-point 
Likert scale, we asked whether the edit operation represents a typical edit scenario 
(5), is rather typical (4), can make sense but is not typical (3), is unlikely to exist (2), 
and does not make sense at all (1). We compare the distributions of the Likert score 
for the population of random edit operations and mined edit operations to determine 
whether the mined operations are typical or meaningful.

In addition, we discussed the mined edit operations with the engineers that have 
not been considered to be typical.

Experiment 4: Higher-level edit operations typically comprise several more fine-
grained edit steps. Kehrer et al (2011) presented an approach that allows to represent 
a model difference in terms of previously defined edit operations. Changes in the 
model difference that belong to the application of one edit operation are grouped 
together in a lifted model difference. A group of changes that belong to the applica-
tion of one edit operation is called a change set. Using this lifting approach, we can 
evaluate to what extend the edit operations mined by Ockham can compress model 
differences. For this, in the fourth experiment, we use the 25 mined edit operations 
from the third experiment and five additional edit operations discovered by Ock-
ham for a semantic lifting of a sample of 40 model differences from our industrial 
scenario from Sect. 2. More concretely, we randomly select 40 submodels in their 
current revision and compute the difference between this revision and 25 revisions 
earlier of the same submodel. If no 25 revisions are available, we compute the dif-
ference to the earliest possible revision. Of course, our 30 edit operations are not yet 
complete, that is, some changes will be missed. We will therefore not only report 
the total compression ratio but also the relative compression ratio (i.e., the compres-
sion ratio with respect to the changes that are covered by the 30 edit operations). We 
define the compression ratio as follows:

where by ungrouped changes we refer to changes that are not included in any of 
the change sets after the semantic lifting. Similarly, the relative compression ratio is 
defined as:

With the help of the domain experts we furthermore divided the set of 30 edit opera-
tions into two subsets. One subset contains refactorings like renaming operations 
or move operations, while the other subset contains edit operations which represent 
important functional evolution. We will refer to the second subset as critical edit 

c ∶=
|changes before lifting|

|change sets| + |ungrouped changes|
,

crel ∶=
|changes before lifting| − |ungrouped changes|

|change sets|
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operations. 22 edit operations have been classified as critical and 8 as refactorings. 
We will also report the compression ratio for these critical operations separately. 
The reason for this separate reporting is that for some of the tasks related to model 
differences, refactoring is less relevant and can be ignored, while the critical edit 
operations are crucial for the analysis. An example for such a task is the analysis of 
the functional changes of a product between two successive software qualifications. 
It is important to emphasize here that the discovery of refactoring edit operations is 
still important and a prerequisite for this filtering.

5.3 � Results

Experiment 1: In Table 1, we list the MAP@k scores for all datasets in the experi-
ment. Table  3 shows the Spearman correlation of the independent and dependent 
variables. If we look only on datasets with a large number of applied edit operations, 
e > 80 , the Spearman correlation for average precision vs. d and average precision 
vs. p becomes 0.25 (instead of 0.12) and −0.14 (instead of −0.07 ), respectively. The 
mean time for running Gaston on our datasets was 1.17 s per dataset.

Experiment 2: In Table 2 we give the MAP@k scores for this experiment. Table 4 
shows the correlation matrix for the second experiment. The mean time for running 
GASTON on our datasets was 1.02 s per dataset.

Table 1   The MAP@k scores for 
results of Experiment 1

MAP@1 MAP@5 MAP@10 MAP@∞

Compression 0.967 0.974 0.975 0.975
Frequency 0.016 0.353 0.368 0.368

Table 2   The MAP@k scores for 
Experiment 2

MAP@2 MAP@5 MAP@10 MAP@∞

Compression 0.955 0.969 0.969 0.969
Frequency 0.013 0.127 0.152 0.190

Table 3   Spearman correlations for Experiment 1

**: p < .001 , *: p < 0.01

p Mining time e d Mean 
#Nodes
per comp

AP − 0.07* − 0.24** − 0.23** 0.12** − 0.21**
AP (for e > 80) − 0.14* − 0.19** − 0.19** 0.25** − 0.03

Mining time 0.12** – 0.89** 0.26** 0.83**
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Experiment 3: Table 5 shows the results for the Likert values for the mined and 
random edit operations for the five participants of our study. Furthermore, we con-
duct a t-test (with and without bootstrap) and a Wilcoxon signed-rank test, to test if 
the mined edit operations more likely present typical edit scenarios than the random 
ones. The p-values are reported in Table 5.

Null hypothesis �
�
 : The mined edit operations do not present a more typical edit 

scenario than random edit operations on average.
We set the significance level to � = 0.01 . We can see that, for all participants, 

the mean Likert score for the mined operations is significantly (for all statistical 
tests performed) higher than the mean for the random operations. Furthermore, the 
95th percentile confidence interval for the difference of the means between the two 
groups (i.e., mined edit operations Likert values and random edit operations Likert 
values) is [1.80, 2.46]. This interval does not contain the null value. We can there-
fore reject the null hypothesis.

Note that we also correlated the frequency of the edit operations in our dataset 
with the average Likert value from the interviews. We found a small but insignifi-
cant correlation (Pearson correlation of 0.33, p = 0.12).

After their rating, when we confronted the engineers with the true results, they 
stated that the edit operations obtained by Ockham represent typical edit scenarios. 
According to one of the engineers, some of the edit operations “can be slightly 

Table 4   The Spearman correlation matrix for Experiment 2

**: p < .001 , *: p < 0.01

p Size at threshold Mining time e Mean 
#Nodes
per comp

AP − 0.20** 0.07 − 0.02 0.09* 0.02
p – 0.23** 0.16** 0 0.30**

Size at threshold – – 0.54** 0.57** 0.65**

Mining time – – – 0.75** 0.75**
e – – – – 0.92**

Table 5   Statistics for the Likert values for Experiment 3

Participant Mean mined Mean random p- value (t-test) p- value (Wilcoxon) p- value (boot-
strap)

P1 3.20 1.68 11.8 ⋅ 10
−5

29.0 ⋅ 10
−5 11.0 ⋅ 10

−4

P2 4.04 2.76 16.6 ⋅ 10
−4

6.43 ⋅ 10
−3

3.60 ⋅ 10
−3

P3 4.32 2.60 9.30 ⋅ 10
−6

5.87 ⋅ 10
−5 2.00 ⋅ 10

−4

P4 4.32 1.08 2.67 ⋅ 10
−15 3.51 ⋅ 10

−10
< 2.20 ⋅ 10

−16

P5 4.48 1.60 1.17 ⋅ 10
−11

1.15 ⋅ 10
−7

9.00 ⋅ 10
−4

Total 4.072 1.944 < 2.2 ⋅ 10
−16

< 2.2 ⋅ 10
−16

< 2.2 ⋅ 10
−16
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extended” (see also Sect. 6). Some of the edit operations found by Ockham, but not 
recognized by the participants, were identified “to be a one-off refactoring that has 
been performed some time ago”.

In this real-world repository, we found some operations that are typical to the 
modeling language SysML, for example, one which is similar to the simplified 
operation in Fig. 3. We also found more interesting operations, for example, the 
addition of ports with domain-specific port properties. Furthermore, we were 
able to detect some rather trivial changes. For example, we can see that typically 
more than just one swimlane is added to an activity, if any. We also found simple 
refactorings, such as renaming a package (which also leads to changing the fully 
qualified name of all contained elements) or also refactorings that correspond to 
changed conventions, for example, activities were owned by so called System 
Use Cases before but have been moved into Packages.

Experiment 4: When performing the semantic lifting with the 30 selected edit 
operations on the 40 model differences, we first observe that we matched only 
30% of the total changes in our model differences. Furthermore, with respect to 
our classification of the edit operations in noncritical and critical edit operations, 
we observe that noncritical edit operations occur more than twice as often as crit-
ical edit operations. We had 13,  870 occurrences, on average, for a noncritical 
edit operation and 6, 027 occurrences for a critical edit operation.

In Table 6, we report the number of changes before the semantic lifting, the num-
ber of changes after lifting (i.e., changes not covered by any change set plus the 
number of change sets), the number of “unlifted changes” (i.e., changes not covered 
by any change set), the relative compression crel , and the total compression c . Our 
sample of 40 model differences consists of ∼ 1.3 million changes. With the excep-
tion of one edit operation, we found all edit operations in our samples. On average 
an edit operation has 8, 189 occurrences in the dataset. We report these values for all 
40 model differences together (referred to as “Total” in Table 6), for the average over 
the 40 model differences (referred to as “Average” in Table 6), their standard devia-
tion (referred to as “Std. Dev.” in Table 6), the minimum, and the maximum over 
the 40 model differences. Furthermore, we also report the compression ratios for the 
case where we restricted the semantic lifting to the set of critical edit operations.

We observe a relative compression ratio crel (see definition above) of 4.00 over 
all 40 model differences. In contrast, the total compression ratio c is 1.29. When 

Table 6   Statistics for the semantic lifting

Total changes Changes lifted Unlifted changes Relative compr. Total compr.

Total 1, 302, 591 1, 006, 136 907, 361 4.00 1.29
Totalcrit 1, 302, 591 1, 040, 814 987, 194 5.88 1.25
Average 32, 564.78 25, 153.40 22, 684.03 3.74 1.41
Std. Dev. 27, 321.05 21, 248.99 19, 425.70 1.52 0.28
Min 16.00 10.00 0.00 1.91 1.10
Max 73, 70.006 56, 032.00 51, 500.00 10.65 2.22
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restricting the set of edit operations in the semantic lifting to the set of critical 
edit operations, we achieve a relative compression ratio crel of 5.88. Since we are 
considering a smaller set of edit operations for the lifting in this case, the total 
compression ratio for our critical edit operations is smaller.

Another observation that can be made from the semantic lifting is that the 
distribution of the occurrences of edit operations over the model differences are 
rather heterogeneous (see Fig. 4), even though for some of the model differences 
their distribution highly correlates. We elaborate on this observation in Sect. 6.2.

6 � Discussion

6.1 � Research questions

RQ 1: Is Ockham able to identify relevant edit operations in model repositories? 
We can answer this question with a “yes”. Experiment 1 and 2 show high MAP 
scores. Only for a large number of applied operations and a large size of the input 
graphs, Ockham fails in finding the applied edit operations. We can see that our 
compression-based approach clearly outperforms the frequency-based approach 
used as a baseline.

Fig. 4   This plot shows for every model difference the distribution of the edit operations. That is, every 
column is a kind of change profile for the corresponding model difference. The darker the color, the 
higher the (relative) frequency of the edit operation in this model difference
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RQ 2: Is Ockham able to find typical edit operations or editing scenarios in a 
real-world setting?

The edit operations found by Ockham obtained significantly higher (mean/
median) Likert scores than the random edit operations. Furthermore we observe 
a mean Likert score of almost 4.1. From this we can conclude that, compared to 
random ones, our mined edit operations can be considered as typical edit scenar-
ios, on average. When looking at the mined edit operations it becomes clear, that 
Ockham is able to implicitly identify constraints, which where not made explicit 
in the meta-model. Also, except for one edit operation, the mined edit opera-
tions appear in the sample dataset from experiment 4. The edit operations recom-
mended by Ockham are correct in most cases, and incomplete edit operations can 
be adjusted manually. We cannot state yet that the approach is also complete (i.e., 
is able to find all relevant edit scenarios), though.

RQ 3: What are the main drivers for Ockham to succeed or fail?
From Table  3, we observe that increasing the number of edit operations has a 

negative effect on the average precision. Increasing the perturbation has a slightly 
negative effect, which becomes stronger for a high number of applied edit operations 
and therefore when huge connected components start to form. The number of differ-
ences d (i.e., having more examples) has a positive effect on the rank, which is rather 
intuitive. For the second experiment, from Table 4, we can observe a strong depend-
ency of the average precision on the perturbation parameter, which is, stronger than 
for the first experiment. On the other hand, the correlation to the number of applied 
edit operations is even positive.

To analyze the main drivers further, we take a deeper look into the results. We 
have to distinguish between the two cases that (1) the correct edit operation is not 
detected at all and (2) the correct edit operation has a low rank.

Edit operation has not been detected: For the second experiment, in 22 out of 800 
examples, Ockham was not able to detect both edit operations. In 10 of these cases 
the threshold has been set too high. To mitigate this problem, in a real-world setting, 
the threshold parameters could be manually adjusted until the results are more plau-
sible. In the automatic approach, further metrics have to be integrated.

Other factors that cause finding the correct edit operations to fail are the pertur-
bation, average size of component, and the size at threshold, as can be seen from 
Table 7. Given a support threshold t, the size at threshold is the number of nodes 
of the t-largest component. The intuition behind this metric is the following: For 
the frequent subgraph miner, in order to prune the search space, a subgraph is only 

Table 7   Main drivers for Ockham to fail in experiment 1

p Mean 
#Nodes per
 component

Size at  
threshold

Mining  
time

Overall mean 0.55 57.6 8.20 1.26
Mean for un-  

detected operation
0.79 109.0 10.03 2.55
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allowed to appear in, at most, t − 1 components. Therefore, the subgraph miner 
needs to search for a subgraph, at least, in one component with size greater than the 
size at threshold. Usually, the component size plays a major role in the complexity 
of the subgraph mining. When the t-largest component is small, we could always use 
this component (or smaller ones) to guide the search through the search space and 
therefore we will not have a large search space. So, a large size of the component at 
threshold could be an indicator for a complicated dataset.

Looked deeper into the results of the datasets from the first experiment, for which 
the correct subgraph has not been identified, we can see that, for some of these sub-
graphs, there is a supergraph in our recommendations that is top-ranked. Usually 
this supergraph contains one or two additional nodes. Since we have a rather small 
meta-model, and we only use four other edit operations for the perturbation, it can 
happen rarely that these larger graphs occur with the same frequency as the actual 
subgraph. The correct subgraphs are then pruned away.

Edit operation has a low rank: First, note that we observe a low rank (rank ≥ 5 ) 
only very rarely. For the first experiment, it happened in 7 out of 2000 datasets, 
while for the second experiment, it did not happen at all. In Table 8, we list the cor-
responding datasets and the values for drivers of a low rank.

One interesting observation is that, for some of the datasets with low-ranked cor-
rect subgraph, we can see that the correct graph appears very early in the subgraph 
lattice, for example, first child of the best compressing subgraph but rank 99 in the 
output, or first child of the second best subgraph but rank 15 in the output. This sug-
gests that this is more a presentation issue, which is due to the fact that we have to 
select a linear order of all subgraph candidates for the experiment.

In Experiment 3, we only found two mined edit operations that received an aver-
age Likert score below 3 from the five practitioners in the interviews. The first one 
was a refactoring that was actually performed but that targeted only a minority of 
all models. Only two of the participants where aware of this refactoring, and one 
of them did not directly recognize it due to the abstract presentation of the refactor-
ing. The other edit operation that was also not considered as a typical edit scenario 
was adding a kind of document to another document. This edit operation was even 

Table 8   Possible drivers (number of differences (d), number of applied edit operations (e), perturbation 
(p), mean number of nodes per component, size at threshold) for a low rank ( ≥ 5)

d e p Mean 
#Nodes per
component

Size at threshold Average  
precision

Rank

10 92 0.3 142.2 13 0.13 8
10 67 0.4 91.0 16 0.14 7
10 78 0.8 87.3 14 0.14 7
10 98 0.8 127.7 14 0.067 15
20 81 0.1 227.0 16 0.13 8
20 99 0.1 272.2 19 0.010 99
20 100 0.1 272.7 17 0.013 78
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considered as illegal by 3 out of the 5 participants. The reason for this is the internal 
modeling of the relationship between the documents, which the participants were 
not aware of. So, it can also be attributed to the presentation of the results in terms 
of Henshin rules, which require an understanding of the underlying modeling lan-
guage’s meta-model.

For four of the edit operations of Experiment 3, some of the participants men-
tioned that the edit operation can be extended slightly. We took a closer look at why 
Ockham was not able to detect the extended edit operation, and it turned out that it 
was due to our simplifications of locality relaxation and also due to the missing type 
hierarchies in our graphs. For example, in one edit operation, one could see that the 
fully qualified name (name + location in the containment hierarchy) of some nodes 
has been changed, but the actual change causing this name change was not visible, 
because it was a renaming of a package a few levels higher in the containment hier-
archy that was not directly linked to our change. Another example was a “cut off” 
referenced element in an edit operation. The reason why this has been cut off was 
that the element appeared as different sub-classes in the model differences and each 
single change alone was not frequent.

To summarize: The main drivers for Ockham to fail are a large average size of 
components and the size at threshold. The average size is related to the number of 
edit operations applied per model difference. In a practical scenario, huge differ-
ences can be excluded when running edit operation detection. The size of the com-
ponent at threshold can be reduced by increasing the support threshold parameters 
of the frequent subgraph mining. With higher threshold, we increase the risk of 
missing some less frequent edit operations, but the reliability for detecting the cor-
rect (more frequent) operations is increased. Having more examples improves the 
results of Ockham.

RQ 4: What are the main parameters for the performance of the frequent sub-
graph mining? From Table 3, we can observe a strong Spearman correlation of the 
mining time with the number of applied edit operations e (0.89) and implicitly also 
the average number of nodes per component (0.83). If we only look at edit opera-
tions with rank > 1 , we observe a strong negative correlation of −0.51 with the aver-
age precision (not shown in Table 3). This actually means that large mining times 
usually come with a bad ranking. The same effect can be observed for Experiment 2 
(Table 4). We can also see, that the mining time correlates with the size at threshold.

RQ 5: What is the practical impact of the edit operations discovered by Ockham 
in the context of the case study in Section 2? In experiment 4, we lifted the changes 
using the edit operations discovered by Ockham and applied the classification into 
refactorings and critical edit operations. From this experiment we can see, first of 
all, that our edit operations also occur in practice. There is only one edit operation 
that did not occur at all in our example models. The reason is that this edit opera-
tion corresponds to a one-time refactoring that was done some time ago, but was not 
included in our randomly selected sample. Furthermore, the edit operations mined 
by Ockham can be used to compress model differences significantly. Since they 
are also meaningful to domain experts (see RQ 2), they can be used to summarize 
model differences. Rather “small” changes, for example, adding a package ( ∼ 23% 
of the change sets) or renaming a property ( ∼ 10% of the change sets), occur with a 
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much higher frequency than more complex edit operations such as adding an exter-
nal port with multiplicities ( ∼ 1.3% of the change sets). In general, from the results 
of experiment 4, we can see that critical edit operations are more rare compared to 
refactoring edit operations. On the other hand, they provide a higher compression of 
the model differences. The classification of the edit operations could also be used to 
filter out irrelevant changes in the analysis of model differences. Nevertheless, the 
classification is most likely task-dependent and we cannot be sure that this observa-
tion also holds for other classifications.

Furthermore, the the distribution of edit operations in a model difference can tell 
us something about the nature of the evolution step. For example, we can determine 
“hot spots”, where a lot of critical edit operations are performed.

Even though we did not evaluate the semantic lifting approach in a long-term 
application, engineers at Siemens Mobility support the hypothesis that it can be use-
ful for software product line engineering related tasks and quality assurance of mod-
els. Overall, we can conclude that the edit operations discovered by Ockham can be 
useful in the context of the case study in Sect. 2. 

In Summary, Ockham is able to identify relevant edit operations that corre-
spond to typical edit scenarios in the history of projects. The mining doesn’t 
scale to large connected model differences, so these have to be excluded from 
the mining. As a consequence of this, but also because a minimum frequency 
threshold has to be set, we can not claim that our approach is complete in the 
sense that it will discover all relevant edit operations. Furthermore, hard tasks 
for the subgraph miner typically lead also to bad results with respect to the 
correctness of the mined edit operations. The edit operations discovered by 
Ockham can also be applied in practical application scenarios, for example, to 
ease the analysis of large model differences by employing semantic lifting and 
filtering.

6.2 � Further applications

We made an interesting observation when analyzing the distribution of the edit oper-
ations in the fourth experiment (see Fig. 4). Between some of the sample model dif-
ferences, we observe high similarities of their distributions, while for others, there 
is almost no correlation. In other words, we can see clusters of the edit operation 
distributions, which can be seen more easily in Fig. 5.

A closer look at these clusters reveals that there is indeed a similarity in the 
model differences. For example, the cluster [11 − 15, 17 − 23, 25 − 26] contains 
a lot of functional modifications of the models. For example, interfaces have been 
changed, so called Functional Addresses have been added, and activity diagrams 
were modified. The cluster [24, 31 − 33] also contains functional modifications, but 
additionally documentation has changed a lot. For example, so called Reference 
Documents have been added, system requirements have been added or changed, 
and comments were added or changed. The cluster [6 − 10, 27] contains a lot of 
added functionality but less modification to the documentation. Furthermore, the 
change profiles between different submodels for the same trainset type are often 
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very similar. We can also find some model differences that are quite different from 
all other model differences and play some special role, for example, for cross-cutting 
functionality like test automation.

This suggests that the edit operations frequency distributions can be seen as 
a kind of change profile for the model difference, which can be used, for exam-
ple, to gain further insights into the model differences. These change profiles can 
be used to reason about model differences or model evolution from a high-level 
perspective. Insights about the clusters can also be used, for example, to detect 
uncommon and possibly undesired changes. Since they are probability distribu-
tions, methods from statistics can be applied. Furthermore, they can also be seen 
as normed vectors (w.r.t. the 1-norm) and therefore also methods from linear alge-
bra can be applied to further analyze model differences. Besides the analysis of 
the model evolution, the change profile can also be used for simulating model evo-
lution, especially if different evolution scenarios are to be investigated. Similar 
profiles have already been used for model evolution simulation, for example, by 
Heider et al (2010), who refer to the profiles as evolution profiles. Another statisti-
cal approach to model simulation based on semantic lifting has been proposed by 
Shariat Yazdi et al (2016) but their edit operations have to be defined manually.

Dual to this cluster analysis, the change profiles can also be used to ana-
lyze co-occurrences of edit operations. For example, we observe a large Pear-
son correlation of ∼ 0.99 between the edit operations ChangeUseCase and 

Fig. 5   Pearson correlation of the edit operation frequency distributions for 40 sample model differ-
ences. We have removed a dominant edit operation (Adding a Package) from the distributions to make 
the clusters appear more clearly in this visual representation. Qualitatively, the same clusters will be 
obtained though, without removing this edit operation from the frequency distribution
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ChangeActivity. This could also indicate that these edit operations can be 
combined to form a new, larger edit operation, which is the case in this con-
crete example. Some of the edit operations seem to be almost uncorrelated, for 
example, we observe that adding new functionality rarely occurs together with 
modifying existing functionality. Similar co-evolution analysis have been inves-
tigated in detail by Getir et  al (2018). Note that Ockham is also a kind of co-
change analysis that also takes structural similarities into account. The interplay 
between statistical co-occurrence analysis and structural graph mining in the 
analysis of model evolution is a promising future research direction.

6.3 � Limitations

Locality relaxation: One limitation of our approach is the locality relaxation, which 
limits our ability to find patterns that are scattered across more than one connected 
component of the simple change graph. As we have seen in our railway case study, 
this usually leads to incomplete edit operations. Another typical example for violat-
ing the relaxation are naming conventions. In the future, we plan to use natural lan-
guage processing techniques such as semantic matching to augment the models by 
further references.

No attribute information: For our experiments, we did not take attribute infor-
mation into account. Attributes (e.g., the name of a component) could also be inte-
grated into the edit operation as preconditions or to extract the parameters of an edit 
operation. For the purpose of summarizing a model difference or identifying viola-
tions in a model difference, preconditions and parameters are not important, though, 
but only the presence of structural patterns.

 Application to simplified graphs: Generally, an edit operation is a model trans-
formation. Model transformation engines such as Henshin provide features to deal 
with class inheritance or multi-object structures (roughly speaking, foreach loops in 
model transformations). In our approach, we are not leveraging these features yet. 
They could be integrated into Ockham in a post-processing step. For example, one 
possibility would be to feed the example instances of patterns discovered by Ock-
ham into a traditional MTBE approach (Kehrer et al 2017).

Transient effects: We do not take so-called transient effects into account yet. 
One applied edit operation can invalidate the pre- or post-conditions of another edit 
operation. However, we have seen in our experiments that this only causes problems 
in cases where we apply only a few “correct” edit operations with high perturbation. 
In a practical scenario, the “perturbations” will more likely cancel each other out. 
When a transient effect occurs very frequently, a new pattern will be discovered. 
That is, when two (or more) operations are always applied together, we want to find 
the composite pattern, not the constituent ones.

 Focus on single subgraphs instead of sets: Another limitation is the fact that 
we focused the optimization on single edit operations but not a complete set of edit 
operations. One could detect only the most-compressing edit operation and then 
substitute this in the model differences and re-run the mining to discover the second 
most-compressing edit operation and so on. Another solution would be to detect a 
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set of candidate edit operations using Ockham and then select an optimal set using a 
meta-heuristic search algorithm optimizing the total compression. We leave this for 
further research.

 Completeness of the set of mined edit operations: As we can see from experi-
ment 4, a set of 30 edit operations is still far from being complete. In fact, with 
this set, we missed 70% of changes in our sample model differences. Anyway, the 
approach can also be applied iteratively, in the sense that edit operations which are 
already approved by domain experts can be used to substitute the corresponding 
subgraph by a single node. The graph mining can then be applied on these con-
tracted graph databases until all changes are included in a change set. However, 
since a change does not unambiguously belong to a change set, this approach would 
be subject to the limitation from the previous paragraph.

6.4 � Threats to validity

Internal validity: We have designed the first two experiments such that we can con-
trol input parameters of interest and observe their effect on the outcome. Ockham 
makes assumptions such as the locality relaxation, which could impair real-world 
applicability. Because of this and since we can not claim that the results from the 
first two experiments also hold true in a real-world setting, we additionally applied 
Ockham to an industrial case study. Our results increase our confidence that Ockham 
also gives reasonable results in a practical scenario.

In our simulations, we applied the edit operation randomly to a meta-model. To 
reduce the risk of observations that are only a result of this sampling, we created 
many example models. In the real-world setting, we compared the mined edit opera-
tions to random ones to rule out “patternicity” (Shermer 2008) as an explanation 
for high Likert rankings. None of our participants reported problems in understand-
ing Henshin’s visual notation, which gives us confidence regarding their judgements 
(despite for misconceptions). The participants of the interviews in the third experi-
ment were also involved in the project where the model history was taken from. 
There might be the risk that the interviewees have only discovered operations they 
have “invented”. In any case, because of the huge project size and because 22 out of 
25 of the edit operations were recognized as typical by more than one of the partici-
pants, this is unlikely.

 External validity: Some of the observations in our experiments could be due 
to the concrete set of edit operations in the example or even due to something in 
the meta-models. In the future, Ockham has to be tested for further meta-models 
to increase the external validity of our results. We have validated our approach in a 
real-world setting, which increases our confidence in its practicality, though. As can 
be seen from experiment 4, with the set of 30 edit operations, 70% of the changes are 
not part of a change set. It is therefore not yet clear, if the results regarding the com-
pression of model differences also hold true when using larger sets of meaningful 
edit operations. Since we have used an exact subgraph miner, we can be sure that the 
discovered edit operation are independent of the subgraph mining algorithm.
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7 � Related work

Various approaches have been proposed to (semi-)automatically learn model trans-
formations in the field of model transformation by example (MTBE). In the first 
systematic approach of MTBE, Varró (2006) proposes an iterative procedure that 
attempts to derive exogenous (i.e., source and target meta-model are different) model 
transformations by examples. Appropriate examples need to be provided for the 
algorithm to work. Many approaches to learning exogenous model transformations 
have been proposed until now. For example, Berramla et  al (2020) use statistical 
machine translation and language models to derive transformations. Baki and Sah-
raoui (2016) apply simulated annealing to learn operations. Regarding exogenous 
transformations there is also an approach by Saada et al (2014), which uses graph 
mining techniques to learn concepts, which are then used to identify new transfor-
mation patterns.

As mentioned in the introduction, most closely related approach to ours is MTBE 
for endogenous model transformations. Compared to exogenous MTBE, there are 
only a few studies available for endogenous MTBE. Brosch et al (2009) present a 
tool called Operation Recorder, which is a semi-automatic approach to derive 
model transformations by recording all transformation steps. A similar approach is 
presented by Sun et al (2011), who also infer complex model transformations from 
a demonstration. Alshanqiti et  al (2012) learn transformation rules from a set of 
examples by generalizing over pre- and postcondition graphs. Their approach has 
been applied to the derivation of edit operations, including negative application 
conditions and multi-object patterns by Kehrer et  al (2017). Instead of learning a 
single operation, Mokaddem et al (2018) use a genetic algorithm to learn a set of 
refactoring rule pairs of examples before and after applying refactorings. The crea-
tion of candidate transformations that conform to the meta-model relies on a “frag-
ment type graph”, which allows them to grow candidate patterns that conform to 
the meta-model. Their algorithm optimizes a model modification and preservation 
score. Ghannem et al (2018) also use a genetic algorithm (i.e., NSGA-II) to learn 
model refactorings from a set of “bad designed” and “good designed” models. Their 
approach distinguishes between structural similarity and semantic similarity and 
tries to minimize structural and semantic similarity between the initial model and 
the bad designed models and to maximize the similarity between the initial and the 
well designed models.

All of these approaches for learning endogenous model transformations are 
(semi-)supervised. Either a concrete example is given (which only contains the 
transformation to be learned) or a set of positive and negative examples is given. In 
the case of Mokaddem et al.’s genetic approach, it is assumed that all transforma-
tions that can be applied are actually applied to the source models. For the meta-
model used in our real-world case study, we do not have any labeled data. In general, 
we are not aware of any fully unsupervised approach to learn endogenous model 
transformations. To reduce the search space, we leverage the evolution of the models 
in the model repository, though. We do not directly work on the models as in the 
approaches discussed above, but we work on structural model differences.
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Regarding one of our motivations for mining edit operations, namely to simplify 
differences, there are several approaches in the source code domain (Yu et al 2011; 
Martinez et  al 2013). These approaches are more comparable to the approach of 
semantic lifting (Kehrer et al 2011), to aggregate or filter model differences accord-
ing to given patterns but they are not learning the patterns themselves. There are also 
approaches to mine change patterns in source code. For example, Dagit and Sot-
tile (2013) propose an approach based on the abstract syntax tree, and Nguyen et al 
(2019) mine patterns based on a so called fine-grained program dependence graph. 
Janke and Mäder (2020) derive fine-grained edit scripts from abstract syntax tree 
differences and transform them to a graph representation for graph mining. There 
is also some work that focuses on mining design patterns from source code (Oruc 
et al 2016; Balanyi and Ferenc 2003; Ferenc et al 2005; Dong et al 2009). The idea 
behind these approaches — learning (change) patterns from a version history — is 
comparable to ours. In contrast to these approaches, Ockham works on a kind of 
abstract syntax graph, which already includes domain knowledge given by the meta-
model. Furthermore, we do not use a similarity metric to detect change groups or 
frequent changes but use an (exact) subgraph mining approach. In model-driven 
engineering, one often has some kind of identifiers for the model elements, which 
makes the differencing more reliable and removes the need for similarity-based dif-
ferencing methods.

8 � Conclusion and outlook

We have proposed an approach, Ockham, for automatically deriving edit opera-
tions specified as in-place model transformations from model repositories. Ockahm 
is based on the idea that a meaningful edit operation will be one that provides a 
good compression for the model differences. In particular, it uses frequent subgraph 
mining on labeled graph representation of model differences to discover frequent 
patterns in the model differences. The patterns are then filtered and ranked based 
on a compression metric to obtain a list of recommendations for meaningful edit 
operations. To the best of our knowledge, Ockham is the first approach for learning 
domain-specific edit operations in a fully unsupervised manner, that is, without rely-
ing on any manual intervention or input from a developer or domain expert.

We have successfully evaluated Ockham in two controlled experiments using 
synthetic ground-truth EMF models and on a large-scale real-world case study in 
the railway domain. We found that Ockham is able to extract edit operations that 
have actually been applied before and that it discovers meaningful edit operations 
in a real-world setting. Including too large components in the difference graphs can 
adversely affect Ockham in discovering the applied edit operations. Performance 
mostly depends on the number of applied edit operations in a model difference. Fur-
thermore, we have shown how the edit operations discovered by Ockham can be 
used in practical applications. For example, they can be used in a semantic lifting, 
to express model differences in terms of edit operations and therefore “compress” 
the model differences. Depending on the concrete task related to the model differ-
ences, the lifted model differences can then also be filtered for the edit operations of 
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interest. The frequency distributions of edit operations in model differences can also 
be used for a high-level analysis of the model differences, for example, to discover 
hot spots, where a lot of functional evolution has happened. Ockham can be applied 
to models of any Domain-Specific Modeling Language for which model histories 
are available. New effective edit operations that are performed by the users can be 
learned at runtime and recommendations can be made.

For our future research, we plan to extend Ockham by a meta-heuristic search to 
identify the optimal set of operations. Extending state-of-the-art frequent subgraph 
miners to handle concepts like inheritance, multi-object structures, and other con-
cepts from model-driven software development will very likely improve the results 
of Ockham. Since exact frequent subgraph mining is not tractable when large con-
nected components of the difference graph have to be taken into account, heuristics 
and approximate algorithms have to be investigated. For example, one could inves-
tigate the effect of preprocessing the graph database using a clustering algorithm. 
Additionally, the effect of using approximate frequent subgraph miners directly on 
the database of simple change graphs might improve the scalability of the solu-
tion. Furthermore, to reduce the amount of recommended edit operations the results 
could be postprocessed using heuristics (e.g., that the edit operations occur steadily 
over the modelling history). An alternative approach, which we want to study in the 
future, is to use a clustering algorithm and then feed the clusters into the frequent 
subgraph mining step of our approach. This would allow us also to deal with exam-
ples in which the connected components are huge.
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