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Abstract Research in Arabic automatic speech recognition (ASR) is constrained by

datasets of limited size, and of highly variable content and quality. Arabic-language

resources vary in the attributes that affect language resources in other languages

(noise, channel, speaker, genre), but also vary significantly in the dialect and level

of formality of the spoken Arabic they capture. Many languages suffer similar levels

of cross-dialect and cross-register acoustic variability, but these effects have been

under-studied. This paper is an experimental analysis of the interaction between

classical ASR corpus-compensation methods (feature selection, data selection,

gender-dependent acoustic models) and the dialect-dependent/register-dependent

variation among Arabic ASR corpora. The first interaction studied in this paper is

that between acoustic recording quality and discrete pronunciation variation. Dis-

crete pronunciation variation can be compensated by using grapheme-based instead

of phone-based acoustic models, and by filtering out speakers with insufficient

training data; the latter technique also helps to compensate for poor recording

quality, which is further compensated by eliminating delta-delta acoustic features.

All three techniques, together, reduce Word Error Rate (WER) by between 3.24%

and 5.35%. The second aspect of dialect and register variation to be considered is

variation in the fine-grained acoustic pronunciations of each phoneme in the lan-

guage. Experimental results prove that gender and dialect are the principal

components of variation in speech, therefore, building gender and dialect-specific

models leads to substantial decreases in WER. In order to further explore the degree

of acoustic differences between phone models required for each of the dialects of

Arabic, cross-dialect experiments are conducted to measure how far apart Arabic
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dialects are acoustically in order to make a better decision about the minimal

number of recognition systems needed to cover all dialectal Arabic. Finally, the

research addresses an important question: how much training data is needed for

building efficient speaker-independent ASR systems? This includes developing

some learning curves to find out how large must the training set be to achieve

acceptable performance.

1 Introduction and objectives

Arabic is a Semitic language and one of the six official languages of the United

Nations (UN). It is spoken by perhaps as many as 422 million speakers (native and

non-native) in the Arab region, making it the fifth most spoken language in the

world (Lewis and Gary 2015).

Arabic can be viewed and treated as a family of related languages. There is

Modern Standard Arabic (MSA), which is widely taught at schools and universities,

and is used in the media, formal speeches, courtrooms, and indeed in any kind of

formal communication. MSA is considered to be the official language in all Arabic

speaking countries. In addition, people generally speak in their own dialects in daily

communication. These dialects are neither taught at schools nor even have any

organised written form. Arabic dialects differ substantially from MSA in terms of

phonology, morphology, vocabulary, and syntax. Dialectal Arabic (DA), also

known as Colloquial Arabic, is the natural spoken language in everyday life. It

varies from one country to another and sometimes more than one dialect can be

found within a country.

DAs are commonly divided by region into five main groups: (1) Gulf, which is

spoken by people who live around the shores of the Arabian Gulf. (2) Iraqi, which is

used only in Iraq. (3) Egyptian, which is the dialect spoken in Egypt and some areas

in Sudan. (4) Levantine, which is spoken by Arabs near the Mediterranean east

coast. (5) Maghrebi, which is the dialect spoken in western Arab countries.

Building robust speech recognition systems requires feeding the training model

with spoken and written data of the targeted language. As will be discussed in Sect.

3, the use of statistical modelling in building acoustic, pronunciation, and language

model motivates the need for large quantities of data. Finding such resources for

Arabic, which is known for its complex morphology and high vocabulary growth, is

a challenging task. Adding to this the extreme dialectal variation and significant

differences between the spoken and the written language caused mainly by the

absence of diacritics1 makes the development of ASR systems for Arabic

particularly challenging.

All these issues make it difficult to collect large and balanced amounts of speech

and text data for Arabic. Researchers have generally emphasised the need for large

sized speech corpora, with associated transcriptions, for building Arabic speech

recognisers. They describe the resources available in the literature as being

1 Diacritics are mainly markers for both vowels and consonants. These markers include short vowels,

dagger Alif, sukun, nunation, and gemination marker.
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expensive, lacking adaptability, reusability, quality, coverage, and adequate

information types (Abushariah et al. 2010).

This paper investigates a range of straightforward approaches that can exploit

sparse training data for Arabic in a more efficient way to guarantee the best use of

data. By applying the suggested approaches, we found that using an informative and

balanced subset of data can produce ASR systems that are comparable to those

using substantial amounts of data.

The investigation includes applying some general conditions to the data in order

to accommodate variation in speech and thereby improve the ASR system’s

performance. For instance, modifying the settings of the feature-extracting

technique applied to the speech signals, suggesting a surrogate proposal to

eliminate poor quality recordings, and suggesting the best level of phonetic

transcription needed to model pronunciation. In addition, the paper investigates the

feasibility of building gender-specific and dialect-specific ASR systems for each of

the main five Arabic dialects.

The research also includes carrying out a set of cross-dialectal experiments to

examine how well the ASR system performs when trained on one dialect and tested

on another. Finally, the research gives recommendations for the amount of data

needed for testing and training an ASR system.

The aim of the approaches introduced above is to consider the effects of a

collection of fairly straightforward ways of making use of data which is known to be

flawed in a number of ways, and in particular of trying, as far as possible, to

experiment with these approaches on a single dataset, with no variations in the way

that we used this dataset beyond the experiments that we were interested in. A

number of these approaches have been tried by other authors, but because they have

been investigated in isolation it is very difficult to see from previous studies which

are the most effective, and to see how they perform in combination.

All the experiments are conducted with the aid of the latest version of Hidden

Markov Model toolkit (HTK) (version 3.5) (Young et al. 2015; Woodland et al.

2015). The research uses the GALE phase 3 dataset of 200 h broadcast news and

conversational speech database (LDC 2015) released by the Linguistic Data

Consortium (LDC).

2 Availability of data resources for Arabic: problems and solutions

In the natural language processing community, there is a common belief that ‘‘there

is no data like more data’’ (Moore 2003). Following this idea, researchers have

worked hard to collect large amounts of data to have sufficient training materials to

build ASR systems. In addition, researchers have worked on solving some issues

related to the process of collecting the required data. Finding sufficient language

resources to build ASR systems is particularly difficult for Arabic. This shortage of

speech corpora arises for the following reasons:

• Arabic has multiple variants, and the differences between these varieties is like

the difference between divergent languages. Many researchers have argued for
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treating different Arabic dialects as different languages in building NLP

applications.Zaidan and Callison-Burch (2014a), for instance, consider the

variation between Arabic dialects to be enormous, to the extent to the need to

treat them as different languages. The researchers justified this assumption by

pointing to the similarity between the behaviour of a machine translation system

when tested on DA and trained exclusively on MSA, with another machine

translation system which was tested on Portuguese and trained on Spanish.

However, most of the available data in the literature targets MSA and only a few

datasets are available for DA. This shortage causes a serious obstacle for

researchers working in the field of Arabic ASR.

• As will be described in Sect. 3, the construction of any ASR system requires a

corpus of speech data with the associated textual/phonetic transcriptions. DA is

mainly spoken and there is no standardised writing system for dialects. This

leads to having dialectal speech transcribed following MSA rules in some cases,

or transcribed with a great deal of inconsistency in others. The unavailability of

adequate written materials is a serious problem faced in the development of

language resources.

• The majority of Arabic texts lack diacritics. These are items that carry important

information about pronunciation and meaning, and their absence makes it

impossible to determine the phonetic structure of the words in a text. For

instance, they indicate the presence or absence of one of the Arabic three short

vowels, distinguish long vowels from glides or diphthongs, indicate geminated

consonants, and also demonstrate the role of the word in the sentence (e.g.

whether the word is subject or object of a verb). Retrieving the absent diacritics

accurately is one of the main challenges in developing language corpora.

• Many available data resources are poor quality and do not meet the requirements

for building robust ASR systems. Handling poor quality speech recordings

requires careful inspection before using them in building an ASR system.

• Acquiring a large, high-quality corpus is expensive, therefore, in order to be

made available at low cost to researchers, a corpus must be acquired using

sources of funding other than user fees. Large, high-quality free corpora exist in,

e.g., English (e.g., (Panayotov et al. 2015)), Chinese, (e.g. (Magic Data

Technology Co., Ltd. 2019)), and Russian, (e.g. (Andrusenko et al. 2019)), but

not in Arabic. Perhaps because of dialect variation corpora in Arabic tend to be

smaller (e.g.,Open Speech and Language Resources (2003) contains 11.2 h of

Tunisian Arabic) and/or expensive (e.g., GALE Phase 2 Arabic Broadcast

Conversation Speech Part 1 (Walker et al. 2013).

In this section we will highlight researchers’ efforts directed at compensating for the

lack of language resources required for building Arabic ASR systems. Many

researchers have found it necessary to face this lack either by starting from zero and

constructing their own corpora, and then possibly making it public for interested

researchers, or by finding some techniques to better use the available resources. This

step is especially important for dialects which have received less attention and pose

more challenges compared to MSA. Considerable interest in dialects was found in

the literature in recent years. This is mainly due to their wide use in everyday life
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and social media (Sadat et al. 2014; Shoufan and Alameri 2015). Several categories

of work were conducted in the literature for coping with these dialects to build

speech processing systems.

Some work has been conducted on constructing linguistic resources (lexicon and

corpus) to deal with this lack in building dialectal Arabic corpora for ASR

applications. Masmoudi et al. (2014) and Selouani and Boudraa (2010) have

introduced corpora for Tunisian Arabic and Algerian Arabic, respectively. The

Tunisian corpus contains audio recordings and transcriptions extracted from

dialogues in the Tunisian Railway Transport Network. The Algerian corpus is

composed of MSA speech pronounced by 300 Algerian native speakers from

different regions. The developed corpora can be used to build dialect-specific

Arabic ASR systems.Almeman et al. (2013) developed Arabic parallel texts and

speech corpora that cover three major Arabic dialects: Gulf, Egypt and Levantine as

well as MSA. The 32 h of recordings were collected with the aid of 52 participants.

The researchers chose a specific linguistic domain to work with, namely travel and

tourism.

Aiming to build multi-dialectal speech recognition systems to support voice

search, dictation, and voice control for the general Arabic speaking public, Biadsy

et al. (2012) constructed the largest multi dialectal Arabic speech corpus. This

corpus was collected with the aid of more than 125 million people in Egypt, Jordan,

Lebanon, Saudi Arabia, and the United Arab Emirates. The main limitation with this

corpus is that it contains read speech. The speech was recorded by using an

application that displays prompts to the user and asks them to say it in their own

dialect. Therefore it is not natural speech and it is likely not be useful for building

spontaneous speech recognition systems.

On the other hand, many researchers have dealt with the sparse available

resources by using a data sharing approach. Kirchhoff and Vergyri (2005) carried

out a thorough investigation into the feasibility of using data from MSA to build an

Egyptian ASR system. Researchers found this cross-lingual data sharing approach

to lead to significant reduction in WER. Similarly, Elmahdy et al. (2010, 2012) and

Elmahdy et al. (2014) proposed a cross-lingual acoustic approach and employed

some adaptation techniques to benefit from the existing MSA resources in building

Egyptian, Levantine, and Qatari Arabic ASR system, respectively. This cross-

lingual technique utilises the available MSA data in combination with dialectal data

to overcome the problem of limitation of dialectal speech resources. Using this

technique in developing different ASR systems was found to achieve a noticeable

reduction in WER.

Huang et al. (2012) proposed a crossed-dialect Gaussian Mixture Model (GMM)

training method to learn the maximum likelihood of cross-dialectal data. The

researchers used West Point MSA Speech corpus along with Babylon Levantine

Arabic speech corpus to build a Levantine ASR system. Researchers demonstrate

that the proposed cross-dialectal training improves the system’s performance

significantly, especially when a small amount of MSA data is transferred. Menacer

et al. (2017) presented an ASR system built using combined acoustic models: one

for MSA and one for French to compensate for the absence of transcribed speech
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data for Algerian dialect. This combination leads to a substantial absolute reduction

of the word error of 24%.

3 Architecture of the ASR system

ASR systems work by converting a speech signal into a textual representation with

the aid of models built using various techniques. The general architecture of the

ASR system is presented in Fig. 1. It can be seen that the system integrates mainly

three components: acoustic model, pronunciation model (lexicon), and language

model. Modelling these components must be preceded by a front-end process to

extract features from the audio signal that are good for modelling the speech. The

following is a summary of the Speech features extraction process and the three kinds

of knowledge needed for training and decoding the ASR system (acoustic model,

pronunciation model, and language model). In this section, we point to the areas

where we made changes to the standard settings in our current investigation.

3.1 Speech features extraction

The speech modelling tools cannot directly process waveforms. These waveforms

have to be represented in a more compact and efficient way by converting them into

a series of acoustical feature vectors. This front-end step is crucial to identify the

components of the audio signal that are useful for recognising the linguistic content.

The literature shows that there are a variety of feature extraction techniques Wang

et al. (2016), for instance, report on experiments using alternative representations of

the speech signal such as filterbank features and perceptual linear predictive coding,

but the differences between the various representations seem to be marginal),

Fig. 1 Architecture and components of the ASR system
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however, the use of Mel Frequency Cepstral Coefficient (MFCC) is the predominant

one (Sharma and Atkins 2014). Obtaining MFCCs requires a sequence of steps to be

applied to an input speech signal. These computational steps of MFCC include

Framing, Windowing, Digital Fourier Transform Holography (DFTH), Mel filter

bank algorithm, and computing Inverse Discrete Fourier transform (DFT). The

speech signal is then converted into a discrete sequence of feature vectors.

The feature vector consists of a collection of MFCC coefficients and energy

measures. Most researchers use the standard 39 MFCC vectors (12 cepstral features

plus a measure of the energy, together with the rates of change and accelerations of

these 13 features). In this research we investigate the use of only 25 MFCC vectors

(i.e. the 12 cepstral features and their rates of change plus the rate of change of the

energy measure) and compare it with the standard use of 39 MFCCs to see if that

has any effect on the recognition performance.

3.2 Acoustic model

The development of the acoustic model is based on the HTK 3.5 (Young et al.

2015), which is a portable toolkit for building Hidden Markov Models (HMMs).

This version integrates deep neural network (DNN) modules to be used for acoustic

modelling and feature extraction. The DNN tools in HTK 3.5 enable the use of

DNNs for constructing acoustic models, i.e., for identifying the phoneme

corresponding to a given set of acoustic features. The output of the DNNs is

converted to a probability distribution, typically by using softmax though other

options are available, and used as the ‘emission probability’ in an HMM. This is

similar to the way that DNNs are used in other state-of-the-art toolkits, such as

Kaldi (Ali et al. 2014). Wang et al. (2016) report that using DNNs in this way within

the HTK produces results that are comparable with, and in some cases better than,

other DNN systems tested on the same data.

The actual acoustic modelling takes place in multiple stages, starting from the

creation of an initial set of identical monophone HMMs. This pre-defined prototype

is used by the HTK, along with the acoustic feature vectors, for initialisation. This is

followed by creating short-pause models and extending the silence model to make

the system more robust. Since a word may have multiple pronunciations in the

dictionary, the created phone models are used to realign the training data and create

new transcriptions by selecting from among the alternatives listed in the dictionary.

This forced alignment can help to improve the phone-level accuracy as it determines

the pronunciation that best matches the acoustic data and then uses this for the

phonetic transcription in subsequent rounds of training.

After the creation of a set of monophone HMMs, context-dependent triphone

HMMs are created. This is done by (A) converting monophone transcriptions to

triphone transcriptions, generating a list of all triphones observed in the training

data. The HMM model is now built for each triphone, where there is a separate

model for each left and right context for each phoneme and phone. And (B), tying

similar acoustic states of these triphones to make robust parameter estimates. These

are standard steps when training speech recognisers (Young et al. 2015). Using
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triphones can lead to overtraining if the size of the training data is small, but with

the GALE data this step makes a significant contribution.

After each step, re-estimation of the parameters must be performed using several

rounds of Baum-Welch training. This is done to estimate the optimal values for the

HMM parameters (transition probability, mean and variance vectors for each

observation function). This iterative step is repeated several times for each HMM to

train. The HTK book suggests applying 2 rounds of re-estimation, however, the

research reported here found that applying 3 rounds of re-estimation after each

HMM training can make the system more effective.

In building the acoustic model, standard DNN-HMM systems are used. Similarly

to the monophone system creation explained previously, a prototype model first

needs to be defined. Then other tools connect the DNN output units with the

monophone HMM states. In addition, the DNNs created in this step are paired up

with the cross word triphone HMMs and eventually evaluated.

In this work 6 hidden layers are used, where each hidden layer has 2048 nodes.

The input layer has 225 nodes (the 25 MFCC and energy features observed in a

window of 9 frames around the current frame) and the output layer has either 96 or

105 nodes. These correspond to the three internal states of each of the HMMs for the

phoneme set being used for a given experiment, i.e. 32 phonemes for the grapheme-

based experiments and 35 for the dictionary-based ones. Although we do use

triphones during the initial GMM training round (used for getting initial estimates of

the various HMMs and for aligning the data prior to DNN training), these all get tied

to the basic phoneme set because the data does not contain sufficient instances of the

individual triphones for them to be assigned distinct models. Stochastic gradient

descent (SGD) is applied for pre-training with mini-batch size set to 256 with 0.001

as initial learning rate for all the experiments, using a sigmoid as the activation

function for the hidden layers and softmax for the output layer. In order to fine-tune

the pre-trained nets we used 18 epochs with a fixed learning rate of 0.001 and the

same mini-batch as that used for pre-training. We investigated numerous other

settings for these parameters, but the current paper is not primarily aimed at

analysing the effects of changing the DNN architecture, and all the results below are

obtained using these settings. It is worth noting at this point that the initial GMM

models which are used for producing the alignment used when training the DNN

models are almost as accurate as the DNN models themselves. DNNs are typically

good at extracting detailed patterns from very large datasets. When only a moderate

amount of data is available, as in the current case, they do not outperform other

models as effectively.

Having sufficient recordings from different speakers is crucial for creating

speaker-independent ASR systems. In this research, we investigate building

different acoustic models using different settings and different speaker populations.

This is carried out by testing the effect of excluding speakers with few utterances, to

test the hypothesis that those speakers may have a bad impact on modelling the

acoustic. Another way to improve the acoustic modelling is by dividing speakers

into sub-populations and training the acoustic model separately on each population.

982 E. Alsharhan, A. Ramsay

123



3.3 Pronunciation model

Pronunciation model provides the link between the language model and the acoustic

model. The pronunciation lexicon includes a list of the words with single or multiple

phonetic transcriptions. Two levels of textual representation in dictionary can be

used; grapheme-based (with no short vowels) and phoneme-based (including short

vowels).

The use of grapheme-based transcription was found by Alghamdi et al. (2007);

Elmahdy et al. (2010); Abushariah et al. (2012); Alsharhan et al. (2020) to be

advantageous in reducing WER. In contrast, other researchers found these non-

diacriticised scripts to have considerable ambiguity for the development of NLP

tools, such as Vergyri and Kirchhoff (2004). Due to this uncertainty regarding the

best level of textual representation, the research investigates the use of both

grapheme-based pronunciation modelling and phoneme-based pronunciation

modelling.

In the case of building a grapheme-based model, pronunciation modelling is a

straightforward process. The phonetic transcription is obtained from the word’s

graphemes rather than the exact phoneme sequence, and the dictionary is generated

from the text without retrieving the diacritics. For any given word, pronunciation

modelling is done by splitting the word into letters. In this case, each word is

associated with only one graphemic pronunciation variant. Note that in this

representation, the properties of the missing short vowels are assumed to be

implicitly modeled with the surrounding consonants during the acoustic modelling.

In order to create the phoneme-based model, the research uses the QCRI

predefined dictionary, which was developed by Qatar Computing Research

Institute2. The QCRI dictionary was developed using a collected news archive

from many news websites and then processed by MADA. The lexicon has 526k

unique grapheme words, with 2M pronunciations, with an average of 3.84

pronunciations for each grapheme word (Ali et al. 2014).

3.4 Language model

Good performance speech recognisers cannot be achieved through acoustic

modelling solely; some form of word sequence probability estimate is required to

capture the properties of the language. Language modelling is crucial to constrain

search by limiting the set of possible HMMs. The role of the language model is to

predict the probability of a word occurring in the context during recognition, which

can help to improve the recognition accuracy.

This can be done either by using an associated grammar, or probabilistically by

computing the likelihood for each possible successor word using n-gram models.

The research reported here uses the classical bi-gram language modelling in

building all the proposed systems. This is carried out using a set of HTK tools,

firstly to create the grammar and then to produce a word network that lists each

word-to-word transition. These tools are applied to the test sets: given that we use

2 http://alt.qcri.org/resources/speech/dictionary/arar_lexicon_2014-03-17.txt.bz2
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the same test sets for each experiment, this provides us with the same set of

language models for every experiment.

4 GALE corpus specifications

The research uses the GALE (phase 3) Arabic broadcast news and broadcast

conversational speech dataset. This dataset consists of two major parts: the first one

contains approximately 132 h of Arabic broadcast news speech (BN) collected from

13 Arabic channels. The second part contains approximately 129 h of Arabic

broadcast conversation speech (BC) collected from 17 channels.

This data consists mainly of MSA speech, but with a substantial amount of DA

speech, especially in the conversational part. After applying orthographic normal-

isation, the transcripts were segmented into manageable and well-defined segments

according to the given time stamps, along with the associated recordings. Each

segment is given a specific label. All unnecessary information, such as non-speech

segments and non-Arabic text was removed. However, interjection, hesitation and

broken words were kept as long as they have orthographic transcriptions.

In the GALE data, a quick rich transcription (QRTR) is used. This kind of

transcription can be carried out more quickly, but with fewer quality checks

performed on the finished product, compared to careful transcription. Therefore,

some limitations were faced when using this data. For example:

• Time stamps are sometimes placed in the middle of the sentence.

• Some speakers are labeled with the wrong gender or sometimes with no gender

identification.

• Transcripts have some irregularities such as the use of non-Arabic punctuation

marks and non-Arabic graphemes.

• Some recordings were found to have very noisy background.

• Many cases were found with discrepancies and spelling mistakes.

We have compensated for these errors as far as we can—most of the orthographic

errors were treated by using regular expression rules, and we found that many of the

noisier segments were produced by people for whom only a very small amount of

data was recorded, so that we could use this as a simple way of removing noisy

recordings. Problems like these are, however, to be found in almost any large

corpus. The experiments reported here are in large part an attempt to find out the

best way to cope in the face of data that contains these problems.

The GALE data was used for training and testing the ASR systems through the

investigation carried out in this research. Three datasets were used: the full BN

dataset with approximately 55.6 h. of speech data (after preprocessing) and 401k of

vocabulary size; the full BC dataset after preprocessing it, which consists of

approximately 91 h. of speech data and 679k of vocabulary size; and the

combination of both BN and BC datasets.

In conducting dialect-specific experiments, information about speakers’ dialects

was extracted from an annotated version of the GALE (phase 3) corpus provided by
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Alsharhan and Ramsay (2020). Arabic dialects can be classified based on different

aspects, in terms of geography and social class. The dialectal labels provided by

Alsharhan and Ramsay (2020) are based on dividing regional dialects into five main

groups. This classification of Arabic dialects is commonly used by researchers in the

area of Arabic language processing. However, Zaidan and Callison-Burch (2014b)

stated that this breakdown is one possible classification but it is relatively coarse and

can be further divided into more dialect groups, especially in large regions such as

the Maghreb. The annotations are fully available online for searching and

downloading3. The proposed annotation process resulted in assigning a dialect

label of about 2,900 speakers. Each speaker was assigned to an accent group by

three annotators. Annotators did not always agree, and hence the final database

records all three judgements. In the current research, we rigorously used dialect

labels provided by unanimous annotators to achieve more reliable results. This leads

to having 88.6 hrs of annotated speech from the GALE data. Table 1 provides

information about the amount of data we have for each dialectal group for both

genders.

5 Dividing data into training and testing

In order to carry out a thorough investigation and achieve a fair comparison between

the varied systems, the research uses a 5-fold cross-validation approach as a way of

assessing the proposed systems. This includes shuffling the dataset and extracting

five random sets for training and testing. In each fold, a random set of test data is

selected that is disjoint from the training data. The results from the five folds can

then be averaged to compute a single estimation. This is particularly important when

carrying out experiments with limited data sources, such as dialect-specific and

gender-specific systems.

3 https://github.com/AllanRamsay/ACCENTS

Table 1 Details of amount of

data available for each dialect
Dialect Amount of speech (mins)

Total By gender

Gulf 578 Male 493

Female 85

Iraqi 448 Male 427

Female 21

Egyptian 303 Male 255

Female 48

Levantine 1265 Male 741

Female 524

Maghrebi 70 Male 65

Female 5
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However, we cannot follow standard practice by selecting the test set by taking

20% of the data for testing and 80% for training in the main experiments because

different experiments involve different amounts of training data: if one experiment

involves taking the full 55.6 h of the BN data then 20% would be 678 minutes of test

data, if a different experiment involved taking 5 h of the BN data then 20% would

be 60 minutes of test data. We therefore wanted to find out what would be a sensible

amount of test data to reserve for every experiment in order to have reliable results

without making testing take an excessively long time and whilst retaining

consistency over the various experiments.

The question is how much data do we need to reserve and use in order to achieve

sufficient testing? To answer this question we carried out a series of experiments

with varied amount of testing data to develop learning curves and find how much

data we need to be able to fairly estimate the error rate. The experiments involve

training four different models using different datasets. Each model is then tested

with varied amounts of testing data ranging from 3 to 60 minutes. The BN data,

which consists of about 55.6 hrs of speech recordings and associated transcriptions,

is used in these experiments. In preparing the data for training and testing the main

four systems, the whole dataset is shuffled and a different 60 minutes of speech is

reserved every time to carry out the gradual testing. Results are shown in Fig. 2

where the Y axis indicates the Word Error Rate (WER), the color of the line

distinguishes between four different models (trained using different subsets of the

training data), and the X axis indicates the amount of data used in testing each

system. The experiments confirm that the WER starts to be stable between 15 and

20 min.

It is important to be clear that the point of this experiment was to ascertain how

much data we should reserve for testing when carrying out the main experiments in

Sect. 6. For each model, we randomly extracted 60 minutes of potential test data

from the full 55.6 h in the GALE BN set and used the remaining 54.6 h for training

the model. We then tested the model on increasingly large chunks of the reserved

data in order to see the point at which the results became stable. We are not at this

point concerned with the performance of the models themselves. The issue is to find

the point at which the test results level out, since it is reasonable to assume that if

the results from the four experiments all become level at a certain point then that

indicates that this is enough data to provide reliable results. In each case in Fig. 2 the

curve levels out after we use about 20 minutes of testing data. We therefore used

this amount of data for testing in all subsequent experiments.

6 Experiments

6.1 Testing general experimental conditions

In the first experimental phase we want to test the effect of applying some general

conditions to the data available to us. In the reported experiments, we use three

datasets: BN, BC, and the union of the two more specific datasets. 20 minutes of

986 E. Alsharhan, A. Ramsay

123



data is reserved in each experiment for testing. The testing is carried out using 5-

fold cross validation approach as explained in Sect. 5.

The baseline system is based on using 39-dimension MFCCs as our features and

a 526k word multiple pronunciation dictionary. All speakers available in the

datasets are included in training the baseline system without any restrictions.

The first question in this phase is whether using 25-dimensional MFCC (i.e. using

13 MFCC and their rate of change) is superior to the use of the standard 39-

dimensional MFCC (the 13 coefficients, their rate of change and their acceleration).

It is widely assumed that using the acceleration as well as the rate of change will

produce better performance, but this may not be true for comparatively small

training sets, since it may lead to over-training.

The experimental results show that by using 25-dimensional MFCC the WER

decreases between 0.7% to 2.6% using different datasets as shown in Table 2.

Ignoring the acceleration produces greater benefits for the broadcast news data than

for the conversational data. This is slightly surprising, since the conversational data

is in general noisier, and hence any information that might be gleaned from the

acceleration would at first sight seem to be more unreliable.

The second round of experiments tries to find a surrogate approach to deal with

noise and unwanted variation in speech data. We believe that sometimes more data

can hurt, with this being particularly true when that data includes unnecessary and

disruptive information. This has motivated the research to adopt a data selection

strategy which limits the selection of speakers to those who have at least ten

recordings. The assumption that speakers with few utterances can negatively affect

the performance of the ASR system was driven by general observations made from

listening to some recordings in GALE data. Those observations suggest that the

majority of speakers with few utterances have noticeably high background noise and

Fig. 2 WER for testing different ASR systems with varied amounts of testing data

Investigating the effects of gender, dialect, and training... 987

123



poor quality recordings. Experimental evidence shows that by excluding speakers

with less than ten utterances the WER decreased between 0.8% to 1.1%. This is not,

of course, a direct demonstration that these speakers contribute particularly noisy

data. The most that we can say is that informal observation suggests that the

recordings for speakers for whom we have only a small amount data tend to be

noisy, and that excluding such speakers leads to improved overall performance. The

link between the two is tentative, but the concrete results are not in doubt.

While the baseline system uses a predefined multiple pronunciation dictionary,

the research investigates the effect of using a simple transcription where each

character in the written string is treated as the name of a phoneme and no attempt is

made to insert the missing diacritics. We will refer to systems trained using this

strategy as ‘grapheme-based’ systems. Results reported by previous researchers

suggested that it was worth carrying out such testing, as some, though not all,

researchers reported lower WER when testing on grapheme-based systems.

With the available data and tools, the experimental results confirm that the use of

a grapheme-based transcription is superior to the use of the multiple pronunciation

predefined dictionary. This superiority is manifested as a lower WER with all

datasets and also faster training and testing compared to the use of a multiple

pronunciation dictionary. Using the diacriticised multiple pronunciation dictionary

leads to increasing the vocabulary size and thereby increasing the perplexity of the

language model which explains the longer processing time. When using a

grapheme-based dictionary, the properties of the missing short vowels are assumed

to be implicitly modeled in the initial and final states of the HMMs for the

surrounding consonants during the acoustic modelling. Results show that using a

grapheme-based dictionary leads to decreasing WER by between 1.5% and 2.5%.

In summary, the investigation has proved that using 25 MFCCs, eliminating

speakers for whom we have little data (which we take to be a reasonable surrogate

for eliminating poor quality recordings), and using a grapheme based dictionary

leads to reduction in WER by total of between 3.24% for BC data and 5.35% for BN

data. A clear general observation in the results obtained is the substantial difference

between the performance of systems that use BN data and systems that use BC data.

Using the same tools and parameters in training and testing with the BC data

resulted in an average of 11.95% increase in WER compared to the use of BN data.

This can be explained by the nature of speech materials each dataset includes. The

BC dataset is considered to be maximally natural in terms of speaking style and

Table 2 WER for the three datasets using different experimental settings

Phoneme-based Grapheme-based

BN

(%)

BC

(%)

Combined

(%)

BN

(%)

BC

(%)

Combined

(%)

1 baseline system (all speakers,

39 dimension MFCC)

22.7 33.3 28.3 19.9 31.1 26

2 applying 25-dimension MFCC 20.1 32.6 26.4 19 31.2 24.8

2? eliminating infrequent speakers 19.0 31.5 25.6 17.3 30.0 23.1
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recording conditions; speakers tend to use their own words, in most cases in their

own dialects; and many episodes were recorded in open areas and streets, which

increases the negative impact of background noise on the quality of the recordings.

On the other hand, in the BN dataset most of the speakers read from source

materials and the recording process was carried out in recording studios. However,

the effect of applying the suggested conditions on the three datasets was broadly

similar. The scores for the combined dataset are close to the averages of the scores

for the two individual datasets. Interestingly, the scores for the combined dataset are

slightly lower than the average of the individual datasets when using the phoneme-

based approach and slightly higher than the average for individual datasets with the

grapheme-based system, but the differences are very slight and are unlikely to be

significant. Details follow in Table 2.

6.2 Using homogeneous datasets in training and testing the developed
systems

A previous study examined the variability among speakers through the application

of statistical analysis methods (Huang et al. 2001). This study found that the first

two principal components of variation in speech correspond to gender and accent.

The current investigation aims at finding the best way to split the data into

subgroups when building Arabic ASR systems to limit variation sources and make

better use of the data. The key point here is that homogeneous datasets are generally

regarded as leading to more accurately trained systems; but dividing the data into

small subsets means that there is less data available for training each model, which

typically leads to less accurate models. We therefore wanted to investigate the trade-

off between using homogeneous datasets vs. the decrease in the size of the training

data as we split the dataset into finer and finer subsets. The investigation starts by

dividing the three datasets according to speakers’ gender groups4 and applying the

experimental conditions suggested in the previous section. Results of building

gender-specific ASR systems are reported in Table 3. For comparison reasons, the

table also reported the results of testing each gender on a model that is trained on

both genders.

The results show that using gender-specific modelling leads to substantial

decrease in WER. The average improvement is 2.45% decrease in WER for BN,

2.15% for BC, and 2.95% for the combined datasets. The results also show that

despite the dominance of male speakers in the two datasets, models trained and

tested on female speakers perform better than ones trained and tested on male

speakers. This might arise because there is greater variation of pitch among male

speakers than there is among females, or simply because female speakers articulate

more clearly than males. We have not investigated this in greater detail.

This suggests that gender features are a great source of acoustic confusability in

the construction of ASR systems. Controlling this variability leads to substantial

4 GALE data files have names like test-ALAM_NEWSRPT_ARB_20070125_015800-female-
*Azza_Zaftaoui-native-166 which include a component that specifies the speaker’s gender,

which is what we used for the gender-oriented experiments. There are a few cases where this label

appears to be wrong, but the labels are generally correct.
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improvement in the overall performance. Despite the fact that the undifferentiated

training set is much larger than the gender-specific ones, the latter is more

informative and leads to better performance in a shorter time frame. It is, of course,

necessary to be able to classify the input speech by gender for this to be helpful.

This can be approximated by finding the value for F0—for the Gale Arabic data

84% of speakers with an average F0 of 172Hz or below are labeled male and 84% of

speakers with a higher F0 are labeled female. Alternatively, speakers can simply be

asked to specify their gender when accessing the tool.

The second major source of variability in speech arises from the use of different

dialects. Although dialectal groups in Arabic share many similarities, the various

dialects show differences at all linguistic levels. Looking at the intelligibility level

among Arabic speakers, it can be noticed that Levantine speakers are unintelligible

to Moroccan speakers and vice versa, for instance. These divergences suggest the

importance of building dialect-specific ASR systems for Arabic as computational

tools trained on one dialect will underperform when tested on another dialect.

Similarly, a system simultaneously trained with many dialects is not expected to

achieve well when tested on any specific dialect.

The experimental work reported here mainly involves building two kinds of

recognition systems. In the first one, the selection of the training data is based solely

on speakers’ gender so it contains two multi-dialect speech recognisers (one for

each gender). The second one is based on speakers’ gender and dialect, so it

contains nine recognition systems for the five main Arabic dialects and the two

genders5. Table 4 shows the results of testing each dialect and gender-specific subset

on gender-specific, multi-dialects based-system and on an appropriate gender-

specific plus dialect-specific based system.

To avoid unfair comparisons resulting from the preponderance of some dialects

in the dataset, especially Levantine, the training set in these experiments is balanced

so that it includes a fixed amount of speech from each dialect and gender group. As

with the previous experiments, 5-fold cross-validation with a 20 minute testset is

used in carrying out the experiments.

The results clearly show that all gender plus dialect-specific speech recognisers

show better performance than the multi-dialects based speech recognisers. That is,

for instance, the Gulf (male) recogniser beats the multi-dialect male Arabic

Table 3 WER for ASR systems trained on male, female, and both genders using the three datasets

Training dataset

BN BC Combined

Male Female Both Male Female Both Male Female Both

Testing-

dataset

Male 18.6% – 20.3% 28.4% – 30.2% 19.8% – 23.1%

Female – 10.8% 14.0% – 24.4% 26.9% – 14.5% 17.1%

5 Female Maghrabi speakers were excluded from the training and testing sets because the GALE data

contains too few instances of this class for it to be possible to train a model.
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recogniser when operating over Gulf male speakers test set and likewise for all the

other gender/dialect specific models.

The level of improvement varies depending on the dialect. For instance, the

highest improvement was observed in Maghrebi dialect with 5.26 % reduction in

WER, while the lowest improvement was observed with Levantine dialect with

0.83% reduction in WER for the male subset and 0.54% WER for the female subset.

The average of the WER for testing different dialect plus gender-specific subsets

on multi-dialect, gender-specific based systems is 28.65% for male and 22% for

female speakers, while testing on gender and dialect specific based systems results

in 25.84% and 20.12% WER for male and female speakers, respectively. The

reduction in WER achieved by this approach is good but not overwhelming. This

might be explained by the nature of data we are using in these experiments. Many

speakers in the GALE (phase 3) dataset are news presenters who are trained to use

the standard form of the language and to be linguistically neutral. Those

professional speakers adopt the use of MSA speaking rules, hiding their regional

dialect as far as possible. We speculate that with fully spontaneous, conversation

style dialectal dataset in building dialect-specific ASR systems, the difference

between the systems will dramatically increase.

The results also show that models trained and tested on Levantine speakers have

the best performance compared to models trained and tested on speakers from other

dialects with 16.48% average WER. This might be explained by the high level of

proficiency that Levantine speakers show. Most of the Levantine speakers in the

dataset are well-trained broadcasters recording in noise-free studios. In addition, it is

well-known in the linguistics domain that the Levantine dialect shares a great deal

of lexical similarity with MSA and other Arabic varieties. This result supports

previous research findings which found that Jordanian Arabic—which is one of the

Levantine varieties—achieved relatively lower WER compared to other dialects

(Biadsy et al. 2012). On the other hand, the worst performance was observed with

Maghrebi speech with 42.3% to 36.77% WER. This is partly due to the fact that

Maghrebi dialect is under-represented in the multi-dialect based system. This

outcome supports a previous research result which confirms that Maghrebi dialect is

the hardest dialect to be recognised by native speakers from other dialectal

backgrounds, in addition to the linguistics fact that Maghrebi dialect does not share

lots of its vocabulary with other Arabic varieties which makes it not mutually

intelligible with other dialectal varieties (Ibrahim 2009). However, the Maghrebi

subset was found to underperform even when tested on Maghrebi-specific

recognisers. Maghrebi dialect exhibits many borrowed words from French and

Spanish, even words from MSA origins have undergone major changes in its

structure. Hence, building ASR systems for Maghrebi dialect might require using

distinctive linguistic resources. In addition, it can be noticed that Maghrebi speech

found in the dataset covers a huge range of speakers who do not actually share a

common accent, such as speakers from Tunisia, Libya, Algeria, and Morocco.
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6.3 Cross-dialect experiments

The results reported in the previous section prove that gender plus dialect-specific

based recognition systems always beat recognition systems based on multi-dialects

trained on the same amount of data. The experimental work reported in this section

aims to investigate how well an Arabic ASR system trained on a particular dialect

performs when tested on other dialects. In other words, we want to measure how far

apart Arabic dialects are acoustically. This is particularly important in the research

to regroup Arabic dialects based on their acoustic features rather than their

geographical region. Eventually, we can come up with a better decision about the

minimal number of recognition systems needed to cover all dialectal Arabic.

In order to carry out the cross-dialect evaluation for the five main Arabic dialects,

nine ASR systems were built for each dialect and gender group (except female

Maghrebi speakers for whom we do not have sufficient data). Those systems were

tested with different dialectal subsets from the same gender. Results are reported in

Table 5.

By analysing results reported in Tables 5 and 6, we can conclude to two main

facts:

5 Female Maghrabi speakers were excluded from the training and testing sets because the GALE data

contains too few instances of this class for it to be possible to train a model.

Table 4 Average of WER for

the multi-dialect based system

and gender plus dialect-specific

system, when evaluated on its

heldout test data (numbers in

bold indicates lower WER)

Testing subset Training subset WER

Gulf (M) All dialects (M) 27.22%

Gulf (M) 25.30%

Gulf (F) All dialects (F) 22.1%

Gulf (F) 20.04%

Iraqi (M) All dialects (M) 25.47%

Iraqi (M) 23.15%

Iraqi (F) All dialects (F) 29.93%

Iraqi (F) 27.88%

Egyptian (M) All dialects (M) 25.77%

Egyptian (M) 22.05%

Egyptian (F) All dialects (F) 24.41%

Egyptian (F) 21.53%

Levantine (M) All dialects (M) 22.76%

Levantine (M) 21.93%

Levantine (F) All dialects (F) 11.57%

Levantine (F) 11.03%

Maghrebi (M) All dialects (M) 42.03%

Maghrebi (M) 36.77%
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• The average WER of cross-dialect systems is 30.9%, whilst the average WER

for dialect-specific systems is 23.4%. This large difference supports findings

reported in the previous section which confirm that the dialectal groups are

acoustically different and that dialectal subsets work better with dialect-specific

based ASR systems. For instance, all dialectal groups were found to achieve

their best performance when tested over their corresponding system.

• The gap between testing on the same dialectal group and testing on other

dialectal groups is huge. This gap not only indicates the importance of

considering the five major dialectal groups in building ASR systems, but also

suggests that it might be worth dividing some of these five dialectal groups into

subgroups. For instance, instead of building a model trained on Levantine

speech, we may think of building separate models for each sub dialect (Syrian,

Palestinian, Lebanese, Jordanian, etc). This kind of investigation is crucial to

make a better decision of the number of systems we need to have for Arabic

instead of relying on the geographical information. Current state of the art

speech recognition systems have multiple models for each language to include

the available dialects. For instance, according to Elfeky et al. (2018), Google

speech recognition system includes four models for Arabic, five for Spanish, and

eight for English.

6.4 Training data size experiments

Machine learning systems generally give satisfactory results when the training

dataset and the testing dataset are similar. There is also a point at which more

training data does not make significant improvement to the system’s performance.

Moreover, if the data used in training the system has a high level of variability, the

machine learning system will have difficulties in making the right generalisation

with this sparse data. The question here is how much data do we need to sufficiently

train a speech recognition system?

In order to answer this question, in the experimental work reported in this section

we run a collection of experiments with increasing size of data. In the first set of

experiments we did not put any restrictions on the selection of the data. In other

words, the data used in running the experiments comes from multiple dialects and

both genders. In the second set of experiments, we select the training and testing sets

strictly from Levantine male speakers. The reason behind choosing data from

Levantine male speakers is its high availability compared to other dialects and

gender (Table 1). This will allow us to carry out enough experiments without

running out of data. In running the experiments, we are taking random samples of

increasing size from the data source. Each of the training sets includes everything

that was in the previous training set (e.g. the 30 min training set includes the 15 min

one used in the previous experiment, the 60 min set includes the 30 min set from the

previous round, ...). The testing set was extracted previously from the dataset to

insure that there is no overlap between the testset and the training data. Similar to

other experiments, fivefold validation is used in carrying out the test.
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Table 5 WER for testing five dialectal subsets of male speakers on each dialect-specific recognition

system

Training dataset

Gulf (F) Iraqi (F) Egyptian (F) Levantine (F) Maghrebi (M)

Testing dataset Gulf (F) 25.3 27.91 29.8 32.25 33.37

Iraqi (F) 27.48 23.15 32.2 31.51 30.52

Egyptian (F) 29.86 31.98 23.1 31.11 31.02

Levantine (F) 27.65 27.6 25.13 21.92 27.87

Maghrebi (M) 45.8 44.2 42.42 41.55 36.7

Bold indicates the error rate

Table 6 WER for testing four dialectal subsets of female speakers on each dialect-specific recognition

system

Training dataset

Gulf (F) Iraqi (F) Egyptian (F) Levantine (F)

Testing dataset Gulf (F) 20.04 32.92 27.02 24.86

Iraqi (F) 31.83 27.88 33.58 32.69

Egyptian (F) 30.82 36.9 21.8 24.7

Levantine (F) 19.31 30.3 13.22 11.03

Bold indicates the error rate

Fig. 3 Results for gradually increasing the amount of data using two resources: undifferentiated data, and
data from Levantine, male speakers
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Figure 3 shows the results of gradually increasing the amount of training data

using two different data resources: undifferentiated dataset, and dialect & gender

specific dataset (using samples from Levantine male speakers). The starting point is

training the model with 15 minutes of data, extra 15 minutes are then added

gradually until we reach 480 minutes. 20 minutes of the data is reserved for testing

the developed systems.

The experiments reported in this section address two important questions:

• How much data do we need to achieve the optimal performance of an Arabic

ASR system?

• Does applying any selection strategy on the data have any effect on the system’s

performance?

The experimental evidence suggests that it is more important to ensure that the

training data is drawn from the same population as the target population than to

maximise the amount of training data. This is, at some level, obvious – you would

expect a speech recogniser trained entirely on female recordings to be better at

recognising female speech than one that is trained on a mixture of male and female

data. The experiments reported above show that this holds even when the

populations that the data is obtained from are, at first sight, fairly similar, and where

splitting them into sub-populations has a drastic effect on the amount of data that is

available for training. Aggregating the training data from the five accent groups

gives us five times as much data, but, because of differences among the accents, data

aggregation leads to worse performance than we get treating the accent groups

separately, even though the differences in accents are not always very clear (our

annotators often had considerable difficulty when assigning accents, suggesting that

speakers from different accent groups do not always sound very distinct). It is also

noteworthy that providing too much detail is also unhelpful when you only have a

modest amount of training data. Using 39 MFCC and energy coefficients produces

worse performance than using 25 coefficients, and using the full phonetic

transcription produces worse performance than using the simple graphemic

transcription, which omits the short vowels. It may be that some of these effects

would be reversed if more data were available, but annotating transcribed speech

data for accent is time-consuming and expensive. At the very least, the work here

suggests that if you only have a limited amount of data you should be careful about

the tendency for learning algorithms to overtrain if the data contains too much

detail.

7 Conclusion and future work

We have presented a thorough investigation of the properties of data that may affect

the performance of Arabic ASR systems. The motivation behind this research was to

overcome the lack of spoken and transcribed resources in the literature by

presenting straightforward approaches for efficiently exploiting the available data.

The investigation includes applying some general experimental conditions to the
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data which showed that using 25-dimension MFCCs, eliminating poor quality

recordings, and using a grapheme based dictionary lead to reduction in WER by

total of between 3.24% and 5.35%.

The research also introduced a data selection strategy that presents a multiple

modelling approach instead of using a singlemodel to cover all the variability found in

the speech. The experimental results showed that building gender- and dialect-specific

models leads to substantial decrease in WER. All the gender- and dialect-specific

systems consistently outperform the combined system, despite the fact that the latter is

trained using about 5 times asmuch training data. Applying such strategies is crucial if

we are to overcome the limited availability of the data, reduce training time, and

achieve the best performance. Further research is needed to understand the reasons

behind the varied performance of some dialect-specific models and to find the reason

behind the difficulty of recognising Maghrebi speech compared to other dialects.

Cross-dialect experiments are also carried out in this research to understand how

different are Arabic dialects acoustically and to help us to rethink about the minimal

number of models needed to be built to cover all Arabic varieties. The experimental

results confirmed that all dialect-specific subsets performbetter on their corresponding

dialect-specific systems. It also confirms that the gap between testing on the same

dialectal group and testing on other dialectal groups is huge, which calls for the

importance of studying the feasibility of applying further division on the main

dialectal groups. Finally, the research carried out a set of experiments to address the

question of the amount of training data needed to build good performance ASR

systems. The outcome of these experiments confirmed that contrary to the common

belief that ‘‘there is no data like more data’’, consistently feeding the model with more

arbitrary data can worsen the performance of the system. At the same time, using

carefully selected subsets of data produces recognition systems that is superior to a

system that makes use of a much larger amount of undifferentiated data.

Acknowledgements The research was supported by the research sector at Kuwait university—(Grant
AA01/18). We would like to thank Chao Zhang of the Machine Intelligence Laboratory at the University
of Cambridge for his endless patience while we were installing and experimenting with the CUDA
version of the HTK.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,

which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as

you give appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons licence, and indicate if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line

to the material. If material is not included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder. To view a copy of this licence, visit http://

creativecommons.org/licenses/by/4.0/.

References

Abushariah, M., Ainon, R., Zainuddin, R., Al-Qatab, B., & Alqudah, A. (2010). Impact of a newly

developed modern standard Arabic speech corpus on implementing and evaluating automatic

996 E. Alsharhan, A. Ramsay

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


continuous speech recognition systems. Spoken Dialogue Systems for Ambient Environments (pp. 1–
12).

Abushariah, M. A.-A. M., Ainon, R., Zainuddin, R., Elshafei, M., & Khalifa, O. O. (2012). Arabic

speaker-independent continuous automatic speech recognition based on a phonetically rich and

balanced speech corpus. International Arab Journal of Information Technology (IAJIT), 9(1), 84–93.
Alghamdi, M., Elshafei, M., & Al-Muhtaseb, H. (2007). Arabic broadcast news transcription system.

International Journal of Speech Technology, 10(4), 183–195.
Ali, A., Zhang, Y., Cardinal, P., Dahak, N., Vogel, S., & Glass, J. (2014). A complete kaldi recipe for

building Arabic speech recognition systems. In 2014 IEEE Spoken Language Technology Workshop
(SLT) (pp. 525–529).

Ali, A., Zhang, Y., Cardinal, P., Dahak, N., Vogel, S., & Glass, J. (2014). A complete kaldi recipe for

building Arabic speech recognition systems. In Spoken Language Technology Workshop (SLT),
2014 IEEE (pp. 525–529). IEEE: New York.

Almeman, K., Lee, M., & Almiman, A. A. (2013). Multi dialect Arabic speech parallel corpora. In 2013
1st International Conference on Communications, Signal Processing, and their Applications
(ICCSPA) (pp. 1–6). IEEE: New York.

Alsharhan, E., & Ramsay, A. (2020). The development of a speech corpus annotated for the main Arabic

dialects. Arab Journal for the Humanities, 150.
Alsharhan, E., Ramsay, A., & Ahmed, H. (2020). Evaluating the effect of using different transcription

schemes in building a speech recognition system for Arabic. International Journal of Speech
Technology, 1–14.

Andrusenko, A., Laptev, A., & Medennikov (2019). Russian open speech to text (STT/ASR) dataset.

https://github.com/snakers4/open_stt. Accessed: 2020-07-7.

Biadsy, F., Moreno, P. J., & Jansche, M. (2012). Google’s cross-dialect Arabic voice search. In 2012
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 4441–
4444). IEEE: New York.

Elfeky, M. G., Moreno, P., & Soto, V. (2018). Multi-dialectical languages effect on speech recognition:

Too much choice can hurt. Procedia Computer Science, 128, 1–8.
Elmahdy, M., Gruhn, R., Minker, W., & Abdennadher, S. (2010). Cross-lingual acoustic modeling for

dialectal Arabic speech recognition. In Eleventh Annual Conference of the International Speech
Communication Association.

Elmahdy, M., Hasegawa-Johnson, M., & Mustafawi, E. (2012). A baseline speech recognition system for

levantine colloquial Arabic. In 12th ESOLEC conference on Language Engineering.
Elmahdy, M., Hasegawa-Johnson, M., & Mustafawi, E. (2014). Development of a tv broadcasts speech

recognition system for qatari Arabic. LREC, 3057–3061.
Huang, C., Chen, T., Li, S., Chang, E., & Zhou, J. (2001). Analysis of speaker variability. In Seventh

European Conference on Speech Communication and Technology.
Huang, P.-S. & Hasegawa-Johnson, M. (2012). Cross-dialectal data transferring for gaussian mixture

model training in Arabic speech recognition. constraints, 1:1.
Ibrahim, Z. (2009). Beyond lexical variation in modern standard Arabic: Egypt. Lebanon and Morocco:

Cambridge Scholars Publishing.

Kirchhoff, K., & Vergyri, D. (2005). Cross-dialectal data sharing for acoustic modeling in Arabic speech

recognition. Speech Communication, 46(1), 37–51.
LDC. (2015). Gale phase 3 Arabic broadcast and conversation speech. Philadelphia: Linguistic Data

Consortium.

Lewis, M. P. Gary, F. (2015). Ethnologue: Languages of the world.
Magic Data Technology Co., Ltd. (2019). MAGICDATA Mandarin Chinese read speech corpus. (http://

openslr.org/68/). Accessed: 2020-07-7.

Masmoudi, A., Khmekhem, M. E., Esteve, Y., Belguith, L. H., & Habash, N. (2014). A corpus and

phonetic dictionary for tunisian Arabic speech recognition. LREC, 306–310.
Menacer, M. A., Mella, O., Fohr, D., Jouvet, D., Langlois, D., & Smaili, K. (2017). Development of the

Arabic Loria automatic speech recognition system (ALASR) and its evaluation for Algerian dialect.

Procedia Computer Science, 117, 81–88.
Moore, R. K. (2003). A comparison of the data requirements of automatic speech recognition systems and

human listeners. In Eighth European Conference on Speech Communication and Technology.
Open Speech and Language Resources (2003). The Tunisian MSA corpus. (http://openslr.org/46/).

(Accessed: 2020-07-7).

Investigating the effects of gender, dialect, and training... 997

123

https://github.com/snakers4/open_stt


Panayotov, V., Chen, G., Povey, D., & Khudanpur, S. (2015). Librispeech: An ASR corpus based on

public domain audio books. In 2015 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP) (pp. 5206–5210). IEEE: New York.

Sadat, F., Kazemi, F., & Farzindar, A. (2014). Automatic identification of Arabic dialects in social media.

In Proceedings of the first international workshop on Social media retrieval and analysis (pp. 35–
40). ACM: New York.

Selouani, S. A., & Boudraa, M. (2010). Algerian Arabic speech database (ALGASD): corpus design and

automatic speech recognition application. Arabian Journal for Science and Engineering, 35(2C),
158.

Sharma, D. P., & Atkins, J. (2014). Automatic speech recognition systems: challenges and recent

implementation trends. International Journal of Signal and Imaging Systems Engineering, 7(4),
220–234.

Shoufan, A., & Alameri, S. (2015). Natural language processing for dialectical Arabic: A survey.

Proceedings of the Second Workshop on Arabic Natural Language Processing (pp. 36–48).

Vergyri, D., & Kirchhoff, K. (2004). Automatic diacritization of Arabic for acoustic modeling in speech

recognition. In Proceedings of the workshop on computational approaches to Arabic script-based
languages (pp. 66–73). Association for Computational Linguistics.

Walker, K., Caruso, C., Maeda, K., DiPersio, D., & Strasse, S. (2013). Gale phase 2 Arabic broadcast and
conversation speech. Philadelphia: Linguistic Data Consortium.

Wang, L., Zhang, C., Woodland, P. C., Gales, M. J. F., Karanasou, P., Lanchantin, P., Liu, X., & Qian, Y.

(2016). Improved DNN-based segmentation for multi-genre broadcast audio. In 2016 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 5700–5704).

Woodland, P. C., Liu, X., Qian, Y., Zhang, C., Gales, M. J., Karanasou, P., Lanchantin, P., & Wang, L.

(2015). Cambridge university transcription systems for the multi-genre broadcast challenge. In 2015
IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU) (pp. 639–646).

IEEE: New York.

Young, S., Evermann, G., Gales, M., Hain, T., Kershaw, D., Liu, X., Moore, G., Odell, J., Ollason, D., &

Povey, D., et al. (2015). Phil woodland, and chao zhang’’. The HTK book (for HTK version 3.5),’’
Cambridge University Engineering Department.

Zaidan, O. F., & Callison-Burch, C. (2014a). Arabic dialect identification. Computational Linguistics,
40(1), 171–202.

Zaidan, O. F., & Callison-Burch, C. (2014b). Arabic dialect identification. Computational Linguistics,
40(1), 171–202.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

998 E. Alsharhan, A. Ramsay

123


	Investigating the effects of gender, dialect, and training size on the performance of Arabic speech recognition
	Abstract
	Introduction and objectives
	Availability of data resources for Arabic: problems and solutions
	Architecture of the ASR system
	Speech features extraction
	Acoustic model
	Pronunciation model
	Language model

	GALE corpus specifications
	Dividing data into training and testing
	Experiments
	Testing general experimental conditions
	Using homogeneous datasets in training and testing the developed systems
	Cross-dialect experiments
	Training data size experiments

	Conclusion and future work
	Acknowledgements
	References




