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Abstract Automatic term extraction is a productive field of research within natural

language processing, but it still faces significant obstacles regarding datasets and

evaluation, which require manual term annotation. This is an arduous task, made

even more difficult by the lack of a clear distinction between terms and general

language, which results in low inter-annotator agreement. There is a large need for

well-documented, manually validated datasets, especially in the rising field of

multilingual term extraction from comparable corpora, which presents a unique new

set of challenges. In this paper, a new approach is presented for both monolingual

and multilingual term annotation in comparable corpora. The detailed guidelines

with different term labels, the domain- and language-independent methodology and

the large volumes annotated in three different languages and four different domains

make this a rich resource. The resulting datasets are not just suited for evaluation

purposes but can also serve as a general source of information about terms and even

as training data for supervised methods. Moreover, the gold standard for multilin-

gual term extraction from comparable corpora contains information about term

variants and translation equivalents, which allows an in-depth, nuanced evaluation.
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1 Introduction

Automatic term extraction (ATE), also often referred to as automatic term

recognition (ATR), is the automated process of identifying terms in specialised

texts, where terms can be described as the linguistic representations of domain-

specific concepts. ATE is meant to alleviate the time- and effort-consuming task of

manual terminology management by providing a ranked list of candidate terms

identified in a given domain-specific corpus. Moreover, it has become an important

pre-processing step in many natural language processing (NLP) tasks (Zhang et al.

2018), such as automatic indexing (Jacquemin and Bourigault 2003), automatic text

summarisation (Zhang et al. 2004) and machine translation (Wolf et al. 2011).

Despite abundant interest from the research community, there is still plenty of

room for improvement (Astrakhantsev 2017). Two often-cited obstacles are the

difficulty to obtain datasets (Astrakhantsev et al. 2015) and the lack of a clear

definition of what terms actually are (Pazienza et al. 2005). To evaluate ATE against

human performance, a manually annotated gold standard is needed, which requires a

lot of time and effort to create and often has low inter-annotator agreement due to

the lack of a clear boundary between terminology and general language.

Nevertheless, such datasets remain invaluable for accurate evaluation and are also

needed as training data with the current evolution towards supervised learning and

deep learning methodologies (Drouin et al. 2018a, b).

For multilingual ATE, the addition of the controversial concept of translation

equivalence (Panou 2013) presents an added difficulty for evaluation and annotation

(Le Serrec 2012). Since parallel corpora can be difficult to obtain, especially for the

specialised domains that are interesting for ATE, research into multilingual ATE

has recently shifted towards comparable corpora instead (Daille 2012; Delpech et al.

2012; Hazem and Morin 2016b; Kontonatsios 2015), i.e. texts in different

languages, which are not translations but contain much of the same vocabulary

because of a comparable topic (and style). ATE from comparable corpora (ATECC)

attempts to identify the terminology in a comparable corpus and to suggest

translation equivalents for these term candidates. In contrast to ATE from parallel

corpora, there is no way to know where these equivalent terms might be found in the

corpus, or even if they exist in the corpus at all. This complicates not just the task

itself, but the evaluation as well.

The original aim of this research was to construct a gold standard for ATECC,

based on manual annotations in an entire specialised corpus. However, since the first

part of ATECC is monolingual ATE, the monolingual annotations can be used as a

gold standard for ATE as well. Moreover, the inclusion of three different languages

and four domains provides many opportunities for comparative evaluations and

makes this a rich resource to discover term characteristics and term behaviour.

Finally, the amount of manually annotated terms qualifies this dataset as a potential

training corpus for supervised machine learning approaches.

The remainder of this paper is divided into five sections. First, the state-of-the-art

will be presented, first for the evaluation of monolingual ATE, then considering

term annotation and finally for the evaluation of multilingual ATECC. Section 3
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provides a detailed description of all corpora and a summary of the annotators’

profiles. Section 4 is dedicated to the monolingual annotation, containing a

description of the annotation scheme and guidelines and the inter-annotator

agreement experiments. This section concludes with a use case with the ATE

system TExSIS (Macken et al. 2013) to illustrate the dataset’s usefulness as a gold

standard. Next, the multilingual gold standard for ATECC is presented, with an

explanation of how it was constructed and a discussion of the results. The final

section is devoted to the conclusion and ideas for future research.

2 State-of-the-art

2.1 Evaluation of monolingual ATE

Monolingual ATE provides the user with a list of term candidates identified in a

given domain-specific corpus. Often, the first step towards identifying the terms is a

linguistic preprocessing, during which words and sequences of words are matched

to pre-defined part-of-speech patterns (e.g. Macken et al. 2013). The following step

is to calculate (statistical) features which represent termhood and unithood, as

defined by Kageura and Umino (1996). Finally, the resulting list of candidate terms

is usually ranked and a definitive selection is made by determining cut-off

thresholds for certain features, by selecting the top-n best candidates or, more

recently, by applying machine learning to find the optimal combination of features

(Fedorenko et al. 2013).

The traditional method of evaluation for ATE is to compare against human

performance and calculate precision (how many of the candidate terms are actually

terms), recall (how many of the terms in the text were correctly extracted) and F-
score (the harmonic mean between precision and recall). These are closely related to

the concepts of noise (incorrectly extracted terms) and silence (terms that should

have been extracted but were not). Other evaluation methods, such as receiver

operating characteristic (ROC) curves may be used as well, but they are less

common in this domain (Azé et al. 2005). Since these metrics only measure

performance, some researchers argue that a more holistic evaluation protocol is

necessary. One of the very first evaluation protocols for ATE (L’Homme et al.

1996) broadly defines five pre-evaluation criteria to complement the performance

metrics, ranging from an evaluation of the basic design to the way the results are

presented in lists. In other early research, performance is measured by precision and

recall, but with the disclaimer that ‘‘low scores do not mean inferiority’’ (Kageura

et al. 1999), since the essential question of what terms are is still unsolved. Instead,

they state that consistency of the results is as important as performance. In other

work, Sauron (2002) proposes a quality model that measures not just precision or

recall, but also suitability, reliability, usability, efficiency, maintainability and

portability. Within the framework of the CESART project (Mustafa El Hadi et al.

2004; Mustafa El Hadi et al. 2006), a user- and application-oriented evaluation

protocol is presented, but, as stated by Nazarenko and Zargayouna (2009),

application-oriented evaluations are much more difficult to set up and it is difficult
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to weigh the impact of the ATE on other tasks, such as indexing or thesaurus

building. While a complete evaluation of any system should indeed be more

elaborate, the remainder of this paper is dedicated to the performance aspect of ATE

evaluation.

The two most popular ways to evaluate ATE performance are reference term lists
and manual validation (Pazienza et al. 2005; Astrakhantsev et al. 2015). The former

consists of using a list of terminology in the relevant domain to compare to the

output, in order to calculate precision and recall. This reference term list (or gold

standard) may be an adaptation of a pre-existing list (Enguehard 2003; Dobrov and

Loukachevitch 2011; Wermter and Hahn 2005), a small sample of some of the terms

in the corpus (Baroni and Bernardini 2004; Loginova et al. 2012), or a complete list

of all terms in the corpus, identified through manual term annotation (Kim et al.

2003). Unless the entire corpus was manually annotated, only approximations of

precision and recall can be calculated this way. The other strategy, manual

validation, means manually validating the top-n candidate terms. This is usually

done by either a domain-expert or a terminologist (Chen and Yan 2017; Gurrutxaga

et al. 2013; Drouin 2003; Haque et al. 2018; Frantzi and Ananiadou 1999). The

obvious drawback of this method is that it only evaluates precision, not recall.

Several strategies have been developed to counter the drawbacks of these

evaluation protocols, while still avoiding the manual annotation of an entire corpus.

The most obvious strategy is to combine the two strategies and use a pre-existing

reference term list to calculate (approximate) recall, combined with manual

validation for precision. Term Evaluator (Inkpen et al. 2016) uses a different

strategy; this tool was specifically designed to facilitate the comparative evaluation

of ATE systems. They validate candidate term lists and improve the consistency

by, e.g. checking against previous annotations. Moreover, they calculate relative
recall by comparing against the union of all correctly extracted terms by all

systems. While this is a very practical tool with many useful features, relative recall

is flawed in the sense that different ATE systems are likely to make some of the

same mistakes. Thus, when different systems have trouble identifying the same

terms, these will not be included in the calculation of relative recall. The following

section discusses one of the biggest obstacles for ATE evaluation: manual term

annotation.

2.2 Term annotation

The first reason for opting not to work with a fully annotated corpus is probably how

time- and effort-consuming term annotation is. The volumes of the corpora

currently used for ATE range from some 10 k tokens (Patry and Langlais 2005;

Vivaldi and Rodrı́guez 2007), to several hundreds of thousands of tokens (Ghazzawi

et al. 2018; Kim et al. 2003; Pazienza et al. 2005) to a million or more tokens

(Inkpen et al. 2016; Zhang et al. 2008; Loginova et al. 2012). Nevertheless, with the

rise of machine learning strategies for ATE (Conrado et al. 2013), the need for

annotated corpora is becoming even more pressing, not only for evaluation, but also

since ‘‘one of the major problems in applying machine learning to ATE is the

availability of reliable training data’’ (Zhang et al. 2018).
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There are a few annotated corpora available. One of the most popular resources is

the GENIA corpus (Kim et al. 2003), which has been used in multiple ATE

evaluations (Zhang et al. 2018; Zhang et al. 2008; Nenadić and Ananiadou 2006;

Nenadic et al. 2004; Bordea et al. 2013; Fedorenko et al. 2013). GENIA is a

collection of 2000 abstracts from the MEDLINE database in the domain of

biomedicine, specifically about ‘‘transcription factors in human blood cells’’ (Kim

et al. 2003, 180). All biologically relevant terms have been manually annotated by

two domain experts, with additional linguistic annotations and labels for the GENIA

ontology. In total, 93,293 terms were annotated in over 400 k tokens. Another

biomedical dataset is the CRAFT corpus (Bada et al. 2010, 2012), for which the

subject is very broadly defined as ‘‘biomedical journal articles’’. In this corpus, all

terms referring to concepts that were represented in certain ontologies were strictly

annotated. While this leads to a very consistent annotation, it also means that any

terms not represented in any of the ontologies were not annotated. The ACL RD-

TEC (Qasemizadeh and Handschuh 2014; Qasemizadeh and Schumann 2016) was

designed specifically for ATE evaluation in the domain of NLP, based on the

assumption that it would be a great advantage to have a dataset for which

researchers in NLP could be domain experts themselves. The second version (ACL

RD-TEC 2.0) contains 300 abstracts from the ACL Anthology Reference Corpus

(Bird et al. 2008) with a total of 6818 term annotations. It has been used, among

others, for a supervised learning approach to ATE (Hätty et al. 2017a).

There are also some smaller and/or lesser known resources, such as an

automotive corpus of 224 k tokens in which all terms and term variants are

annotated (Bernier-Colborne and Drouin 2014; Bernier-Colborne 2012). In an

attempt to analyse the evolution of terms through time, Schumann and Fischer

(2016) annotated a corpus of texts from different time periods, starting from 1665.

The corpus was based on the Philosophical Transactions and Proceedings of the

Royal Society of London and, using topic modelling, texts from the domain of

mechanical engineering were selected for annotation. Over 10 k term occurrences

were annotated in five corpora of 20–32 k tokens, spanning five time periods. A

very different gold standard was created based on German online forum data about

do-it-yourself (DIY) projects (Hätty et al. 2017b), which is promoted as a broad-

topic corpus that contains many registers. At the time of the 2017 paper, they were

aiming at a 80 k token corpus, fully annotated by 3 annotators. Hätty and Schulte im

Walde (2018) included this DIY corpus and 3 others in later experiments to test

inert-annotator agreement in term annotation by lay people. In the context of the

TTC project (Daille 2012; Gornostay et al. 2012; Loginova et al. 2012), short

reference term lists (between 107 and 159 terms per corpus) have been collected for

specialized corpora in two domains (wind energy and mobile technology) and seven

languages (Chinese, English, French, German, Latvian, Russian and Spanish).

However, these reference term lists were created by annotating the output of ATE

tools, not the source texts. Within the framework of the TermITH project (Billami

et al. 2014; Projet TermITH 2014), a French corpus of scientific texts, specifically in

the field of language sciences, is preprocessed using the TTC-Termsuite (Daille

2012) and the automatically generated candidate term list is manually validated, but

the candidate terms are presented with their context of the original text. Enguehard
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(2003) also presents a corpus annotated with the help of ATE tools: a 104 k token

corpus in the domain of metallurgy. This corpus was already accompanied by a list

of 6582 terms and the list was further enriched with the manually validated results

of two ATE tools. Nazar (2016) had student linguists and domain experts annotate

around 200 terms in an English corpus on psychiatry. Another noteworthy example

is the research by Judea et al. (2014), who addressed the lack of resources by

developing an unsupervised method of labelling training data, based on existing

term identification and ranking methods, and high accuracy for automatic

identification of terms in figure references in English patents. Additionally, more

ad-hoc term annotation has been performed with the specific aim of evaluating an

ATE tool, e.g. annotation of English mathematics terms (Amjadian et al. 2016) or

Spanish medical terms (Vivaldi and Rodrı́guez 2007).

The annotation process for all these datasets varies considerably, so it is difficult

to compare inter-annotator agreement scores. Moreover, not all researchers are able

to calculate inter-annotator agreement scores, due to the expense of having multiple

annotators go over the same text (Bernier-Colborne and Drouin 2014). To

complicate matters further, the type of agreement score that is reported varies as

well. However, the majority (especially the ones that do not start from pre-generated

candidate terms) do report the difficulty and unavoidable subjectivity of the task,

which often results in low inter-annotator agreement. No inter-annotator agreement

scores could be found for the GENIA corpus. The inter-annotator agreement scores

for the CRAFT corpus (Bada et al. 2010, 2012) are exceptionally high for most of

the ontologies, especially after an initial period of adaptation. They express the

scores in percentages and, for some of the corpora, can maintain an agreement of

over 90%. This can probably be attributed to elaborate guidelines and, most of all,

the strict link to the existing ontologies. For the ACL RD-TEC 2.0 (Qasemizadeh

and Schumann 2016), F-score was calculated over four iterations, with discussions

and elaborations of the guidelines between iterations. Average F-score started at

0.49 after the first iteration, climbing up to 0.74 after the fourth iteration. They also

calculated self-agreement (same annotator, same text, two days in a row) and found

that even self-agreement was no higher than 0.88, illustrating the difficulty of the

task. Nazar (2016) also found ‘‘more than expected disagreement’’, reporting a

Fleiss’ Kappa index op 0.319 for the psychiatrist annotators (domain-experts) and

0.454 for the student annotators (linguists). For the DIY corpus (Hätty et al. 2017b)

Fleiss’ Kappa was reported as well, but with a very different approach, using IOB

and additional labels, resulting in 9 labels per annotation. They reached substantial

agreement with a Fleiss’ kappa of 0.81. Schumann and Fischer (2016) report inter-

annotator agreement with occasional discussion between annotators at an average F-

score of 0.655, but with considerable variations per corpus (between 0.376 and

0.933). Agreement scores are generally high when a list of term candidates is

validated, rather than terms in running text, e.g. kappa agreement between 0.53 and

0.84 (Amjadian et al. 2016). One more aspect that differs across all these

evaluations, is how strict the match between two annotations or between an

annotation and an extracted term candidate should be: some work solely with full

span matches (Qasemizadeh and Schumann 2016), others with partial matches

(Sauron 2002) or even more elaborate systems (Hätty et al. 2017b).
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Clearly, there is a lot of variation in both the term annotation tasks themselves

and how they are evaluated. One suggestion is that ‘‘a more fine-grained distinction

between different types of terms […] might be helpful, at least partly, in alleviating

the difficulty of the annotation task’’ (Schumann and Fischer 2016, 3582) and the

reported agreement scores do appear to show that elaborate guidelines lead to higher

agreement. However, there is a lot of disagreement about what those guidelines

should be. A first point of disagreement is whether to extract only nouns and noun

phrases (e.g. Bernier-Colborne and Drouin 2014), or also adjectives (Projet

TermITH 2014), adverbs (Bada et al. 2012) and verbs (Schumann and Fischer

2016). Second, should there be a minimum and/or maximum term length? Some

researchers do not limit term length at all (e.g. Bernier-Colborne and Drouin 2014),

while others focus only on unigram (single-word) terms (SWTs) (Conrado et al.

2013; Estopà et al. 2000), multiword terms (L’Homme et al. 1996), or only on very

specific combinations of part-of-speech patterns and term lengths (Vivaldi and

Rodrı́guez 2007; Haque et al. 2018; Pazienza et al. 2005; Wong 2009). Another

point of disagreement concerns the labels. In most research, only a binary evaluation

(term vs. not term) is used. Bernier-Colborne and Drouin (2014) add additional

information to the term annotation concerning term structure and variation (e.g.

acronym, simple or complex term, etc.). Schumann and Fischer (2016) add

confidence scores to the annotations, depending on the agreement between the

annotators. The original ACL RD-TEC (Qasemizadeh and Handschuh 2014)

distinguishes between technology and non-technology terms and the second version

(Qasemizadeh and Schumann 2016) groups terms into 7 semantic categories. Term

annotation in the DIY corpus (Hätty et al. 2017b) consists of three labels: domain,
domain-zusatz or ad-hoc. The CRAFT (Bada et al. 2012) and GENIA (Kim et al.

2003) corpora both have very elaborate annotation schemes based on diverse

ontologies.

While there are surely other term annotation projects, the sample discussed here

already shows some interesting trends. First, it shows how diverse the methodolo-

gies for term annotation can be in every aspect: type of annotation (candidate term

list or source text), annotation scheme (binary or multi-label) and annotation

guidelines (e.g. term length and part-of-speech patterns). Even the evaluation of

these resources (inter-annotator agreement) is very diverse. These differences make

any comparison between corpora extremely difficult, especially when there is a lack

of meta-information about the corpora. Second, it becomes clear that the resources

are mainly in English and monolingual (with few exceptions). Third, only the TTC

project includes multiple languages and domains, but their term lists are limited and

not based on manual annotation of the corpus. Finally, high inter-annotator

agreement scores are often attributed to detailed and elaborate guidelines. Our

dataset was constructed with these observations in mind and takes into account

remarks made during previous annotation projects, such as:

In terms of annotation guidelines, a more fine-grained distinction between

different types of terms (e.g. topic keywords, scientific standard vocabulary,

foreign language words, unknown or ‘‘strange’’ words,…) might be helpful, at
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least partly, in alleviating the difficulty of the annotation task. (Schumann and

Fischer 2016, 3582)

Due to the great variability of TE scenario and the low agreement between

terminologists and domain experts on what term candidates should be treated

as terms, such gold standard should be highly parameterizable and should

integrate (partial) evaluation pieces (and evaluators) (Vivaldi and Rodrı́guez

2007).

2.3 Annotation and evaluation of multilingual ATECC

ATECC generally consists of two steps. First, terminology is identified monolin-

gually in the separate parts of a comparable corpus. Then, one of the monolingual

lists of candidate terms is interpreted as the source language and, for each candidate

term in the source language, suggestions will be made for potentially equivalent

terms in the list of candidate terms in the target language. It is beyond the scope of

this paper to discuss the various methodologies, but the evaluation challenges will

be discussed in more detail. Since the first step of ATECC is monolingual ATE, it

faces the same challenges as mentioned above. Additionally, an evaluation of the

suggested translation equivalents is needed. This presents its own set of problems.

First, since comparable corpora are not aligned, equivalents may be found anywhere

in the corpus or not at all. Second, evaluating translation equivalence is no easy task,

since equivalence is still a very controversial subject in translation studies (Panou

2013; Le Serrec 2012): how semantically related does a term have to be, to be

considered a good equivalent? Finally, since this is still a relatively new area of

research, there are very few available datasets and there is no consensus yet about

the best way to evaluate ATECC.

The most common strategy for the evaluation of ATECC is to use reference term

lists based on existing resources. For instance, Laroche and Langlais (2010) use

5000 English-French pairs of nominal terms from the Medical Subject Heading

(MeSH) thesaurus. Similarly, Morin and Hazem (2014) selected single word terms

that appeared more than 4 times from the UMLS meta-thesaurus and constructed

English/French reference term lists (169 pairs for breast cancer and 244 pairs for

diabetes corpus). A consideration when using reference term lists with tools that

include a dictionary-lookup methodology, is that there should be no overlap. In such

cases, reference terms might be selected that do not occur in the dictionary and

equivalents for these terms could be searched in different resources (Saralegi et al.

2008). The EU term thesaurus EUROVOC has been used as well to train and test a

classifier for bilingual terminology by Aker et al. (2013). They further calculated

precision by manually evaluating 600 English-German candidate term pairs, using

one of four categories: equivalence (for exact translations), inclusion (when the

correct translation is part of the suggested translation), overlap (when an equivalent

of at least one word of the source term can be found in the target term) or unrelated
(when none of the above apply). This categorisation illustrates the need for a fine-

grained evaluation. When using existing resources, similar problems apply as with

monolingual ATE: without additional human control, systems may be unfairly
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evaluated for correct translations which are not in the reference list or for wrong

suggestions when the correct translations were not available in the corpus. These

shortcomings are handled in creative ways, such as by Kontonatsios (2015), who,

first, limited his set of reference translations to those found in his source language

corpus and, subsequently, used a reference dictionary to estimate the percentage of

terms in the source language corpus for which translations were available in the

target language corpus. This percentage was used as the upper-bound for translation

accuracy. Another methodology was used within the framework of the TTC project,

where a GS was constructed based on the input corpus (Loginova et al. 2012). Using

automatically extracted monolingual lists of candidate terms, SWTs and MWTs

were selected as a starting point for the bilingual reference list. After validation, the

monolingual reference term lists were used to create bilingual reference term lists of

ca. 100 term pairs. Only terms which appeared both in the source and target corpus

were included and the minimum term frequency was 10 for SWTs and 5 for MWTs.

This GS is freely available and has been used in other research as well (Hazem and

Morin 2016b). As with monolingual ATE, there are some researchers who stress the

importance of an application-oriented evaluation, such as Delpech (2011) who

wanted to test the use of ATECC for translation. In her evaluation protocol,

translators were asked to make translations containing terminology with and without

using ATECC output as a resource, after which other translators judged the quality

of the translations. The judges evaluated each potentially problematic term

translation as correct, acceptable or wrong. This acceptable judgement left room

for interpretation when translations were not 100% correct, but could be

acceptable in certain contexts or were very closely related to the correct translation.

However, she stated that ‘‘some hitches in our procedure prevent us from clearly

demonstrating the added-value of terminologies acquired from comparable

corpora’’. In conclusion, while researchers have been resourceful in inventing

evaluation protocols for ATECC, so far, to the best of our knowledge, no

completely manually annotated and evaluated gold standard has been developed for

ATECC and no methodology to do so has been suggested.

3 Corpora and annotators

3.1 Corpora

Based on our observations from the state-of-the-art and our ultimate goal of creating

re-usable (evaluation) datasets for both monolingual ATE and multilingual ATECC,

several corpora were carefully constructed. The first requirement was that

multilingual comparable corpora were needed for ATECC. Additionally, a parallel

corpus was constructed as well, with the same subject as a different comparable

corpus, so that the performance of ATECC might be compared to that of ATE from

parallel corpora. Since ATE systems are generally language-dependent and term

characteristics and ATE performance may differ between languages, we included

three languages: English and French as large, well-resourced languages with many

opportunities for comparison and Dutch as a less-resourced language. Having one
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Romance and two Germanic languages also allows a comparison between languages

of different families and, especially important for ATE(CC), between languages

with very different compounding strategies. In English, compound terms are

typically separated by a whitespace (e.g. ‘‘evaluation criteria). French versions of

these terms often include a preposition (e.g. ‘‘critères d’évaluation’’), whereas in

Dutch, complex terms are concatenated into a single, long compound (e.g.

‘‘evaluatiecriteria’’). Like language, domain also influences term characteristics, so

four very different domains were included: corruption, dressage, heart failure and

wind energy. Another potentially influential factor for ATE performance is the size

of the corpora, so the corpora are of different sizes across the domains, yet similar

sizes per language to improve comparability. An overview is presented in Table 1.

The corpora about corruption were chosen to represent the juridical domain.

They are based on a collection of titles provided by the Dutch terminology

department of the European Commission and the texts were manually collected.

They contain mostly legal documents and texts about corruption policies, but also

relevant newspaper and Wikipedia articles. A large portion of the texts are from the

EU, the United Nations or Transparency International (a global organisation against

corruption). Because of the availability of texts about corruption by the EU and the

United Nations, it was possible to construct a parallel, trilingual, sentence-aligned

corpus, in addition to the comparable corpus. The contents in the comparable and

parallel parts of the corpora are very similar, but there is no overlap: no texts are

used for both corpora.

The corpus about dressage was not based on any previous data and was included,

first, to have a corpus for which the main annotator was a domain-expert (see also

Sect. 3.2). Another motivation is a that such a completely different corpus related to

sports and hobbies might offer interesting new insights, as demonstrated by

Condamines (2017), who analysed fishing terminology. The corpus was constructed

completely manually and contains mostly text from online magazines and blogs

about horseback riding. Only texts that were written in standard and correct

language were included. It is very focussed, since it contains only texts about one

branch of the horseback riding sport: dressage.

The corpus about heart failure was based on previous research about the influence

of corpus quality and size on ATE (Hoste et al. 2019). Based on the titles crawled in

that previous research, abstracts about heart failure were manually collected. Since

the previous research did not include French, similar abstracts were manually added

for French. Due to the limited available number of medical abstracts about heart

Table 1 Overview of corpora

with token count
English French Dutch

Corruption (comparable) 489,191 475,244 470,242

Corruption (parallel) 176,314 196,328 184,541

Dressage 102,654 109,572 103,851

Heart failure 45,788 46,751 47,888

Wind energy 314,618 314,681 308,744
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failure, a few short papers were included as well, but the majority of the corpus

exists of published medical abstracts that have a strong link to heart failure.

Finally, the corpus about wind energy was also based on previous research to

improve the options for comparison with other state-of-the-art research. The English

and French parts of the corpus were freely available on the TTC project (Loginova

et al. 2012) website.1 A comparable Dutch corpus was manually added, based on the

descriptions and the content of the English and French parts. The texts in this corpus

range from technical descriptions of wind turbines, to academic papers about the

engineering behind turbines and reports about the impact of wind turbines on the

environment.

The English and French parts of the TTC corpus on wind energy were left

unchanged. All other corpora were semi-automatically cleaned (e.g. removal of

content tables, bibliographies and footnote numbers) and since corpus collection

was done manually, the corpora should contain very little out-of-domain data.

3.2 Annotators

This research was performed in the context of a small project and, considering the

amount of data, there were insufficient resources to hire domain-experts to annotate

the corpora. To increase consistency across corpora, the same annotator(s) had to be

able to annotate all corpora. Since it would be near impossible to find an annotator

who is a domain-expert in all four domains and proficient in all three languages, it

was decided that the annotators only needed to be language experts. While parts of

the corpora have been annotated by several annotators to calculate inter-annotator

agreement (see Sect. 4.2) and while language-students assisted with the annotation,

most of the annotation work was performed by a single annotator. Moreover, all

annotations made by other annotators were reviewed by this main annotator, who

was fluent in all three languages and an experienced terminologist. Since

consistency could not be guaranteed by having multiple annotators go over all

texts and only keeping the terms on which multiple annotators agreed, the next best

(possible) option seemed to work with one main annotator: the annotations will

unavoidably still be subjective, but at least they will be as consistent as possible.

While many researchers have claimed that it is necessary to have domain-experts

validate the terminology, we argue that a thorough knowledge of the language and

experience with terminology might be equally, if not more important. Of course,

annotators will spend a lot of time researching some of the terminology (maybe

even needing to consult with domain experts on occasion), but having some distance

from the topic may allow annotators to recognise non-general vocabulary more

easily. The main annotator experienced this while annotating the corpus on

dressage, on which she was a domain-expert herself. The annotation process went

faster because she had no trouble understanding the terminology, but it was often

more difficult to distinguish between general vocabulary and terms, simply because

these terms had become part of her personal general vocabulary. For now, these

observations are only based on impressions, but it would be interesting to research

1 http://www.lina.univ-nantes.fr/?Reference-Term-Lists-of-TTC.html.
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further. For instance, Nazar (2016) found higher inter-annotator agreement between

student annotators, than between domain-experts (psychiatrists). In other research,

inter-annotator agreement between laypeople who annotated corpora in several

domains showed that ‘‘laypeople generally share a common understanding of

termhood and term association with domains’’ (Hätty and Schulte im Walde 2018,

325). A final argument in favour of our methodology is that, after annotating several

tens of thousands of words in domain-specific corpora in three languages (as was the

case in this project), any layperson would gain a minimal understanding of the

terminology in that domain. This means that the annotation was not always a linear

process: the annotator regularly went back to change previous annotations, always

attempting to find the most logical and consistent way of labelling.

4 Monolingual annotation

4.1 Annotation scheme

To make the dataset fit for different applications of ATE, yet also domain- and

language-independent, an annotation scheme was developed with three term labels,

based on two parameters. In the pragmatic school of terminology, ‘‘two broad

classes of distinctions are made, the first using the criterion of known/unknown and

the second distinguishing between subject-specific and non-subject-specific terms’’

(Pearson 1998, 1:21). However, Pearson rejects both classes as too vague and does

not define different term categories, believing that users will be more interested in

identifying terms than distinguishing between different types of terms. Neverthe-

less, such domain- and language-independent distinctions between terms may prove

helpful for more application-oriented evaluations of terms, since it has long been

argued that different users require different terms. For instance, Estopà (2001) had

four different groups of professionals annotate terms in a medical corpus: doctors,

archivists, translators and terminologists. She found great differences between their

annotations, e.g. terminologists annotated most terms and translators annotated

much fewer terms (only the ones that did not belong to their general vocabulary and

might present translation difficulties). Warburton (2013) similarly remarks that

translators are not interested in any terms that belong to the general lexicon. In this

sense, having different term labels based on the two classes mentioned by Pearson

(1998) might improve customisation options for different applications. The first

parameter will be called domain-specificity and represents the degree to which a

term is related to the researched domain. This has been mentioned before, e.g. ‘‘All

specialized languages show a gradient of domain-specificity’’ (Loginova et al. 2012)

and the TermITH project guidelines (Projet TermITH 2014) specify that terms from

the transdisciplinary domain and from a different domain should be rejected. The

second parameter will be called lexicon-specificity, i.e. the degree to which terms

are either part of the specialised lexicon used only by domain experts or part of

general language. Drouin (2003) mentioned this term in earlier work and, in a more

recent paper (Drouin et al. 2018b), a scale is presented of four degrees of lexicon-

specificity: from topic-specific, to subject-specific (in their case: environmental), to
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transdisciplinary, to general lexicon. By combining lexicon- and domain-specificity

in a matrix, as shown in Fig. 1, three term categories can be defined.

The three categories of terms are labelled: Specific Terms, Out-of-Domain (OOD)
Terms and Common Terms. Examples in the domain of heart failure are shown in

Fig. 1. Specific Terms are both lexicon- and domain-specific and are terms

according to the strictest definitions of the concept. An example in the domain of

heart failure would be ejection fraction, which is not part of general language and

laypeople probably do not know its meaning. At the same time, it is strongly related

to the heart failure, having something to do with the volume of blood pumped with

each heartbeat. OOD Terms are lexicon-specific, but not domain-specific. For

instance, in the corpus about heart failure, some of the medical abstracts contained

terminology related to statistics, such as p value, which is not part of the general

lexicon, but it is not very specific to the domain of heart failure either. This category

contains, among others, what Hoffmann (1985) called ‘‘allgemeinwissenschaftlicher

Wortschatz’’, which can be translated as ‘‘non subject-specific terms’’ (Pearson

1998). The final label, Common Terms, is meant for the opposite case, when terms

are strongly related to the domain, but are not very lexicon-specific, such as heart in
the domain of heart failure. This may be related to what Hazem and Morin mean

when they describe ‘‘technical terms that have a common meaning in the general

domain’’ (Hazem and Morin 2016a, 3406). While we do not deny that domain

experts will have a much more intricate idea of the concepts behind Common Terms

like heart and blood, generally, all laypeople do have at least a basic idea of the

concept and know the words. These categories could be used to customise the data

to the application, so that, for instance, translators could ignore any terms that are

not lexicon-specific, since they would likely be part of the translator’s known

vocabulary.

An additional label was included for Named Entities (NEs), since they can be

very closely related to terms, as shown by the fact that they are often mentioned in

term annotation guidelines with specific instructions (e.g. Projet TermITH 2014;

Fig. 1 Annotation scheme with parameters and term labels (left), with examples in the domain of heart
failure (right)

In no uncertain terms: a dataset for monolingual and… 397

123



Schumann and Fischer 2016). Another problem that has been mentioned in many

related research (Hätty et al. 2017b; Bernier-Colborne and Drouin 2014; Kim et al.

2003) are the Split Terms, i.e. terms that are somehow interrupted by other words or

characters. Two common causes are abbreviations (e.g. left ventricular (LV)
hypertrophy, where there are two split terms: left ventricular hypertrophy and LV
hypertrophy), and coordinating conjunctions (e.g. left and right ventricle, where
both left ventricle and right ventricle are terms). This was solved by creating Part-of
term labels, which could be connected to each other, as shown in Fig. 2. All

annotations were made in the BRAT online annotation tool (Stenetorp et al. 2011).

The annotation scheme is accompanied by elaborate guidelines which were

constructed during the annotation process and after discussions between annotators.

They contain instructions on as many recurring problems as possible. Like the

annotation scheme itself, the guidelines are language- and domain-independent,

though examples are cited from the corpora discussed here. Since the complete

guidelines are freely available online,2 only a sample of some of the most important

instructions will be discussed here. The annotation scheme only provides a basis for

whether or not to annotate a term and with which label, so many of the instructions

in the guidelines concern term boundaries, viz. which span should be annotated. The

first important rule is that each occurrence of all terms must be annotated, even if it

is embedded within a longer term. This can be seen in Fig. 2, where both the

multiword term or complex term right ventricle and the simple, single-word term

ventricle are annotated. Moreover, there is no minimum or maximum term length

and all content words may be annotated: nouns and noun phrases, but also

adjectives, adverbs and verbs. Another notable issue concerns the distinction

between different labels, since ‘‘decisions on the ‘generalness’ of a term candidate

are somewhat subjective’’ (Warburton 2013, 99). An example regarding the

difference between Common Terms and Specific Terms is to check whether the

term is used in publications which are addressed to a large, non-domain-expert

audience, such as tabloids. If the term is used, without any further explanations, in

such a source, it is safe to assume it is part of the general lexicon and therefore more

likely a Common Term than a Specific Term. An example here could be the term

heart failure. There is no doubt about this term being domain-specific enough, since

it was literally the subject of the corpus. However, the lexicon-specificity is more

difficult. Is heart failure part of general vocabulary or not? Intuitively, one could

assume that many people have at least heard of the term before and have some basic

understanding of what it means, but is that only because the term is so descriptive?

To decide, we looked at occurrences of the term in a Google News search. Since it

2 http://hdl.handle.net/1854/LU-8503113.

Fig. 2 Example of a split term
annotation in BRAT
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appeared regularly and without further explanations in newspapers and magazines

which aim at a very large, general audience, it was decided that heart failure would
get the label Common Term. While this method is certainly not perfect, it provides a

somewhat objective strategy in case of doubt. More examples and strategies can be

found in the guidelines online.

A final consideration was that annotators were instructed to annotate the terms as

they appeared in the text., irrespective of whether the terms were accepted in the

field or if they were spelled according to the latest conventions. As long as they

were used as terms in that text, they should be annotated as such. Since the

annotators were no domain-experts, this was the most manageable approach. It is

also the most logical one if the purpose is to compare human performance against

ATE performance, since the annotators were only identifying the terms in the data

that was there, without reference to some external ontology to which an ATE system

might not have access. Indeed, one of the primary uses of ATE is identifying terms

that are not in any databases yet, so it is important to identify terms as they appear in

the texts.

4.2 Inter-annotator agreement

4.2.1 Pilot study

In a preliminary pilot study, inter-annotator agreement was calculated between three

annotators who each annotated around 3 k tokens per language in the corpora about

corruption, heart failure and wind energy (total ± 40 k tokens). All possible aids

could be used, especially since the annotators were no domain-experts. They were,

however, all fluent in the three languages. Similar to the procedure followed during

the annotation of the ACL RD-TEC 2.0 (Qasemizadeh and Schumann 2016), there

were two annotation rounds, with discussions of the results between each round.

First, F-score was calculated to test agreement on term span annotations, without

taking into account the given label, where:

Precision of Annotator A versus B ¼ Annotator A \ Annotator B

Annotator A

Recall of Annotator A versus B ¼ Annotator A \ Annotator B

Annotator B

F-score of Annotator A versus B ¼ 2 � Precision � Recall
Precisionþ recall

Agreement was calculated on type, not token. Consequently, when an annotator

gave a label to a certain term, but forgot to accord the same label for a later

occurrence of the same term, agreement did not decrease. Average F-score after the

first iteration was 0.641, which was already good considering the task, but not great.

4207 unique annotations were found in this first round and only 33% was annotated

by all annotators, 26% was annotated by two and 41% was annotated by a single

annotator. These results are similar to those reported by Vivaldi and Rodrı́guez

(2007). Discussing annotations in detail, improving the guidelines and then
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returning (separately) for the second iteration resulted in a drastic improvement to

an average F-score of 0.895. To determine agreement on the labels, Cohen’s Kappa

was calculated on all shared term annotations. These results were already very

promising after the first iteration, with an agreement of 0.749 and improved after the

second iteration to 0.927. While this was a good indication of the validity of the

procedure and a great way to optimise the guidelines, the methodology was

imperfect since specific cases were discussed in detail between rounds and the same

dataset was re-used. Consequently, more rigorous experiments were organised.

4.2.2 Inter-annotator agreement evaluation

The purpose of this experiment was to see if the proposed annotation scheme and

guidelines improved inter-annotator agreement. For this purpose, annotators were

asked to annotate terms in a part of the heart failure corpus in three tasks with

different instructions:

Test group:

• Task 1: single label (Term) annotation with only term definitions from literature

(e.g. Cabré 1999; Faber and Rodrı́guez 2012) as guidelines.

• Task 2: term annotation with the four labels as specified above and with an

explanation of the annotation scheme, but no further guidelines.

• Task 3: term annotation with the four labels like in task 2, but with the full

guidelines.

Control group:

• For all texts: annotate all terms (without any additional information about

terms).

Two different abstracts were chosen for each task, all with a similar word count

(so six different texts in total). Texts were chosen without any Split Terms, to avoid

the added difficulty. Moreover, readability statistics (De Clercq and Hoste 2016)

were calculated to ensure that the texts were all of a comparable difficulty. The

annotators all came from different backgrounds and the only requirement was that

they knew English well enough to read a scientific text. While we expect to obtain

much lower agreement scores than would be desirable due to the diverse annotator

profiles, the main goal in this experiment was to compare agreement with and

without our annotation scheme and guidelines. Therefore, in a control group,

annotators were asked to annotate the same texts, but all with the same instructions.

There were 8 annotators in the test group and 6 annotators in the control group.

All annotators were between 20 and 30 years of age and knew sufficient English to

understand the texts. Other than that, there were few similarities between

annotators. Seven of them were students with a language-related degree, but the

others all came from very different backgrounds, including a medical student, a

music teacher and an engineering student. While there are many other possible
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patterns in these data, the analysis in this contribution will focus only on the

validation of the annotation scheme and guidelines.

Agreement was calculated between all annotator-pairs as described in

Sect. 4.2.1: first, F-score was calculated, then Cohen’s Kappa. Since chance-

corrected agreement scores, like kappa, can only be calculated when the total

number of annotations is known (which is impossible for term annotation in the full

text), this is usually only calculated on the intersection of annotations made by both

annotators (Qasemizadeh and Schumann 2016). However, this would mean having

to exclude the first task from the comparison, since only one label was used in this

task. Similar to the methodology proposed by Vivaldi and Rodrı́guez (2007), we

instead take the union of all terms annotated by both annotators as an

approximation. Still, comparisons between the first task and the other two will

have to be carefully interpreted, since kappa score was calculated on a different

number of categories (two categories in task 1: term or not-term; vs. five categories

in task 2 and 3: Specific Term, Common Term, OOD Term, Named-Entity or not-

term).

In Table 2, it can be observed that agreement scores, especially kappa scores, are

low, as expected. However, a first indication in favour of the annotation scheme and

guidelines is that agreement increases per task in the test group. While the

difference is small, the results are further validated by the fact that agreement in the

control group stays roughly the same for all tasks and even decreases. The

difference in agreement between the second and third task is very small, which may

be due to the fact that the guidelines are too elaborate to be helpful for

inexperienced annotators for such a small annotation task. It can even be seen as a

sign in favour of the annotation scheme, i.e. that it works well on its own, even

without elaborate guidelines. Since the improvement in agreement can be seen for

both F-scores and kappa-scores, we carefully conclude that (1) the annotations

scheme improves consistent term annotation when compared to annotation based on

no more than term definitions, (2) the guidelines may be a further help to annotators,

and (3) including multiple labels does not decrease agreement. Finally, while

agreement is expectedly low among annotators with such diverse profiles, we are

optimistic that experienced annotators/terminologists can be more consistent, as

indicated by the pilot study.

A final remark concerning inter-annotator agreement is that, as mentioned before,

the final annotations were all made or at least checked by one experienced annotator

and terminologist, to improve consistency. Additionally, other semi-automatic

Table 2 Average inter-

annotator agreement scores per

group and per task

Task 1 Task 2 Task 3

Test group

Average F-scores 0.48 0.56 0.59

Average Cohen’s Kappa - 0.36 0.06 0.11

Control group

Average F-scores 0.44 0.46 0.40

Average Cohen’s Kappa - 0.29 - 0.26 - 0.26
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checks were performed to ensure the annotations would be as consistent as possible.

For instance, when the same word(s) received a different label at different instances,

the annotator double-checked whether it was an inconsistent annotation, or a

polysemous term.

4.3 Results and analysis

Around 50 k tokens have been manually annotated per domain and language,

leading to a total of 596,058 annotated tokens across three languages and four

domains, as represented in Table 3. Only the parallel corpus on corruption was

annotated; not the comparable part. This resulted in 103,140 annotations in total and

17,758 unique annotations (= 17.2 unique annotations per 100 tokens). For

comparison: in the ACL RD-TEC 2.0 (Qasemizadeh and Schumann 2016) 33,216

tokens were annotated, resulting in 4849 unique terms (= 14.6 unique annotations

per 100 tokens). Since only nominal terms were annotated for the ACL RD-TEC

2.0, this difference was to be expected.

Table 3 Number of tokens

annotated per domain and

language

English French Dutch

Corruption (parallel) 45,234 50,429 47,305

Dressage 51,470 53,316 50,021

Heart failure 45,788 46,751 47,888

Wind energy 51,911 56,363 49,582
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The first observation concerns the number of annotations per language, domain

and category. This is shown in Fig. 3 for tokens and Fig. 4 for types. As can be seen

in these graphs, the largest differences are between corpora in different domains.

Within each domain, the total number of annotations in all languages is reasonably

similar, as is the distribution over the different term categories. This is encouraging,

since the corpora should be as comparable as possible. Of course, since the corpus

on corruption is a parallel corpus, the differences there are smallest. The fact that

more tokens were annotated in the English corpus on heart failure than in the other

languages, despite it being the smallest in number of tokens, may be related to the

fact that English is so predominant in this type of literature. Maybe terms are coined

more easily in English or maybe it is related to the fact that, due to less available

data in French and Dutch, more abstracts in the alpha sciences, e.g. regarding

patient care and quality-of-life were included. Such abstracts may, in this context,

contain less terminology than the medical abstracts in the beta sciences, though this

is no more than a hypothesis. The corpus on dressage is one of the most focussed

corpora in terms of subject, which would explain why, while there are quite a lot of

annotations when looking at tokens, there are fewer when types are considered:

there are a lot of terms in the corpus and many recurring terms. The same seems to

be true for the French corpus on wind energy. Otherwise, both views lead to roughly

the same conclusions.

Concerning the distributions over the different term categories, there is one

corpus that stands out, namely the one about corruption. In this corpus, there are

many NEs and very few Specific Terms when compared to the other corpora. This

can be logically explained by the fact that (1) the legal texts often contain many

person and place names, in addition to titles of laws etc., and (2) juridical terms are

more likely to find their way to general language. Juridical proceedings are often

reported in the news and many people get confronted with some legal jargon when,
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e.g. buying or renting a house, paying taxes, signing any type of contract, etc. The

percentage of OOD Terms in the medical corpora can be explained by the

prevalence of statistical terms. Since statistics are often required in scientific

research, such terms may appear in the abstracts, even though they are not directly

related to heart failure. There are relatively more Common Terms when looking at

tokens than at types, since there are often few general language terms that are

related enough to the domain to be included, but these do occur quite often, e.g.

heart and blood in the domain of heart failure. The opposite is true for NEs, which

do not occur very often and are not repeated often, so type counts are relatively

higher.

The next analysis concerns term length, as shown in the graph in Fig. 5. While

the differences are slightly less extreme when counting per token, the general

conclusions remain the same. While there are some differences between the

different domains as well, most differences are between languages. A first

conclusion is that terms are generally quite short, with few exceeding a length of

five tokens. The longest term was ten tokens long in the French corpus on heart

failure: inhibiteurs de l’enzyme de conversion de l’angiotensine II. There are more

single-word terms than two-word terms in all languages, even though the difference

is very small for English. There are exceptions, e.g. the English corpus on wind

energy has more two-word terms than single-word terms. Still, these findings are

surprising when compared to some other research. In the ACL RD-TEC

(Qasemizadeh and Handschuh 2014), there are many more two- and even three-

word terms than single-word terms. In earlier work (Justeson and Katz 1995), two-

word terms are also found to be much more common than single-word terms, except

in the medical domain. However, there are also some findings that are more similar

to ours. Estopà’s (2001) finds that 42.91% of the terms in her medical corpus are

simple noun terms. A German annotation experiment (Hätty and Schulte im Walde

2018) arrived at similar conclusions, with 46.7% single-word terms. One potential

explanation for the differences is the inclusion of terms other than nouns and noun
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phrases. The corpus itself may also have a considerable influence. A final

observation is that there are many more single-word terms in Dutch. This is more

easily explained by the pervasiveness of single-word compounds in Dutch.

The final part of this discussion will focus on the part-of-speech patterns that

were found in the corpora, as shown in Fig. 6. All corpora were automatically

tagged using LeTs Preprocess (van de Kauter et al. 2013). These results have been

discussed in more detail in (Rigouts Terryn et al. 2018). The main conclusions were,

that (1) nouns and noun phrases are important, but adjectives and even verbs are not

uncommon; (2) there are a few common patterns, as can be seen in the graph, but

10–30% of the annotations have other, often quite complicated part-of-speech

patterns; (3) the patterns vary considerably per language and domain.

4.4 Use case with TExSIS

In the previous section, a sample was presented of the type of information that could

be gained from the dataset. In this chapter, the practical use of the dataset as a gold

standard will be illustrated by means of a use case with the monolingual pipeline of

the hybrid ATE system TExSIS (Macken et al. 2013). For this experiment, the

threshold cut-off values of TExSIS were set very low, so there was a clear focus on

recall over precision. Moreover, TExSIS currently only extracts nouns and noun

phrases, which will impact recall, since the gold standard does include other part-of-

speech patterns. NEs were included in all analyses, since TExSIS includes a named
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entity recognition (NER) module. Split Terms, however, were excluded, since

TExSIS cannot handle interrupted occurrences of terms. It should also be noted that

is not the aim of the use case to provide an elaborate evaluation of TExSIS, but

rather to illustrate the usefulness of the dataset for evaluation purposes.

First, precision, recall and F-scores were calculated for all corpora, for which the

results are presented in Fig. 7. As expected, recall is much higher than precision.

There are also considerable differences between the different domains and

languages. For instance, the three corpora with the worst F-scores are all French,

though the French corpus on heart failure scores fourth best. This may be because

the system seemed to work best on this domain: the three corpora on heart failure

have the best (Dutch), third best (English) and fourth best (French) F-scores. In all

domains, the French corpora score worse than their counterparts in English and

Dutch.

Next, the impact of the different termhood measures was analysed. This included

Vintar’s termhood measure (2010) and log-likelihood ratio (llr). For the correctly

extracted terms, the overall average termhood score was 12.13 and the average llr

was 56.21. For the incorrectly extracted terms (noise), these averages were only

4.23 and 6.84 respectively, which means a difference of 7.89 points for the

termhood measure and 49.37 points for llr. These findings confirm that both

measures are informative of termhood. However, since TExSIS sorts based on

Vintar’s termhood measure, rather than on llr, it was surprising to find that llr

seemed so much more informative in this comparison. To examine this in more

detail, the evolution of precision, recall and F-score was plotted for the best ranked

terms, first when sorted by Vintar’s termhood measure, then when sorted by llr.

Since the minimum number of extracted terms was 3884, we looked at the best

ranked 3884 terms for each corpus. The results are presented in Figs. 8 and 9.

Precision, recall and F-score were averaged over all corpora. A logical pattern

would be for precision to start very high and recall very low, changing to cross each

other at some point. While this is true for recall, precision does not start high in

either case and varies only slightly throughout; it even starts to increase slightly

towards the end. Precision for the termhood measure starts with at least a very small
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peak, but overall, performance is slightly better when term candidates are sorted

based on llr. The fact that even the highest ranked term candidates do not reach a

higher precision is an indication that these statistical measures fail to capture

important term characteristics.

Next, the distribution of the different term labels is compared in the gold

standard, versus the correctly extracted terms and the terms that should have been

extracted, but were not (silence). The greatest difference was found for the NEs. On

average (across all languages and domains), 21% of all unique annotations in the

gold standard were NEs. Of the correctly extracted terms, this was only 17%, versus

28% on average for the silence, indicating that TExSIS is worse at identifying NEs

than other terms. This is hardly surprising, since TExSIS was mainly designed for

ATE and the NER module was not the focus of the tool. Conversely, TExSIS does

seem to perform well for the Specific Terms and Common Terms, with larger

proportions of each among the correctly extracted terms than among the silence

(average difference of 3% for each).

Many other automatic evaluations could be performed by comparing the ATE

output to the dataset, such as evaluations of the number of terms extracted, the term
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Fig. 8 Evolution of precision, recall and F-score when candidates are sorted by Vintar’s termhood
measure

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 251 501 751 1001 1251 1501 1751 2001 2251 2501 2751 3001 3251 3501 3751

Precision Recall F-Score

Fig. 9 Evolution of precision, recall and F-score when candidates are sorted log-likelihood ratio

In no uncertain terms: a dataset for monolingual and… 407

123



length, the part-of-speech patterns or variations between the different domains and

languages. However, the analyses presented suffice to show the practical usefulness

of the datasets as gold standards for the evaluation of ATE.

5 Multilingual gold standard for ATECC

5.1 Gold standard construction

Some of the main questions a good gold standard for ATECC should ideally be able

to answer are:

1. Are the suggested source language and target language term candidates both

actual terms?

2. Is the suggested translation equivalent correct?

If not:

(a) How wrong is the suggested equivalent? Is it at least semantically related

to the source term?

(b) Was a correct equivalent even available in the corpus?

If so:

(c) Are there other translation equivalents in the corpus for this source term?

Maybe a lower-ranked translation suggestion is also correct?

The first question can already be answered by using the datasets presented in the

previous section. The second question is more difficult, especially when considering

the three additional, related questions. Knowing the answer to question 2a would be

useful for a more fine-grained analysis. Suggesting ventricular instead of ventricle
as an English equivalent for the Dutch ventrikel does not seem as wrong as

suggesting heart failure would be. Additionally, judging translation equivalence is

not always a simple binary decision (Le Serrec 2012), so including strongly

semantically related terms may provide a way to capture other acceptable transla-

tions. To evaluate this would require knowledge of all related terms in a corpus. The

importance of question 2b has been discussed before: knowing whether a correct

equivalent was available in the corpus at all would help to identify which needs to

be improved: the input corpus or the system. This question can only be answered

when all potential equivalents have been identified in an entire corpus. This same

information could be used to answer the final question, 2c, which is especially

useful considering that most ATECC systems provide a ranked list of translation

suggestions for each source term.

With these considerations in mind, a methodology was developed for the

annotation of a gold standard for ATECC. The corpus on heart failure (including all

three languages) was chosen for this purpose since its moderate size made the task

manageable, but the density of terms still makes the corpus relevant for ATECC.
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Moreover, terminology research is often performed in the medical domain, and

annotators all felt the medical corpus was least difficult to annotate for the

monolingual term annotation, which likely benefited the quality of the annotations.

This corpus also has the highest number and proportion of Specific Terms, which

are likely the most interesting for most applications. The magnitude of this task did

not allow us to use multiple annotators or calculate inter-annotator agreement. As

before, the entire task was performed by a single annotator and semi-automatic

checks were performed to make the annotations as consistent as possible. Finally, a

domain-specialist was consulted for the most difficult cases to compensate for the

annotator’s lack of domain-knowledge.

Since term translations in the three languages rarely consist of one option for

each language, aligning the translations in three columns was no option.

Consequently, IDs (unique identification numbers) were assigned to each term, so

translations could be indicated by referring to the ID(s) of the respective term(s).

Annotations that were the same except for capitalisation were combined when they

had also received the same term label. Term variation was another factor to

consider. Many researchers have somehow integrated term variation into their

annotations (Bernier-Colborne 2012; Loginova et al. 2012; Schumann and Fischer

2016) and, combining insights from previous research, three categories of term

variants were defined: synonyms, abbreviations and alternative spellings. Addi-
tionally, the lemma was manually added, so variations of the terms with the same

lemma could easily be connected as well. To enable an even more fine-grained

evaluation of the translations, three additional categories were included: hypernyms,
hyponyms and other. The latter was included because many terms are in some way

related, but difficult to capture in specific categories. This category is only vaguely

defined and leaves room for interpretation, but was necessary to facilitate annotation

and avoid the unnecessary accumulation of categories. It includes related terms

sharing a similar root but a different POS (e.g. ‘‘ventricle’’ and ‘‘ventricular’’),

adjectives and noun phrases including those adjectives (e.g. ‘‘left ventricular

ejection fraction’’ and ‘‘ventricular’’) and other, undefined connections. Room was

also left for notes, in case the annotator felt the annotations needed further

explanation. Finally, the information which could be extracted automatically from

the monolingual annotations was included as well (label, frequency and texts in

which the annotation occurs), to make the gold standard as comprehensive as

possible.

Table 4 is an example of one of the resulting annotations. The annotation beta-
blockers received the ID 112. It was labelled as a Specific Term and appeared four

times in this form in two different texts. It was an English term and many different

equivalents were found in French and in Dutch, such as annotations 2801 and 5998,

which refer to b-bloquant and bètablokkeerder respectively. The lemma was

manually added, so the link to the singular form beta-blocker could be made

automatically. Examples of synonyms, abbreviations, alternative spellings, hyper-

nyms, hyponyms and others are, in that order, 1971 = beta receptor blockers,
2567 = BB, 2099 = beta blockers, 87 = medication, 235 = nonselective beta-
blockers and 1027 = beta blockade. The annotator left no notes for this example.
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To summarise, the time and effort required for this task should not be

underestimated. The time spent on the annotation is extremely variable, depending

on many factors, such as the annotator (experience with annotation, the subject, the

language and concentration level), the text (subject, language, difficulty, concen-

tration of terms) and other factors like how often the annotator had to return to

previous annotations and the speed of the annotation software etc. As an example:

simply annotating an average text of about 800 tokens in ideal circumstances (very

experienced annotator, domain-specialist, native language), without going back for

additional corrections or checks, took approximately 10 min for 137 annotations

among those 800 tokens. That could really be considered the upper bound, since

conditions are rarely that good and it doesn’t take into account setting up the

annotation, the learning process, reviews and edits, potential technical problems or

any other distractions. The total process was the work of many months. Despite this

investment of time and our best efforts to create the optimal setup, human error and

a certain degree of subjectivity cannot be completely eliminated. However, this was

kept to a minimum by working with a single, experienced annotator and a format

that allowed several automatic checks to detect errors and inconsistencies, e.g.

checking if references in the category French correctly refer to French annotations,

removing doubles after manual checks, etc.
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5.2 Analysis

7385 unique annotations were extracted from the monolingual GSs. The first and

most striking observation is the high term variation. All term annotations (excluding

NEs) have, on average, 1.29 term variations (synonyms, abbreviations, alternative

spellings and annotations with the same lemma). This has a direct impact on the

number of translations per annotation (term variants normally have the same

translations), resulting in an average number of 2.40 translations per annotation

(± 1.2 per language). A more detailed look at the numbers revealed a Zipf-like

distribution, as illustrated in Figs. 10 and 11.

As can be seen, many annotations have no variations or translations. However,

some have more than ten, e.g. the English term ‘‘beta-blockers’’ (see also Table 4).

The French translation for this annotation has ten variations: b-bloquant, b-
bloquants, ß-bloquants, bétabloquants, bêtabloquant, bêtabloquants, bêta blo-
quants, bêta-bloquant, bêta-bloquants and bêtabloqueur. Even removing those with

the same lemma, there are still seven variants. These variations, while closely

related, are written differently and an ATE system would therefore not automat-

ically know they are related. Since term frequency is such an important factor, a

system that can connect variants would have a great advantage. The joint frequency

of all French variants is 29, but separately, only one variant has a frequency of more

than five. Variation is common in all languages, though slightly more in Dutch (1.47

variations on average, versus 1.14 in English and 1.30 in French). The translations

were studied in more detail in (Rigouts Terryn et al. 2018), which includes an

investigation of how different part-of-speech patterns are translated.

A more in-depth analysis of the types of variations was performed, revealing

clear differences between the three languages. As shown in Fig. 12, the four types of

variations (synonyms, abbreviations, alternative spellings and terms with the same

lemma) occur in different proportions in the three languages. Only the proportion of

alternative spellings was somewhat consistent; abbreviations were most popular in

English, terms with the same lemma occurred most in the French corpora and, in
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Dutch, synonyms were used more than in the other two languages (though they were

the most common type of variation in all languages). The popularity of variation in

the form of terms with the same lemma in French can reasonably be explained by

the presence of more morphological variation (e.g. male and female forms), but the

other two are more difficult to explain. Maybe the popularity of synonyms in Dutch

can be attributed to the fact that it is a smaller language, where there is less

standardised terminology, leading to the use of more synonymous terms. The same

reasoning could apply to the abundance of abbreviations in English: it is the biggest

language in scientific communication, so there is more standardised terminology,

which is still recognisable when abbreviated.

While these observations are limited to a modest corpus of specific texts and

cannot be generalised, they may provide inspiration on handling variation for

ATECC. If there is this much variation in a clean, focussed corpus of published

medical abstracts and short papers, it may be even more prevalent in corpora

including texts that were not written by professionals or subjected to an editing

procedure before publication. One possible conclusion is that improving lemma-

tisation and normalisation could greatly benefit ATECC. Moreover, since even a

clean and focussed comparable corpus such as the one used here only contained

translations for a limited portion of all terms, then expecting perfect translation

coverage from comparable corpora is not realistic. Therefore, the possibility to

detect the source of mistakes is a valuable feature of the gold standard.

Besides term variation, the gold standard also provides information about

hypernyms, hyponyms and ‘‘other’’ connections. On average, annotations have

eleven of these connections. Almost all terms have at least one connection; only

0.06% of all annotations are completely isolated. However, as with variations and

translations, most annotations have only a couple of connections and the average is

higher because of a few terms with a lot of connections (e.g. maladie (English:

disease)) has 435 connections, because all diseases mentioned in the corpus are

hyponyms). Not only does this information allow a more fine-grained evaluation of

ATECC output (e.g. if a hyponym of the correct translation is suggested, a system

could be penalised less than when a completely unrelated translation is suggested),

it is also a useful resource for related tasks, such as hypernym detection (Rigouts

Terryn et al. 2016). In conclusion, the gold standard enables a fine-grained

evaluation of ATECC, both for individual systems and for benchmarking in

comparison with other systems, and it is a valuable source of information about the

nature of terms.

6 Conclusions and future research

Automatic term extraction is a productive field of research and a preprocessing step

for many other NLP tasks. However, there are two major obstacles related to data,

namely the shortage of well-documented, domain- and language-independent gold

standards and the lack of good training datasets for machine learning approaches.

For multilingual automatic term extraction from comparable corpora, there is an

even greater shortage of gold standards and constructing a gold standard for this task
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presents an even greater challenge. The aim of the research presented in this paper

was to construct detailed, manually annotated, high-quality gold standard datasets

for both tasks, which were specifically designed to be easily re-usable.

Corpora were collected and described in three languages (English, French and

Dutch) and four domains (corruption, dressage, heart failure and wind energy). An

annotation scheme was developed and tested with three term labels (Specific Terms,

Common Terms and OOD Terms) based on two parameters (Domain-specificity and

Lexicon-specificity) and with an additional label for Named Entities. Around 50 k

tokens were annotated per corpus according to this scheme and with elaborate

guidelines, resulting in over 100 k annotations. These datasets can serve as rich

sources of information about terminology, as training data for machine learning

approaches or as gold standards, which was demonstrated by a use case with the

TExSIS system.

An entirely new methodology was developed for the construction of a gold

standard for ATECC, which was designed to allow a fine-grained and detailed

evaluation. The annotation was performed on the trilingual comparable corpus

about heart failure. The gold standard contains information about all terms and NEs

in the corpus, all possible translation equivalents among the annotations, variations

found of each annotation in the corpus and strongly related terms, such as

hypernyms and hyponyms. Similar to the monolingually annotated datasets, this

gold standard cannot only be used for evaluation purposes, but also as a rich source

of information about terminology. At the end of this research project, all datasets

will be made publicly available.

The next step will be to test supervised machine learning approaches on the

datasets and to explore customisation options for different languages, domains and

applications. Which features can be used to extract terms in which settings? Can

term features be combined to automatically distinguish between different types of

terms, based on the proposed annotation scheme? Furthermore, a use case should

further validate the multilingual gold standard for ATECC.
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Stenetorp, P., Topić, G., Pyysalo, S., Ohta, T., Kim, J.-D., & Tsujii, J. (2011). BioNLP Shared task 2011:
Supporting resources. In Proceedings of BioNLP shared task 2011 workshop.

van de Kauter, M., Coorman, G., Lefever, E., Desmet, B., Macken, L., & Hoste, V. (2013). LeTs

preprocess: The multilingual LT3 linguistic preprocessing toolkit. Computational Linguistics in the
Netherlands Journal, 3, 103–120.

Vintar, S. (2010). Bilingual term recognition revisited. Terminology, 16(2), 141–158.
Vivaldi, J., & Rodrı́guez, H. (2007). Evaluation of terms and term extraction systems: A practical

approach. Terminology, 13(2), 225–248.
Warburton, K. (2013). Processing terminology for the translation pipeline. Terminology, 19(1), 93–111.
Wermter, J., & Hahn, U. (2005). Finding new terminology in very large corpora. In Proceedings of the

3rd international conference on knowledge capture (K-CAP 2005) (pp. 137–144). Alberta: ACM
Press.

Wolf, P., Bernardini, U., Federmann, C., & Sabine, H. (2011). From statistical term extraction to hybrid

machine translation. In M. L. Forcada, H. Depraetere, & V. Vandeghinste (Eds.), Proceedings of the
15th conference of the European association for machine translation (pp. 225–232). Leuven,

Belgium.

Wong, W. (2009). Determination of unithood and termhood for term recognition. In Handbook of
research on text and web mining technologies (pp. 500–529). IGI Global.

Zhang, Z., Gao, J., & Ciravegna, F. (2018). SemReRank—Improving automatic term extraction by

incorporating semantic relatedness with personalised PageRank. ACM Transactions on Knowledge
Discovery from Data. https://doi.org/10.1145/3201408.

Zhang, Z., Iria, J., Brewster, C., & Ciravegna, F. (2008). A comparative evaluation of term recognition

algorithms. In Proceedings of the international conference on language resources and evaluation,
LREC 2008 (pp 2108–2113). Marrakech, Morocco.

Zhang, Y., Milios, E., Zincir-Heywood, N. (2004). A comparison of keyword- and keyterm-based

methods for automatic web site summarization. In Technical report WS-04-01, papers from the
AAAI’04 workshop on adaptive text extraction and mining (pp. 15–20). San José, CA: ACL.
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