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Abstract. Bluetooth polling, also referred to as Bluetooth MAC scheduling or intra-piconet scheduling, is the mechanism that schedules
the traffic between the participants in a Bluetooth network. Hence, this mechanism is highly determining with respect to the delay packets
experience in a Bluetooth network. In this paper, we present a polling mechanism that provides delay guarantees in an efficient manner, and
we evaluate this polling mechanism by means of simulation. It is shown that this polling mechanism is able to provide delay guarantees
while saving as much as possible resources, which can be used for transmission of best effort traffic or for retransmissions.
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1. Introduction

Bluetooth [4] is a wireless access technology, which was ini-
tially developed as a replacement for cables. However, Blue-
tooth has evolved to a wireless technology that can be used
in new areas not comprised before. We believe that voice and
video will be involved in these new areas, and that applications
dealing with voice and video will become available. Applica-
tions that deal with voice and video require a network that
causes small packet delays or at least bounded packet delays.
In order for Bluetooth to be useful to such applications, it must
ensure that packet delays are low or at least bounded.

Bluetooth uses a polling mechanism to divide bandwidth
among the participants. Together with error recovery, paging,
and inquiry this polling scheme is highly determining with
respect to the packet delay. Polling mechanisms in Bluetooth
are studied in [1,3,5,6,12,13,18] (see also Section 3). However,
none of the studied pollers is able to guarantee packet delay
bounds in its current state. Bluetooth can use SCO channels
to transport some types of traffic that require delay bounds.
However, SCO channels cannot transport large packets nor do
they have retransmission possibilities.

This paper presents a polling mechanism that is able to
guarantee delay bounds in an efficient manner. Section 2 sum-
marizes the Guaranteed Service approach of providing packet
delay guarantees. Section 3 shows how the Guaranteed Ser-
vice approach can be implemented in Bluetooth. Section 4
evaluates the proposed implementations. Finally, Section 5
concludes this paper and mentions future work.

2. The guaranteed service approach

The Guaranteed Service approach [19] (GS) makes use of the
concept that packet delay in a network is a function of the
arrival pattern of packets, the packet sizes, and the way these
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packets are served throughout the network. It states that if a
flow is described using a token bucket [17] flow specifica-
tion, and if each network element in the GS path computes
and exports parameters that describe the way it provides a re-
quested fluid model bandwidth R, then a delay bound d B can
be computed given a requested fluid model bandwidth R by

d B =




b − M

R

r p − R

r p − r t
+ M + Ctot

R
+ Dtot, r t ≤ R < r p,

M + Ctot

R
+ Dtot, r t ≤ r p ≤ R.

(1)

The parameters that each network element exports represent
the maximum additional queueing delay a packet will ex-
perience compared with the case which a dedicated wire of
bandwidth R (fluid model) would have been used in. More
precisely, each network element exports the rate-dependent
deviation C , and the rate-independent deviation D from the
fluid model, while Ctot and Dtot are the sum of the deviations
taken over all network elements in the GS path. Furthermore,
the token bucket specification consists of peak rate rp, token
rate r t , bucket size b, minimum policed unit m and maximum
transfer unit M . Summarizing, if an application specifies its
traffic using a token bucket traffic specification, and if the net-
work elements in the GS path export their deviation from the
fluid model, then, provided that Dtot < d B , a fluid model ser-
vice rate R can be requested such that a desired delay bound
d B is achieved.

3. Implementation of the GS approach in Bluetooth

Bluetooth is a wireless access technology that operates in the
2.4 GHz ISM (Industrial Scientific Medical) band. Bluetooth
nodes are either a master or a slave, and communication only
takes place between the master and a slave, and never directly
between two slaves or two masters. One master and up to
seven slaves can be affiliated with each other and form a so-
called piconet. On a time division basis, a Bluetooth node can
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be a master in one piconet and/or a slave in one or more other
piconets, making it possible to interconnect piconets form-
ing a so-called scatternet. Bluetooth is a time-slotted access
technology where each second is divided into 1600 time slots.
Time slots are either downlink slots, i.e. from the master to
a slave, or uplink slots, i.e. from the addressed slave to the
master. Data is exchanged between the master and a slave us-
ing baseband packets that cover one, three or five time slots,
while other protocols might be used on top of Bluetooth (e.g.
IP over Bluetooth).

The traffic within a piconet is controlled by the master of
that piconet such that a slave is only allowed to transmit if
it was addressed (by the master) in the previous time slot.
In other words, the master polls the slaves to allow them to
transmit data if available. This poll can be either implicitly, i.e.
by means of a baseband packet containing data, or explicitly,
i.e. by means of a baseband packet containing no data (POLL
packet).

Bluetooth supports two types of links between a master
and a slave: a Synchronous Connection-Oriented (SCO) link
and an Asynchronous Connection-Less (ACL) link. Baseband
packets sent over an SCO link (SCO packets) cover one time
slot while baseband packets sent over an ACL link can cover
one, three, or five time slots. In case of an SCO link between
the master and a slave, the master polls that slave at regular
intervals. The addressed slave can then respond with an SCO
packet. In case of an ACL link, polling can be done in many
different ways. The difference between the polling mecha-
nisms is related to the order which slaves are polled in and
to the service discipline used to serve a slave. For instance,
the Fair Exhaustive Poller (FEP) [12] and the Efficient Dou-
ble Cycle (EDC) poller [3] maintain a polling table in order
to avoid polling inactive slaves. The Head-Of-Line priority
(HOL priority) poller [13] and the Demand-Based poller [18]
deal with polling ACL slaves in the presence of SCO channels.
The flow bit based pollers [6] and the sniff based poller [5]
make use of existing Bluetooth capabilities to respectively
track the activity of a slave and to regulate the poll rate. Fi-
nally, the Predictive Fair Poller (PFP) [1] predicts for each
slave whether data is available or not, and it keeps track of the
fairness. Based on these two aspects it decides which slave to
poll next. A distinguishing feature of the Predictive Fair Poller
is that it explicitly takes fairness into account. By proper defi-
nition of fairness with respect to providing a particular type of
QoS, this poller can be extended to provide that type of QoS.

Higher layer packets cover one or more baseband packets.
The way in which higher layer packets are segmented into
baseband packets depends on the segmentation policy and on
the allowed baseband packet types. For instance, a segmen-
tation policy may require that the largest available baseband
packet is used, unless there is a smaller baseband packet avail-
able in which the remainder of the higher layer packet fits.
Note that the ratio of baseband header size and guard space
to baseband packet size decreases for larger baseband pack-
ets. Hence, the larger the used baseband packet the higher
the net number of bytes per slot. Consequently, a slot rate
cannot directly be translated to a bit rate. Furthermore, with

respect to the upstream traffic (slave to master), the master
lacks knowledge about the availability of data at a slave. As a
result, the master sometimes needs to poll a slave more often
than needed.

The provisioning of Guaranteed Service in a network re-
quires the source to provide a traffic specification and a desired
delay bound, and it requires the receiver to calculate the proper
bandwidth request. Furthermore, it requires the network ele-
ments to compute and export their deviation from the fluid
model, and it requires a mechanism (not necessarily RSVP)
that transports all specifications and requests as well as the
exported values, between the source, the destination, and the
intermediate network elements. Note that such a mechanism
has been specified for the Bluetooth link in the so-called Blue-
tooth logical link control and adaptation protocol (L2CAP).
Finally, it requires the network elements to perform admis-
sion control, and to schedule the Guaranteed Service traffic
as promised. In this paper, we focus on the determination of
the C and D error terms, on the admission control, and on the
scheduling of the Guaranteed Service traffic. As the C and D
error terms and the admission control are directly related to
the polling mechanism (i.e. scheduling mechanism), they are
studied in the context of a polling mechanism. First, we intro-
duce a polling mechanism that plans polls with a fixed interval.
Next, we show the shortcomings of this fixed interval poller
and introduce a variable interval poller, which is an improved
version of the fixed interval poller. Finally, we evaluate the
proposed polling mechanisms by means of simulation. Note
that we study the implementation of the Guaranteed Service
in a single piconet. In this paper, we restrict ourselves to an
ideal radio environment where no transmission errors occur
and where retransmissions are not needed. We assume that no
inquiry or paging procedures take place and thus that all the
time slots are available for data transmission. Furthermore,
we assume the availability of logical channels where a poll
for a QoS (e.g. Guaranteed Service) flow cannot result in BE
data to be transmitted, and where BE traffic and QoS traffic
are queued separately to prevent BE traffic from interfering
with QoS traffic within a node.

3.1. Planning polls with a fixed time interval

Given the requested bandwidth (Ri ) and the token bucket
specification (r t

i , bi , r
p
i , mi , Mi ) of a GS flow i , the poll rate that

must be supported can be computed. An obvious way to poll
at a given poll rate is to calculate the average inter-poll time
that results in the given poll rate, and to plan polls with a time
spacing p̃i (poll period) equal to the calculated average inter-
poll time (see Figure 1). Each planned poll must complete
execution within a relative deadline d̃ i from its planned time.

In figure 1, si, j,k(li, j ) is the transmission time (duration of
both upstream and downstream baseband packet) of the k-th
segment out of li, j segments of the j-th packet that belongs
to flow i . Furthermore, ui is the transmission time following
an unsuccessful poll for flow i , where an unsuccessful poll
for flow i is a poll, for the node associated with flow i , that
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Figure 1. Planning polls with a fixed time interval.

did not result in data belonging to flow i . The time which a
poll takes place at corresponds to the time which a master to
slave transmission starts at. In Bluetooth, the slave starts its
transmission at least one time slot (0.625 ms) after the mas-
ter started its transmission, dependent on whether the master
transmitted one, three or five slots to the slave. Consequently,
for that poll to results in data to be transmitted from the slave
to the master, that slave does not necessarily has to have its
data available for transmission at the time the master starts its
transmission to that slave. However, we require in our study
the data to be available at the time the master start its trans-
mission. For instance, in Figure 1, data that becomes available
at t+

0 (= t0 + δ, where δ ↓ 0) will not be served as a result of
the poll at t0, but has to wait for the next poll.

3.1.1. Admission control
Each traffic specification (r t

i , bi , r p
i , mi , Mi ) and correspond-

ing requested fluid model bandwidth (Ri ) is ultimately con-
verted to a poll period p̃i , a relative deadline d̃ i and a max-
imum segment size smax

i = max j,k si, j,k(li, j ). Consequently, a
GS flow i can be looked at as a periodic task. A periodic task
τi that corresponds to GS flow i is represented by the tuple
(pi , ei , di ), where

� pi = p̃i is the fixed interval (period) between two consec-
utive instances of a task τi

� ei = smax
i is the maximum execution time of an instance

of task τi

� di = d̃ i is the relative deadline of each instance of task τi

The decision whether a set of n GS flows can be ac-
cepted can be done by deciding whether the corresponding
task set τ = {τ1, τ2, . . . , τn} can be accepted (feasibility anal-
ysis). This decision can only be made if the scheduling pol-
icy is also known. The Bluetooth polling mechanism can be
modeled as a non-preemptive scheduling policy, which on
its turn can be divided into two classes: the class of idling
non-preemptive scheduling policies and the class of non-
idling non-preemptive scheduling policies. The idling non-
preemptive scheduling policies are allowed to insert idle times
even if there are task instances waiting for execution. Insert-
ing idle times makes it sometimes possible to schedule task
sets that could otherwise not be scheduled under the class of
non-idling scheduling policies.

As the feasibility analysis of an idling non-preemptive
schedule is NP-Hard in the strong sense [9], we decided to
use a non-idling non-preemptive scheduling policy. It is shown
in [7, 11, 14] that non-idling non-preemptive Earliest Dead-
line First (EDF) is optimal among the class non-idling non-
preemptive scheduling policies. This means that if a feasi-
ble non-idling non-preemptive scheduling policy exists for a
given task set, then non-idling non-preemptive EDF will also
be feasible for that task set.

Once decided that the planned polls will be executed ac-
cording to the non-idling non-preemptive EDF scheduling
policy, the admission control of a set of n GS flows can be
translated to the feasibility analysis of the corresponding task
set τ = {τ1, τ2, . . . , τn} under the non-idling non-preemptive
EDF scheduling policy. Zheng et al. stated in [20] that in the
presence of non real-time tasks, such a task set is feasible if

1.

U =
n∑

i=1

ei

pi
≤ 1, and

2.

∀ t ∈ S,
∑
di ≤t

(
1 +

⌊
t − di

pi

⌋)
ei + emax ≤ t,

where

S =
n⋃

i=1

{
di + npi : n = 0, 1, . . . ,

⌊
tmax − di

pi

⌋}
, (2)

and

tmax = max

{
d1, . . . , dn,

(
emax + ∑n

i=1(1 − di/pi )ei

1 − U

)}
,

(3)

and where emax is the maximum execution time of any task
instance (including the non real-time tasks). The first condi-
tion ensures that the maximum utilization does not exceed
unity, while the second condition ensures that the deadlines
can actually be met. In the absence of non real-time tasks,
the feasibility conditions mentioned above are sufficient but
not necessary. For the case in which there are no non real-
time tasks, sufficient and necessary conditions can be found
in [8,10,11,14].



226 AIT YAIZ AND HEIJENK

3.1.2. Determining poll period p̃i

The poll period p̃i is determined considering the worst case
response time a packet can experience. In Figure 1, consider
packet j of flow i , with a size Li, j (in bytes), which will be
broken up into li, j segments. If this packet becomes available
at t+

0 , then it will not be served during the poll at t0, but it will
be served during the next poll, which is planned for t1. As a
result, the worst case service time of a packet is li, j p̃i + d̃ i . In
order to let the poll period p̃i be inversely proportional to the
requested fluid model bandwidth Ri it is decided to consider
the relative deadline d̃ i of a planned poll as a deviation from
the fluid model service time. The remaining part of the worst
case service time of a packet should not be larger than the
fluid model service time, i.e.

li, j p̃i ≤ Li, j

Ri
, mi ≤ Li, j ≤ Mi , (4)

and thus

p̃i ≤
Li, j

li, j

Ri
, mi ≤ Li, j ≤ Mi . (5)

Let us introduce the poll efficiency εpi, j , which is the aver-
age number of bytes per poll that is associated with packet j
of flow i . The poll efficiency εpi, j is a result of the size Li, j of
packet j of flow i , the segmentation policy that is followed,
and the set of baseband packet types that is allowed to be
used. The minimum poll efficiency of a flow i taken over all
possible packet sizes (i.e. for mi ≤ Li, j ≤ Mi ) is

εmin
pi

= min
mi ≤Li, j ≤Mi

Li, j

li, j
. (6)

Consequently, the maximum poll period that always satisfies
(5) is

p̃i = εmin
pi

Ri
. (7)

3.1.3. Determining relative deadline d̃i

As will be seen in Section 3.1.4, the lower the relative deadline
d̃ i , the lower the C and D error terms, and thus the lower
the requested fluid model bandwidth (see also (1)). However,
while smax is the size of the largest possible segment in the
piconet, it is shown in [2] that if d̃ i ≥ p̃i + smax for each GS
flow i , then the set of GS flows is schedulable using EDF, if and
only if condition 1 of the feasibility analysis holds. Increasing
the relative deadline d̃ i of a GS flow i beyond p̃i +smax further
decreases the poll period p̃i . According to condition 1 of the
feasibility analysis, this means that the number of flows that
can be accepted also decreases. Furthermore, it is shown in [2]
that, with respect to the feasibility of a set of GS flows that flow
i will be part of, the effect of decreasing the relative deadline
d̃ i below p̃i + smax cannot be determined on forehand. As the
relative deadline d̃ i of a flow i will be used by the receiver of
that GS flow for the determination of the fluid model service
rate Ri , the relative deadline d̃ i should not increase during
the lifetime of flow i . Hence, we decided to set the relative

deadline of a flow i at

d̃ i = p̃i + smax. (8)

Note that an additional advantage of this value for the rel-
ative deadline d̃ i is that the feasibility analysis (admission
control) becomes simple as the first condition of the feasibil-
ity analysis becomes a necessary and sufficient condition.

3.1.4. Exporting C and D error terms
As mentioned in Section 3.1.2, it is decided to consider the
relative deadline d̃ as the C and D error terms, i.e.

Ci

Ri
+ Di = d̃ i

= p̃i + smax

= εmin
pi

Ri
+ smax. (9)

The C error term is the rate-dependent deviation from the
fluid model, while the D error term is the rate-independent
deviation from the fluid model. From (9), it follows that Ci =
εmin

pi
and Di = smax. Note that if the Bluetooth hop is not the

first hop in the GS path, then Ci should be increased by Mi in
order to account for packetization.

3.2. Improvement of the polling mechanism

The fixed interval poller of Section 3.1 plans polls for a GS
flow i with a fixed interval p̃i . The poll interval p̃i is deter-
mined taking into account the packet size Lpi that is associated
with the least number of bytes per poll (minimum poll effi-
ciency). This leads to the following drawbacks:

(a) The range of packet sizes may comprise several packet
sizes (i.e if Mi > mi ). In that case, interval p̃i is too small
when other packet sizes than Lpi are used, and GS flow i
is then polled more often than necessary.

(b) If a planned poll for GS flow i is executed, the next poll
for GS flow i will be planned for p̃i after the last time a
poll for GS flow i was planned for, even if that poll did not
result in a GS segment of flow i .

(c) Planned polls are executed even if it is known that no GS
traffic is available. As the master has only knowledge about
the availability of traffic that is directed from the master to
a slave, this drawback only applies to GS flows from the
master to a slave.

These drawbacks do not adversely affect the performance
of the GS flows. On the contrary, polling a GS flow more often
than necessary will decrease the average delay of its pack-
ets. However, polling the GS flows more often than needed
consumes the resources that could otherwise be used for re-
transmissions (in a non-ideal radio environment) and/or for
transmission of BE traffic. We propose three improvements to
eliminate these drawbacks (see figure 2):

(a) If a poll for GS flow i resulted in a last segment of a packet
j with size Li, j , then plan the next poll a time Li, j

Ri
after the
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Figure 2. Planning polls with a variable time interval.

planned time of the poll that resulted in the first segment
of packet j of GS flow i . Hence, postpone the next poll a
time gi, j , where (see also (4))

gi, j = Li, j

Ri
− li, j p̃i ≥ 0. (10)

(b) If a poll for flow i did not result in a GS segment of flow
i , then obviously no GS segment of flow i was available
before that actual poll time. As a result, plan the next poll
a time period p̃i after the actual time of the last poll for
flow i rather than after its planned time.

(c) If at a planned poll time tn the poller finds out that there is
no GS traffic to serve by that poll, then that poll is skipped,
and the next poll is planned at tn + p̃i . The poller has
only knowledge of traffic from the master to the slave,
hence this improvement only applies to GS flows that
are directed from the master to the slave (not shown in
Figure 2).

If the source of flow i offers its data using the packet size
that leads to the minimum poll efficiency (εmin

pi
), then the next

poll after each last segment is planned for exactly p̃i after the
last time a poll was planned for (i.e. gi, j = 0). The determi-
nation of p̃i , d̃ i , Ci and Di should take this worst case into
account, hence they are the same as for the poller presented
in Section 3.1. Furthermore, the task set corresponding to the
set of GS flows becomes a sporadic task set. The feasibility
analysis for such a set is the same as for a periodic task set,
except that the minimum period between instances of a task is
now taken into account. As the minimum period is the same
as the fixed period determined in Section 3.1, the admission
control is the same as described in Section 3.1.1.

3.3. Improvement of the admission control

We assume the availability of logical channels distinguishing
between QoS traffic and Best Effort (BE) traffic, and that QoS
traffic always has priority over BE traffic. Consequently, a poll
for a GS flow in one direction also gives the opportunity to
transmit GS traffic of the same logical channel in the opposite
direction. In other words, each GS poll of a slave implies an
opportunity to transmit GS traffic of the same logical channel
in both directions. Taking this fact into account, we improve
the Admission Control in order to be able to accept more flows.

Consider a GS flow k in one direction and a GS flow l in the
opposite direction, which are set up between the master and
a particular slave, where p̃k ≤ p̃l . Furthermore, the relative
deadlines are determined according to Section 3.1.3. If the
two GS flows use separate logical channels, then GS flow k
and GS flow l have a maximum segment size of smax

k and smax
l

respectively, which are not necessarily equal, and each GS
flows is polled independent of the other. However, if we let
two oppositely directed flows that involve the same slave share
the same logical channel, then a poll for GS flow k implies a
poll for GS flow l and vice versa. Furthermore the resulting
maximum segment size will be

s ′ max
k = s ′ max

l = smax
k + smax

l − 2

1600
, (11)

where the two slots were accounting for the empty baseband
packets. Whenever the particular slave is polled, the next poll
is planned no earlier than p̃k after the planned time of the
last poll, i.e. the minimum poll interval is p̃k . By defini-
tion, both flows have the same maximum segment size, i.e.
s ′ max

k = s ′ max
l . Knowing that flow l will piggyback on flow k,

the admission control should take into account only the request
from flow k with maximum segment size s ′ max

k (= s ′ max
l ). In

other words, if two oppositely directed GS flows exist between
the master and a particular slave, then the real-time task repre-
senting the GS flow with the highest value of p̃ should not be
included in the feasibility check, and the two GS flows should
share the same logical channel.

4. Evaluation

We introduced a poller named Predictive Fair Poller (PFP)
in [1]. This poller predicts the availability of data for each
slave, and it keeps track of fairness. Based on these two as-
pects, it decides which slave to poll next. In the BE case, a fair
share of resources is determined for each slave, and the fair-
ness is based on the fractions of these fair shares of resources.
In the QoS case, this poller can additionally apply an EDF
scheme while planning polls according to the descriptions in
Sections 3.1 and 3.2.

We evaluate the PFP implementations of the fixed interval
poller and the variable interval poller by means of simulations
in two Guaranteed Service scenarios. In the first simulation
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Figure 3. Simulation setup.

scenario we show the impact of the polling mechanism im-
provements on the performance of both the guaranteed service
flows and the best effort flows. In the second simulation sce-
nario, we compare the PFP implementation of the variable
interval poller with an SCO channel. The simulation tool we
used is Network Simulator (ns2) [16] with Bluetooth exten-
sions [15] from Ericsson Switchlab, together with our ns2
implementation of PFP.

4.1. Scenario I: Comparison between the fixed interval
poller and the variable interval poller

4.1.1. Description of the simulation scenario
In this scenario, simulations are performed using the simula-
tion setup of Figure 3(a). Seven slaves and a master form a
piconet, while flows are set up as depicted in the figure. Flows 1
to 4 are GS flows, which the same delay bound is requested for.
Furthermore, flows 5 to 12 are BE flows (background traffic).
For the GS flows, the packet sizes are uniformly distributed
with a minimum size of 144 bytes, and a maximum size of
176 bytes, i.e. mi = 144 bytes and Mi = 176 bytes for each
GS flow i . For the BE flows, the packet sizes are of a fixed size
of 176 bytes. The time between two consecutive packet gen-
erations of the same GS flow equals the size of the first packet
divided by a data rate of 8 kbytes/s (64 kbps). The resulting
average time interval between two packet generations of the
same GS flow is 20 ms. The sources of the BE flows generate
packets with fixed intervals that depend on the BE load. In the
first part of simulation scenario I, the delay requirement is set
at a fixed value and the sources of the BE flows generate traffic
at an equal rate, while simulations are performed at different
total BE loads. In the second part of this simulation scenario,
the sources of flows 5/6, 7/8, 9/10 and 11/12 generate BE traf-
fic at a data rate of 42.4 kbps, 48 kbps, 53.6 kbps and 59.2
kbps respectively, while simulations are performed at differ-
ent delay requirements. The allowed baseband packet types
are DH1 and DH3, with a maximum payload of 27 bytes and
183 bytes respectively. Furthermore, the segmentation pol-
icy requires that the DH3 baseband packet is used, unless the
remainder of the packet fits in the DH1 baseband packet.

Because of the packet size distribution and the correspond-
ing inter-generation time of packets, the remaining parameters
of the token bucket specification are

r p
i = r t

i = 8 kbytes/s, i ∈ {1, 2, 3, 4}, (12)

and

bi ≥ Mi , i ∈ {1, 2, 3, 4}. (13)

Because of the packet sizes the source of each GS flow i can
use, and because of the allowed baseband packet types, the
minimum poll efficiency εmin

pi
is achieved by a packet size

of 144 bytes, which is sent using one DH3 baseband packet.
Hence, the C error term for these flows is given by Ci =
εmin

pi
= 144 bytes for each GS flow i . As all the nodes are

allowed to use DH3 baseband packets, the possibility must
be taken into account that both the master and the addressed
slave transmit a DH3 packet. Consequently, the D error term
is given by Di = 2 3

1600 = 3.75 ms for each GS flow i .
According to Section 3, the GS flows 1 to 4 can be looked

at as a set of three periodic or sporadic tasks dependent on
whether the fixed interval poller or the variable interval poller
is considered. In both cases, each task i is described by a
tuple (pi , ei , di ) = ( Ci

Ri
, smax

i , Ci
Ri

+ Di ). All the GS flows are
described by equal traffic specifications (token bucket spec-
ification), while sharing the same piconet and thus the same
maximum possible segment size (smax). As each GS flow is
also requesting the same delay bound, the tuple which each GS
flow i is described by can be simplified to ( 144

R , 4
1600 , 144

R + 6
1600 )

for each of GS flows 1 and 2, and ( 144
R , 6

1600 , 144
R + 6

1600 ) for the
pair of GS flows 3 and 4. Considering the feasibility analysis
of Section 3.1.1, the GS flows can be admitted as long as

U = 2
4

1600 R

144
+

6
1600 R

144
≤ 1. (14)

Consequently, the four GS flows can be admitted as long as
R ≤ 16.457 kbytes/s. This implies that the minimum delay
bound that can be requested is ď B ≈ 23.2 ms (see (1)). On the
other hand, the requested fluid model bandwidth Ri of a GS
flow i should never be lower than its token rate r t

i . Substituting
Ri = r t

i in (1), leads to the delay bound that will never be
exceeded, i.e. d̂ B

i = 43.75 ms for each GS flow i (see knee at
delay requirement of 43.75 ms in figure 5(a)1).

4.2. Simulation results

As mentioned in Section 3.2, the fixed interval poller plans
polls more often than necessary. This has advantageous im-
pact on the mean delay of the GS flows. As can be seen in
figure 4(a), all the GS flows experience the same low mean
delay. The reason for this is that the fixed interval poller polls
all the GS flows with the same fixed interval. The variable
interval poller polls GS flows only when it assumes that it is
needed. For instance, flow 2 is a GS flow that is not involved in
piggybacking and that is directed from the master to the slave.
This flow will only be polled when GS traffic is actually avail-
able and when it should be transmitted according to the fluid
model. This can be seen in Figure 4(b), where flow 2 experi-
ences a mean delay higher than the ones experienced by the
remaining GS flows. Furthermore, these remaining GS flows
experience mean delays higher than the ones experienced un-
der the fixed interval poller. The reason for this is that the GS
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Figure 4. Scenario I: Mean delay as a function of the total best effort load (d B = 23.2 ms).
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Figure 5. Scenario I: Throughput as a function of the delay requirement.

flows are polled less often, depending on the packet sizes they
transmit.

Although the mean delay of the GS flows is higher under
the variable interval poller than under the fixed interval poller,
delay bounds are never exceeded. Moreover, the variable inter-
val poller consumes less resources, saving resources that can
be used for retransmissions (in a non-ideal radio environment)
or for the transmission of best effort traffic. Figures 5(a) and
(b) show the sum of the upstream and downstream throughput
of the different slaves as a function of the delay requirement.
As could be expected, the GS flows always achieve their maxi-
mum throughput as long as they are admitted by the admission
control. The throughput of the best effort flows 5 to 12 depends
on the requested delay bound of the GS flows as well as on
the BE loads (fairness). It can be seen from figure 5(a) and (b)
that the best effort flows achieve a higher throughput when
served by the variable interval poller.

4.3. Scenario II: Comparison between the variable interval
poller and an SCO channel

4.3.1. Description of the simulation scenario
In this scenario we compare the variable interval poller with an
SCO channel by means of simulations, while considering the
simulation setup of figure 3(b). Three slaves and a master form
a piconet. Flows 1 to 4 are GS flows, which the same delay

bound is requested for. Furthermore, flows 5 and 6 are BE
flows generating 1 Mbps of background traffic. The sources
of GS flows 1 to 4 are sample based codecs that generate
samples (1 sample = 1 byte) at a fixed data rate rd . In this
scenario the total delay that a packet experiences includes the
time needed to collect and packetize samples (packetization
delay), the queueing delay, and the transmission delay. Taking
into account only packets that fit in a single baseband packet,
the larger the packet size, the fewer baseband packets are
needed to obtain a certain data rate, but also the higher the
packetization delay of a packet. Furthermore, the larger the
baseband packet, the higher its transmission delay.

The sources of both the GS flows and the BE flows gener-
ate packets of the same fixed size L . Assuming fixed packet
sizes, we choose the packet sizes such that the total delay re-
quirement is met while maximizing the BE throughput. Note
that given a total delay requirement, the GS flows may use
a different packet size in the two compared cases (one us-
ing an ACL channel with PFP polling, and the other using
an SCO channel). The allowed ACL baseband packet type is
DH1 unless the chosen packet size exceeds 23 bytes. In that
case, DH3 baseband packets will also be allowed. The allowed
SCO baseband packet type is HV3, with a maximum payload
of 30 bytes. The segmentation policy requires that the largest
allowable baseband packet is used, unless the remainder of
the packet fits into a smaller baseband packet.
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Figure 6. Scenario II: Total best effort throughput as a function of the total delay requirement (BE load of 1 Mbps).

Because of the simulation assumptions, the token bucket
specification is given by

r p
i = r t

i = rd
i , i ∈ {1, 2, 3, 4}, (15)

and

bi ≥ Mi = mi = L , i ∈ {1, 2, 3, 4}. (16)

4.3.2. Simulation results
Figures 6(a) and (b) show the best effort throughput as a func-
tion of the total delay requirement. The PFP line shows the
simulated values of the variable interval poller, while the SCO
line shows the theoretical value of an SCO channel. It can be
seen that the variable interval poller can achieve delay bounds
that approach the delay bounds than can be achieved using
an SCO channel. Furthermore, we see in case of low data
rates and/or low delay bounds that the variable interval poller
saves less resources than an SCO channel does. However, the
variable interval poller can use the saved resources for re-
transmissions, which is not possible with an SCO channel.
With looser delay requirements, the variable interval poller
saves significantly more bandwidth compared to the SCO
channel.

5. Conclusions

Bluetooth is an access technology where a master uses a
polling mechanism to divide bandwidth among the slaves.
This polling mechanism is highly determining with respect to
the delay that packets experience in a piconet. The fixed in-
terval poller and the variable interval poller divide bandwidth
among the slaves such that the delay which packets expe-
rience is bounded. Furthermore, the variable interval poller
polls such that a minimum amount of slots is consumed while
polling the GS flows, saving bandwidth that can be used
for transmission of BE traffic and/or for retransmission of
QoS traffic. A comparison with an SCO channel showed that
the variable interval poller is able to achieve delay bounds
that approach the delay bounds that can be achieved using
an SCO channel. As opposed to an SCO channel, PFP can

use the saved bandwidth for retransmissions. This property
can be exploited to avoid the link quality problems of SCO
channels in difficult radio environments, while keeping up
QoS. Note that the introduced polling mechanisms can also
be used outside the context of the Guaranteed Service ap-
proach, such that no error terms are exported. A service rate
can be requested without the need for a guaranteed delay
bound.

Future work includes the evaluation of the proposed polling
mechanisms in a non-ideal radio environment, where trans-
mission errors may occur and where retransmissions are
needed. Furthermore, the introduced polling mechanisms
must be extended with policies that decide which retransmis-
sions to use the saved bandwidth for.

Note

1. The simulation times are chosen such that each (two-sided) 95% confi-
dence interval is less than 2% of its corresponding determined average.
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