
Cluster Comput (2009) 12: 221–235
DOI 10.1007/s10586-009-0072-4

The Circulate architecture: avoiding workflow bottlenecks caused
by centralised orchestration

Adam Barker · Jon B. Weissman · Jano I. van Hemert

Received: 19 December 2008 / Accepted: 2 January 2009 / Published online: 24 January 2009
© Springer Science+Business Media, LLC 2009

Abstract As the number of services and the size of data
involved in workflows increases, centralised orchestration
techniques are reaching the limits of scalability. In the clas-
sic orchestration model, all data passes through a centralised
engine, which results in unnecessary data transfer, wasted
bandwidth and the engine to become a bottleneck to the ex-
ecution of a workflow.

This paper presents and evaluates the Circulate architec-
ture which maintains the robustness and simplicity of cen-
tralised orchestration, but facilitates choreography by allow-
ing services to exchange data directly with one another. Cir-
culate could be realised within any existing workflow frame-
work, in this paper, we focus on WS-Circulate, a Web ser-
vices based implementation.

Taking inspiration from the Montage workflow, a num-
ber of common workflow patterns (sequence, fan-in and fan-
out), input to output data size relationships and network con-
figurations are identified and evaluated. The performance
analysis concludes that a substantial reduction in commu-
nication overhead results in a 2–4 fold performance benefit
across all patterns. An end-to-end pattern through the Mon-
tage workflow results in an 8 fold performance benefit and

A. Barker (�)
Department of Engineering Science, University of Oxford,
Oxford, UK
e-mail: adam.barker@eng.ox.ac.uk

J.B. Weissman
University of Minnesota, Minneapolis, MN, USA
e-mail: jon@cs.umn.edu

J.I. van Hemert
NeSC, School of Informatics, University of Edinburgh,
Edinburgh, UK
e-mail: j.vanhemert@ed.ac.uk

demonstrates how the advantage of using the Circulate ar-
chitecture increases as the complexity of a workflow grows.

Keywords Workflow · Workflow optimisation · Web
services · Decentralised orchestration

1 Introduction

Efficiently executing large-scale, data-intensive workflows
common to scientific applications must take into account
the volume and pattern of communication. For example,
in Montage [12] an all-sky mosaic computation can re-
quire at least 2–8 TB of data movement. Standard work-
flow tools based on a centralised enactment engine, such as
Taverna [20] and OMII BPEL Designer [24] can easily be-
come a performance bottleneck for such applications, extra
copies of the data (intermediate data) are sent that consume
network bandwidth and overwhelm the central engine. In-
stead, a solution is desired that permits data output from
one stage to be forwarded directly to where it is needed
at the next stage in the workflow. It is certainly possible
to develop an optimised workflow system from scratch that
implements this kind of optimisation. In contrast workflow
systems based on concrete industrial standards offer a dif-
ferent set of benefits: they have a much larger and wider
user base, which allows the leverage of a greater availability
of supported tools and application components. This paper
explores the extent to which the benefits of each approach
can be realised. Can a standards-based workflow system
achieve the performance optimisations of custom systems?
And what are the trade-offs?

This paper explores these questions in the context of Web
services, a widely-promoted standard for building distrib-
uted workflow applications based on a suite of simple stan-

mailto:adam.barker@eng.ox.ac.uk
mailto:jon@cs.umn.edu
mailto:j.vanhemert@ed.ac.uk

222 Cluster Comput (2009) 12: 221–235

dards (XML, WSDL, SOAP, etc.) designed to facilitate ser-
vice interoperability. This paper does not address the perfor-
mance limitations inherent in SOAP, an issue well addressed
by other groups [1, 6, 9].

Workflow can be described from the view of a single par-
ticipant using orchestration or from a global perspective us-
ing choreography. Web service orchestration enables Web
services to be composed together in predefined patterns, de-
scribed using an orchestration language and executed on
an orchestration engine. Orchestrations can span multiple
applications and/or organisations and result in long-lived,
transactional processes. Services themselves have no knowl-
edge of their involvement in a higher level application and
therefore need no alteration before enactment. Importantly,
Web service orchestrations are described from the view of a
single participant (which can be another Web service) and
therefore a central process always acts as a controller to
the involved services. Orchestration languages explicitly de-
scribe the interactions between Web services by identifying
messages, branching logic and invocation sequences. The
Business Process Execution Language (BPEL) [23] is an ex-
ecutable business process modelling language and the cur-
rent de-facto standard way of orchestrating Web services.
BPEL has broad industrial support from companies such
as IBM, Microsoft and Oracle, with concrete implementa-
tions.

Service choreography on the other hand is more collabo-
rative in nature. A service choreography is a description of
the externally observable peer-to-peer interactions that ex-
ist between services, therefore choreography does not rely
on a central coordinator. A choreography model describes
multi-party collaboration and focuses on message exchange;
each Web service involved in a choreography knows exactly
when to execute its operations and with whom to interact.
A choreography definition can be used at design-time to en-
sure interoperability between a set of peer services from a
global perspective, meaning that all participating services
are treated equally, in a peer-to-peer fashion. The Web Ser-
vices Choreography Description Language (WS-CDL) [14]
is an XML-based language that can be used to describe the
common and collaborative observable behaviour of multiple
services that need to interact in order to achieve a shared
goal. WS-CDL is a W3C Candidate Recommendation.

This paper presents the Circulate architecture, a hybrid
solution that “eliminates the middle man” by adopting an
orchestration model of central control, but a choreography
model of optimised distributed data transport. Our architec-
ture could be realised within any existing workflow frame-
work, even custom systems. In this paper, we focus on a Web
service based implementation for the evaluation. To explore
the benefits of the hybrid approach for data-intensive appli-
cations, a set of workflow patterns and input-output relation-
ships common to scientific applications (e.g. Montage) are

used in isolation and combination. The performance analy-
sis concludes that a substantial reduction in communication
overhead results in a 2–4 fold performance benefit across all
patterns. An end-to-end pattern through the Montage work-
flow demonstrates how the advantage of using the Circulate
architecture increases when patterns are used in combination
with another, resulting in a 8 fold performance benefit.

2 Scientific workflow patterns

To identify data-centric scientific workflow patterns, the
Montage application has been used. It is representative of
a class of large-scale data-intensive scientific workflows.
Montage constructs custom “science-grade” astronomical
image mosaics from a set of input image samples [12].
The inputs to the workflow include the images in standard
FITS format (a file format used throughout the astronomy
community), and a “template header file” that specifies the
mosaic to be constructed. The workflow can be thought of
as having three parts, including re-projection of each in-
put image to the coordinate space of the output mosaic,
background rectification of the re-projected images, and co-
addition to form the final output mosaic [8].

A typical montage workflow is depicted in Fig. 1. This
workflow consists of the following six components (with in-
put/output relationships listed):

1. mProject: reprojects a single image to the coordinate sys-
tem defined in a header file (output = input)

2. mDiff/mFitPlane: finds the difference between two im-
ages and fits a plane to the difference image (output =
15–20% of a typical image for each image triplet)

3. mConcatFit: a simple concatenation of the plane fit para-
meters from multiple mDiff/mFitPlane jobs into a single
file (see 4)

4. mBgModel: models the sky background using the plane
fit parameters from mDiff/mFitPlane and computes pla-
nar corrections for the input images that will rectify the
background across the entire mosaic (output = a subset
of inputs are output from mConcatFit and mBgModel)

5. mBackground: rectifies the background in a single image
(output = input)

6. mAdd: co-adds a set of reprojected images to produce a
mosaic as specified in a template header file (output =
70–90% the size of inputs put together).

Montage illustrates several features of data-intensive sci-
entific workflows. First, Montage can result in huge data
flow requirements. For example, a small input file is 1.5 MB
and a small Montage application can consist of hundreds of
input files, a larger problem, 10–100 K image files, all input
in the mProject phase. The intermediate data can be 3 times
the size of the input data. And a big problem, e.g. an all-sky

Cluster Comput (2009) 12: 221–235 223

Fig. 1 Montage Use-case
scenario

mosaic can result in 2–8 TB of data. Such a problem might
be run daily. Second, Montage contains workflow patterns
common to many scientific applications:

1. Fan-in: Involves mapping multiple sources to a single
sink (N:1 relationship), e.g. mDiff/mFitPlane → mCon-
catFit.

2. Fan-out: The reverse pattern of fan-in, data from a single
source is sent to multiple sinks (1:N relationship), e.g.
mBgModel → Background.

3. Sequence: This pattern involves the chaining of services
together, where the output of one service invocation is
used directly as input to another, i.e. serially (1:1 rela-
tionship). The data flows as a pipeline with no data trans-
formations, e.g. mConcat → mBgModel.

Large-scale scientific workflows such as Montage may
also have significant computational requirements that must
be considered in deployment. In this paper, we consider op-
timisation of workflow patterns as representative of a class
of large-scale data-intensive scientific workflows. We focus
only on the orchestrations and techniques required to reduce
the cost of communication, assuming the computational re-
sources for executing the workflow have been identified.

3 Hybrid workflow architecture

The majority of workflow research has focused on ser-
vice orchestration for implementing service orchestrations,
where both control and data flow pass through a centralised
server. There are a plethora of orchestration frameworks
which will automate these tasks, examples of which can
be found in the Business Process Modelling community
through BPEL, in the Life Sciences through Taverna [20]
and in the computational Grid community through Pega-
sus [8], Triana [22] and Kepler [18]. For a summary refer

to [3]. Choreography, although an established concept is a
less well researched and implemented architecture.

This paper proposes the Circulate architecture, based on
centralised control flow, distributed data flow [16]. The Cir-
culate architecture sits between a purely centralised solution
(orchestration) and a purely decentralised solution (chore-
ography). A centralised orchestration engine issues control
flow messages to Web services taking part in the workflow,
however enrolled Web services can pass data flow messages
amongst themselves, like a peer-to-peer model. This model
maintains the robustness and simplicity of centralised or-
chestration but facilities choreography by avoiding the need
to pass large quantities of intermediate data through a cen-
tralised server.

Circulate is based on proxies, a lightweight, non-intrusive
piece of middleware, which provides a gateway and stan-
dard API to Web service invocation. A proxy allows Web
services to exchange data flow messages directly with one
another thereby avoiding transferring them through a cen-
tralised server. Proxies are installed as “near” as possible to
enrolled Web services; by near we mean preferably on the
same Web server or network domain, so that communication
between a proxy and a Web service takes place over a local
network. Depending on the preference of an administrator, a
proxy can be responsible for one Web service, 1:1 or many
Web services, 1:N, illustrated by Fig. 2.

Proxies themselves are exposed through a WSDL inter-
face, allowing them to be built into workflows or higher level
applications, such as any other Web service. As everything
is exposed through a WSDL interface, this means that work-
flows can use a combination of proxies and vanilla Web ser-
vices.

Proxies are controlled by a centralised orchestration en-
gine which is executing an arbitrary workflow language,
e.g. BPEL. However, only control flow messages are passed

224 Cluster Comput (2009) 12: 221–235

Fig. 2 1:N (left), 1:1 (middle), mixed components (right)

through the orchestration engine, larger data flow messages
are exchanged between proxies in a peer-to-peer fashion, un-
less a proxy is explicitly told to do otherwise. Proxies ex-
change references to the data with the orchestration engine
and pass the real data directly to where it is required for the
next service invocation; this allows the orchestration engine
to monitor the progress and make changes to the execution
of a workflow. Unlike a pure choreography model, Circulate
allows integration with centralised workflow systems mak-
ing it easier to detect and handle failures.

Furthermore the architecture offers the following soft-
ware engineering advantages:

• Transition is non-disruptive: The architecture can be de-
ployed without disrupting current services and with min-
imal changes in the workflows that make use of them.
This flexibility allows a gradual change of infrastructures,
where one could concentrate first on improving data trans-
fers between services that handle large amounts data.

• Simplicity of deployment: The proxy services can be in-
stalled without the need for writing any additional code.
Configuration can be done remotely and dynamically. It
simply requires the whereabouts of WSDL descriptions
for any services that will be enabled through the proxy.

• Non-intrusive deployment: A proxy need not be installed
on the same server as the Web service, and does not in-
terfere with the current vanilla Web service as is the case
with pure choreography models, e.g. WS-CDL. However,
to gain more performance, the proxy should be as near as
possible to the Web services it is enabling.

3.1 Proxy implementation and API

The Circulate architecture is available as an open-source
toolkit, WS-Circulate; implemented using a combination of
Java and the Apache Axis Web services toolkit [2]. Prox-
ies are extremely simple to install and can be configured
remotely, no specialised programming needs to take place
in order to exploit the functionality. WS-Circulate is multi-
threaded and allows several applications to invoke methods

concurrently. A proxy has a thread pool and when that thread
pool is full the request is placed on an input queue and dealt
with in First In First Out (FIFO) order. Results from Web
service invocations are stored at a proxy by tagging them
with a UUID (Universally Unique Identifier) and writing
them to disk. Proxies are made available through a standard
WSDL interface, the Java representation of that interface is
displayed in Fig. 3. All methods are invoked by an orches-
tration engine except stage. A WS-Circulate proxy has the
following methods:

• invoke is the primary proxy method and provides a
gateway to Web service invocation. This method takes as
input: details of the Web service to be invoked, including
the location of a WSDL, portType and operation name, fi-
nally an array containing UUID references to data stored
at the proxy; elements within the array must be in order
as they would be used as input to the Web service. When
this method is called the proxy retrieves the actual data
the UUID references point to, using these data as input
to the Web service invocation. Any results from the invo-
cation are tagged with a UUID and written to disk at the
proxy, this UUID is returned to the invoking application.

• upload provides functionality to upload data to a proxy
which is required as input to a Web service invocation,
i.e. if the service is the first within a workflow and is not
reliant on data from services further up the chain. This
method takes as input an Object[] that contains ac-
tual data to be uploaded. Elements within this array must
conform to standard JAX-RPC supported types; the proxy
will check this at runtime and exceptions will be thrown
accordingly. Uploaded data are tagged with a UUID and
written to disk, the corresponding UUID set are returned
to the invoking application.

• deliver sets up data movement between proxies, mov-
ing it closer to the source of a Web service invocation. The
first input parameter is a String containing the location
of the recipient proxy. Each element in the second input
parameter, String[] represents one UUID reference to

Cluster Comput (2009) 12: 221–235 225

Fig. 3 WS-Circulate Proxy API

a blob of data stored at the proxy. Once invoked by an ap-
plication the proxy will retrieve all data the UUID refer-
ences point to and invoke the stagemethod on the recip-
ient proxy. Currently data is moved using SOAP, however
we are exploring the use of protocols such as GridFTP for
large data transfer. An acknowledgment is returned repre-
sented as a boolean.

• stage is used to transfer a set of data from one proxy to
another. This method is called from within the deliver
method on the recipient proxy and moves the data to the
recipient proxy. An acknowledgment is returned, repre-
sented as a boolean.

• returnData can be used to retrieve stored data from a
proxy when it is needed on a user’s desktop, e.g. to ob-
tain the final results at the end of a workflow. Once in-
voked, the proxy iterates the input array (String[]),
which contains UUID references to data, storing them in
an Object[]. This array is then returned to the invoking
application.

• flushTempData is a house keeping method and is
called to remove data from a proxy which is no longer re-

quired for any workflow components. This method takes
a list of UUID references to data, String[] and returns
a boolean.

• addService/removeService is used to instruct a
proxy to maintain a new Web service, adding the WSDL
to its repository or remove it from a proxy’s control. The
input String represents the WSDL of a new service.

• listOperations given a WSDL and a port type this
method returns a String[] where each element is the
name of an operation.

• listOpParameters given a string containing a WSDL
which the proxy maintains, the port type and the name of
an operation this method returns a String[] containing
the types expected as input to an operation.

• listOpReturnType returns the return type informa-
tion (represented as a String) of an operation given a
WSDL, port type and operation name.

• listServices is used to query a proxy about which
Web services it is currently maintaining. This information
is returned in a String[]; each element represents one
WSDL.

226 Cluster Comput (2009) 12: 221–235

Proxies throw the following exceptions:

• InvocationParameterError is thrown if the ser-
vice details (used an input) are not maintained by a proxy
or if the types and/or number of parameters used in an in-
put array do not match the actual Web service interface
that the proxy is to invoke.

• VariableNotFoundError is thrown if there are any
references to a WSDL or data which cannot be found at a
proxy.

• ServiceInvocationError will be thrown if there
are any faults with the actual Web service invocation, e.g.
network failure, time-out etc.

• ProxyAdminError is thrown if an application is trying
to add a Web service which is already maintained by the
proxy, or if the WSDL location is invalid.

3.2 Example application: fan-in pattern

Referring back to the Montage scenario, Fig. 4 is a UML
Sequence diagram illustrating how the fan-in pattern (dis-
cussed in Sect. 2) is orchestrated using a standard centralised
orchestration engine. In this pattern three sources are
queried for data, these data are combined and used as in-
put to a final sink service, which processes these data and
returns a results set. Figure 5 illustrates the Circulate archi-
tecture applied to the same pattern. In our examples three
source services are mapped to one sink, red arrowed lines
added to each of the diagrams illustrate data movement, data
sizes added to the each of the figures are arbitrary and used
for illustrative purposes only.

Using standard orchestration the query results (D1,
D2, D3) from source1-source3 pass through the cen-
tralised orchestration engine and are then used as input to
the sink service, which analyses the data and returns the
results (AD) back to the engine. Orchestration involves a to-
tal data flow of 700 Mb.

With reference to Fig. 5, in order to orchestrate the
workflow using the Circulate architecture, the following
process takes place. The first step in the workflow pattern
involves making an invocation to the three source Web ser-
vices source1-source3. However instead of contacting
the service directly, a call is made to a proxy (source-
proxy) which has been installed on the same server as the
Web service. This is achieved through the invoke oper-
ation passing the name of the Web service (source) and
operation (query) to be invoked, along with any required
input parameters. For readability portType details etc. have
been omitted. The proxy spawns a new thread of control and
invokes the query operation on the source service, pass-
ing in the necessary input parameters. The output from the
service invocation, is passed back to the proxy, tagged with
a UUID (for reference later, e.g. retrieval, deletion etc.) and
stored; there is a requirement that the proxy has enough disk
space to store the results. Instead of the proxy directly pass-
ing the data back to the orchestration engine, the UUID is
returned. In a standard orchestration scenario the results of
the Web service invocation would have first been moved to
the orchestration engine and then moved to where they are
needed at the sink Web service. However, as the proxy has
been installed on the same server as the source data, it can
be transferred locally between the proxy and the Web ser-
vice and did not have to move over a Wide Area network,
effectively saving a Wide Area hop. This process is repeated
(either serially or in parallel) for source2 and source3
which could be served through the same proxy or an inde-
pendent proxy.

The output from the Web service invocations are needed
as input to the next service in the workflow, in this case the
sink Web service. The orchestration engine invokes the
deliver operation on the source-proxy passing in the
three UUID references along with the WSDL address of the

Fig. 4 UML Sequence diagram
for orchestrated fan-in pattern

Cluster Comput (2009) 12: 221–235 227

Fig. 5 UML Sequence diagram
for fan-in pattern orchestrated
using the Circulate architecture

sink-proxy. Once the source-proxy receives the in-
vocation it retrieves the stored data and transfers it across the
network by invoking a stage operation on sink-proxy.
The data is then stored at sink-proxy and if successful an
acknowledgment message is sent back to source-proxy
which is returned to the orchestration engine.

The final stage in the workflow pattern requires using the
output from the first three services as input to the sink
Web service. In order to achieve this the orchestration en-
gine passes the name of the service (sink) and operation
(compose) to invoke and the UUID references to the out-
put data, which are required as input. The proxy then moves
the data across the local network and invokes the compose
operation on the sink service. The output is again stored
locally on the proxy and a UUID reference generated and
passed back to the orchestration engine. The orchestration
engine can then retrieve the actual data from the proxy when
necessary using the returnData operation.

Using the Circulate architecture the same quantity of
data movement takes place, however only 300 Mb of which
is transfered through a Wide Area Network (i.e. proxy to
proxy). The remaining 400 Mb flows, ideally over a Local
Area Network between the proxy and the subscribed Web
service(s).

4 Performance analysis

To verify our hypothesis we perform a set of performance
analysis tests where the Circulate architecture is evaluated
against a more traditional centralised control, centralised
data flow orchestration engine.

4.1 Experiment description

Taking inspiration from the Montage workflow, we perform
tests with the patterns common to many scientific applica-
tions (sequential, fan-in and fan-out) both in isolation and in
a combination. Furthermore, we show best-case and worst-
case performance of the Circulate architecture with respect
to the location of the engine relative to the proxies. Through-
out this paper we maintain the input to output data ratios dis-
cussed in Sect. 2. With reference to Fig. 6, the patterns have
been configured as follows:

• Pattern 1—Sequence: The sequential pattern involves the
chaining of services together, where the output of one ser-
vice invocation is used directly as input to another. Once
a service receives input data, its output is calculated by
increasing the size of that input data by 20%, e.g. if the

228 Cluster Comput (2009) 12: 221–235

Fig. 6 Dataflow in the sequential (first column), fan-in (second col-
umn) and fan-out (third column) patterns for the centralised archi-
tecture using vanilla services (1, 3, 5) and the Circulate architecture

(2, 4, 6). This example shows 4 services, all services are remote and all
proxies are installed on the same server as the service they are invok-
ing. Any control flow to orchestrate the services is omitted

service receives 5 Mb of data as input, 6 Mb is returned
as output. There is a snowball effect whereby the size of
the data being transferred is increased after each service
invocation. The configuration for this pattern on a fully
centralised architecture is illustrated by phase 1 of Fig. 6,
and the configuration using the Circulate architecture is
illustrated by phase 2 of Fig. 6.

• Pattern 2—Fan-in: The fan-in pattern explores what hap-
pens when data is gathered from multiple distributed
sources, concatenated and sent to a service acting as a
sink. Multiple services are invoked with a control flow
(no data is sent) message asynchronously, in parallel, a
block of data is then returned as output. Once data has
been received from all enrolled services it is concatenated
and sent to the sink service as input, where 20% of that
input is returned as output. The configuration for this pat-
tern using a fully centralised architecture is illustrated by
phase 3 of Fig. 6 and the configuration using the Circulate
architecture is illustrated by phase 4 of Fig. 6.

• Pattern 3—Fan-out: This pattern is the reverse of the fan-
in pattern, here the output from a single source is sent to
multiple sinks. An initial service is invoked with a control
flow message (again no actual data is sent), the service re-
turns a block of data as output. These data are then sent,
asynchronously in parallel to multiple services as input,
each service returns as output the same size block of data

it received as input. The configuration for this pattern us-
ing a fully centralised architecture is illustrated by phase 5
of Fig. 6 and the configuration using the Circulate archi-
tecture is illustrated by phase 6 of Fig. 6.

For each of the workflow patterns: sequence, fan-in and
fan-out the time taken for the pattern to complete is recorded
(in milliseconds) as the size of the input data (in Megabytes)
is increased; for the sequential pattern this means the size
of the file sent to the first service, for the remaining patterns
this means the size of the input file returned by the first ser-
vice. The number of services involved in each of the patterns
range from 3 to 17, this takes into account the lower bound
(mProject → mDiff) and upper bound (mFitPlane → mCon-
catFit) limits of the Montage workflow scenario discussed in
Sect. 2.

The configuration of our experiments mirror that of a typ-
ical workflow scenario, where collections of physically dis-
tributed services need to be composed into a higher level
application. For each combination of input size, number of
services and pattern type the experiment has been run inde-
pendently 100 times over a cluster of distributed Linux ma-
chines. Wherever we report the time elapsed in milliseconds,
99% confidence intervals are included for each data point;
some of these intervals are so small they are barely visible.
Each line on Figs. 7, 8 and 9 displays the mean speedup

Cluster Comput (2009) 12: 221–235 229

Fig. 7 Sequential pattern mean speedup ratio, local vs. remote

Fig. 8 Fan-in pattern mean speedup ratio, local vs. remote

Fig. 9 Fan-out pattern mean speedup ratio, local vs. remote

ratio of each workflow pattern as the size of the input file in-
creases. The mean speedup ratio is calculated by taking the
average elapsed time (of 100 runs) for a vanilla (non-proxy,
fully centralised) run of a workflow pattern and dividing it
by the average elapsed time (of 100 runs) using the Circu-
late architecture. The number of services involved is inde-
pendent of the ratio as we have taken the mean ratio for all

combinations of services (i.e. running the experiment itera-
tively on 3 to 17 services) from our scaling experiments.1

In order to explore locality, the placement of the orches-
tration engine is also taken into consideration, displayed on
each graph are four sub-experiments, in descending order
according to the graphs the following has been plotted:

• Remote best-case: The orchestration engine is entirely re-
mote to the services/proxies it is invoking, by remote we
mean that the orchestration engine has to connect over a
Wide Area network. It is the best-case as the final results
are stored on the proxy and not returned to the orches-
tration engine. The best-case scenario is realistic as of-
ten individual patterns form only a small piece of a larger
workflow as highlighted by the Montage scenario.

• Remote worst-case: In this sub-experiment the orchestra-
tion engine is again remote but the final output data of the
workflow pattern are not stored at the proxy but sent back
to the orchestration engine.

• Local best-case: The orchestration engine is deployed lo-
cally (i.e. on the same network) as the services/proxies it
is invoking. The best-case represents the scenario where
the final output from the pattern execution is stored within
a proxy.

• Local worst-case: The final sub-experiment represents the
case where the orchestration engine is again local but the
final output of the pattern is sent back to the orchestration
engine.

The input and output data in all the experiments are Java
byte arrays passed around using SOAP. To prevent the data
processing from influencing our evaluation, it has not been
accounted for in the performance analysis tests.

4.2 Analysis of the results

A collective summary of the performance analysis exper-
iments is presented in Table 1. Displayed on each row is
the pattern type, the corresponding experiment configura-
tion, i.e. where the orchestration is and how the proxy be-
haves (best/worst-case), along with the mean speedup ratio,
standard deviation, minimum and maximum speedup ratios.
The end-to-end pattern is discussed in Sect. 4.3

The performance analysis tests verify our hypothesis that
when services are subscribed to the Circulate architecture
the execution time of common, isolated workflow patterns
significantly decreases.

The locality experiments confirm that the most dramatic
benefit occurs when the orchestration engine is connected
to the services/proxies through a Wide Area network. To

1As an example, Fig 13 displays the elapsed time of the sequence, fan-
in and fan-out workflow patterns using 4 distributed services when the
orchestration engine is remote.

230 Cluster Comput (2009) 12: 221–235

Table 1 Overview of the performance analysis tests. Best-case (BC)
and worst-case (WC)

Pattern Config Mean Std Dev Min Max

Sequence Local BC 2.21 0.33 1.40 2.84

Local WC 1.29 0.14 0.93 1.51

Remote BC 3.47 0.54 1.83 4.41

Remote WC 2.03 0.18 1.48 2.28

Fan-in Local BC 2.18 0.32 1.25 2.74

Local WC 1.52 0.19 0.97 1.81

Remote BC 3.88 0.53 2.23 4.97

Remote WC 2.83 0.27 2.14 3.41

Fan-out Local BC 2.25 0.34 1.19 2.88

Local WC 1.26 0.13 0.96 1.49

Remote BC 3.61 0.51 2.13 4.94

Remote WC 2.07 0.21 1.57 2.63

End-to-End Remote WC 8.18 0.94 5.58 9.86

quantify, the worst-case remote configuration, patterns saw
an average performance benefit of between 2.03 and 2.83
times and in the best-case remote configuration patterns an
average performance benefit of between 3.47 and 3.88 times,
with the fan-in pattern showing the largest speedup.

A surprising result of our experimentation is that even
when the orchestration engine is deployed on the same net-
work as the services/proxies it is invoking (i.e. all communi-
cation is local) there is a benefit to using the Circulate archi-
tecture. In the worst-case local configuration patterns saw an
average performance benefit of between 1.26 and 1.52 times
and in the best-case local configuration patterns an average
performance benefit of between 2.18 and 2.25 times.

To explain the results in relation to the Circulate archi-
tecture, when using a fully centralised approach the inter-
mediate data have to make a costly hop back to the orches-
tration engine before being again sent across the network to
be used as input to the next service in the workflow. How-
ever, using the Circulate architecture, intermediate data are
stored at the proxy and sent directly to the next proxy which
requires them as input, therefore for each input:output chain,
one hop is avoided. In effect, this reduces the amount of in-
termediate data by 50%. This is, of course assuming that the
proxy is installed as near as possible (i.e. on the same server
or network) as the service it is invoking. This benefit is valid
no matter where the orchestration is engine is placed, lo-
cally or remotely. Our locality experiments verify that even
if workflows are orchestrated with locally deployed services
the Circulate architecture speeds up the overall execution
time of a workflow pattern. However, as the orchestration
engines moves further away, the hop any intermediate data
has to make increases in cost and the benefit of using the Cir-
culate architecture increases accordingly. This explains why

there is an increased benefit in the remotely deployed or-
chestration engine in relation to a locally deployed one. The
difference in benefit is between 1.26 times and 1.70 times
(mean remote-best–mean local-best across all patterns) in
the best-case and between 0.74 times and 1.31 times (mean
remote-worst–mean local-worst across all patterns) in the
worst-case.

The results (Figs. 7, 8 and 9) confirm our intuition that
the co-plots are bounded by remote best-case (best perfor-
mance) and local worst-case (worst performance) for all
patterns. The other cases lie in-between and their relative
position depends on the specific pattern. The results also
show that the relative speed up is mildly sensitive to data
size. This can be explained as the speed up ratio depends
on the relative amount of data sent and the relative net-
work bandwidth for the local and non-local cases, both of
which are approximately constant. The later may have some
SOAP/HTTP/TCP dependencies which likely accounts for
the small variation seen. However, the raw differential per-
formance between the proxy and vanilla version does scale
with data size (see Fig. 13).

Although our experimentation is run at lower data sizes
to Montage, patterns and input to output data relationships
are maintained, this suggests that a similar performance ben-
efit could be expected when scaling up the data injected into
the workflow. Further experiments not discussed in this pa-
per run over the PlanetLab [21] framework confirm that the
ratios displayed Table 1 match those obtained from running
the same experiments over an Internet scale network.

4.3 End-to-end execution

Sections 4.1 and 4.2 discussed workflow patterns in isola-
tion, however the sequential nature of the Montage work-
flow suggests that the optimisations of different workflow
patterns will have an end-to-end cumulative performance
benefit, e.g. speeding up the time to perform mConcatFit
will allow mBgModel to execute earlier, and so on. In order
to verify this hypothesis a path through the Montage work-
flow was investigated, this end-to-end pattern is illustrated
in Fig. 10.

This combination of patterns comprises of the following
steps, firstly a fan-in pattern that asynchronously in parallel
gathers data from 3 different services, the output of which is
sent to a further service which returns 20% of the input data
as output data. These data are then sent asynchronously in
parallel to 3 services which each return the same volume of
output data as they received as input. The output data is con-
catenated and sent through a further 2 services in sequence,
each return 50% of the data they received as input. These in-
put output data relationships mirror those found in the Mon-
tage scenario.

Cluster Comput (2009) 12: 221–235 231

Fig. 10 An end-to-end workflow, with a fan-in, fan-out followed by a
series of sequential operations

Fig. 11 End-to-end pattern

The end-to-end pattern displayed in Fig. 10 is executed
100 times on the Circulate architecture (using the worst-
case, i.e. the final output data returns to the orchestration
engine) and 100 times on a fully centralised orchestration
engine with vanilla Web services, on both occasions the or-
chestration engine is remote. In Fig. 11 the x-axis displays
the input data size in Megabytes and the y-axis displays the
ratio (vanilla elapsed time divided by proxy elapsed time)
in milliseconds to complete the workflow. The end-to-end
execution results in a mean speedup of 8.18 times using the
proxy architecture, confirming our hypothesis that the per-
formance benefit increases when isolated patterns are placed
together to form a larger workflow. This sample end-to-end
execution demonstrates the concept, however this combina-
tion pattern itself would only form a small part of larger sci-
entific workflows, such as Montage.

4.4 Break even point

Invoking a proxy has an overhead in that a call is first made
to a proxy, which invokes the service on the orchestration
engines behalf, writes the result to disk and then returns a
reference to that data. As the previous performance analysis
tests demonstrate what occurs on relatively large data sizes,
it is important to highlight what happens when dealing with
Kilobytes instead of Megabytes of data in order to determine
the break even point, i.e. when using a proxy is preferable
over a vanilla service invocation.

Figure 12 displays the average time (as a ratio: vanilla
elapsed time divided by proxy elapsed time) it takes to make
a single invocation to a vanilla Web service and obtain the

Fig. 12 The overhead of invoking a proxy

result vs. an invocation to a proxy that invokes the service on
the orchestration engines behalf and returns a reference to
its data. Results under the horizontal line indicate the vanilla
approach is optimal, results over the line show a benefit of
using the Circulate architecture. From the results we con-
clude that due to the overhead of the proxy, when dealing
with input data sizes of less than ∼100 K of data the Cir-
culate architecture offers no performance benefit to vanilla
Web services. Anything over ∼100 K of data the proxy be-
gins to speedup the execution time of the invocation. The
Circulate architecture is suited to larger scale workflows
(such as Montage) and not workflows where very small
quantities of intermediate data are passed around between
services, i.e. typical scenarios in business, such as transac-
tions.

5 Related work

This section discusses all related work from the literature,
spanning pure choreography languages, enhancements to
widely used modelling techniques, i.e. BPMN, decentralised
orchestration, data flow optimisation architectures and Grid
toolkits.

5.1 Choreography languages

There are an overwhelming number of pure orchestration
languages. However, relatively few targeted specifically at
choreography.

The Web Services Choreography Description Language
(WS-CDL) is the proposed standard for service choreogra-
phy. However, WS-CDL has met criticism [4] through the
Web services community. It is not within the scope of this
paper to provide a detailed analysis of the constructs of WS-
CDL, this research has already been presented [10]. How-
ever, it is useful to point out the key criticisms with the lan-
guage: WS-CDL choreographies are tightly bound to spe-
cific WSDL interfaces, WS-CDL has no multi-party sup-
port, no formal foundation, no explicit graphical support and
incomplete implementations.

232 Cluster Comput (2009) 12: 221–235

(a) Sequential pattern LOCAL orchestration engine (b) Sequential pattern REMOTE orchestration engine

(c) Fan-in LOCAL orchestration engine (d) Fan-in REMOTE orchestration engine

(e) Fan-out LOCAL orchestration engine (f) Fan-out REMOTE orchestration engine

Fig. 13 An example experiment, using 4 services, recording the aver-
age time it takes for each pattern to complete as the size of the input
data increases. The x-axis display the size of the initial input file in
Megabytes (Mb) and the y-axis displays the elapsed time of the work-

flow pattern in milliseconds (ms). In (a), (c) and (e) the orchestration
engine is locally deployed, in (b), (d) and (f) the orchestration is re-
motely deployed

Let’s Dance [25] is a language that supports service inter-

action modelling both from a global and local viewpoint. In

a global (or choreography) model, interactions are described

from the viewpoint of an ideal observer who oversees all in-

teractions between a set of services. Local models, on the

other hand focus on the perspective of a particular service,

capturing only those interactions that directly involve it.

BPEL4Chor [7] is a proposal for adding an additional

layer to BPEL to shift its emphasis from an orchestration

language to a complete choreography language. BPEL4Chor

Cluster Comput (2009) 12: 221–235 233

is a collection of three artifact types: participant behavior de-
scriptions, participant topology and participant groundings.

5.2 Techniques in data flow optimisation

There are a limited number of research papers which have
identified the problem of a centralised approach to service
orchestration when dealing with data-centric workflows. For
completeness, this section presents an overview of a number
of architectures.

The Flow-based Infrastructure for Composing Autono-
mous Services or FICAS [17] is a distributed data-flow ar-
chitecture for composing software services into what the au-
thors label mega-structures or workflow as it’s more com-
monly known. Composition of the services in the FICAS
architecture is specified using the Compositional Language
for Autonomous Services (CLAS), which is essentially a se-
quential specification of the relationships among collaborat-
ing services. This CLAS program is then translated by the
build-time environment into a control sequence that can be
executed by the FICAS runtime environment.

Although FICAS is an architecture for decentralised or-
chestration it does not deal directly with modern standards
and is a prototype and proof of concept. The issue of Web
services integration is not addressed, nor does it discuss how
this architecture could be incorporated into an orchestration
language such as the de-facto standard, BPEL. More impor-
tantly FICAS is intrusive to the application code as each ap-
plication that is to be deployed needs to be wrapped with
a FICAS interface. In contrast, our proxy approach is more
flexible as the services themselves require no alteration and
do not even need to know that they are interacting with a
proxy. Furthermore our proxy approach introduces the con-
cept of passing references to data around and deals directly
with modern workflow standards.

Service Invocation Triggers [5], or simply triggers are
also a response to the problem of centralised orchestration
engines when dealing with large-scale data sets. Triggers
collect the required input data before they invoke a service,
forwarding the results directly to where the data is required.
For this decentralised execution to take place, a workflow
must be deconstructed into sequential fragments which con-
tain neither loops nor conditionals and the data dependen-
cies must be encoded within the triggers themselves.

The approach outlined by our paper and Service Invoca-
tion Triggers both rely on proxies to solve the problem of
decentralised orchestration. While Triggers address the is-
sue of decentralised control, to realise these benefits their
architecture is based around a pure choreography model,
which as discussed in this paper has many extra problems
associated with it. Furthermore, before execution can begin
the input workflow must be deconstructed into sequential
fragments, these fragments cannot contain loops and must

be installed at a trigger; this is a rigid and limiting solution
and is a barrier to entry for the use of proxy technology. In
contrast with our proxy approach, because data references
are passed around, nothing in the workflow has to be de-
constructed or altered, which means standard orchestration
languages such as BPEL can be used to coordinate the prox-
ies. Finally, Triggers does not deal with modern Web service
standards.

In [19] the scalability argument made in this paper is also
identified. The authors propose a methodology for trans-
forming the orchestration logic in BPEL into a set of in-
dividual activities that coordinate themselves by passing to-
kens over shared, distributed tuple spaces. The model suit-
able for execution is called Executable Workshow Networks
(EWFN), a Petri nets dialect.

5.3 Other relevant techniques

Triana [22] is an open-source problem solving environment.
It is designed to define, process, analyse, manage, execute
and monitor workflows. Triana can distribute sections of a
workflow to remote machines through a connected peer-to-
peer network.

OGSA-DAI [13] is a middleware product which supports
the exposure of data resources on to Grids. This middle-
ware facilitates data streaming between local OGSA-DAI
instances.

Grid Services Flow Language (GSFL) [15] addresses
some of the issues discussed in this paper in the context of
Grid services, in particular services adopt a peer-to-peer data
flow model. However, individual services have to be altered
prior to enactment, which is an invasive and custom solu-
tion, something which is avoided in the Circulate architec-
ture.

Graph-forwarding [11] is a technique applied to distrib-
uted Objects, allowing the results of an RPC to be forwarded
to the next object to invoke instead of the invoking object.
This technique is similar in nature but does not address
the issues concerning service composition through workflow
technology.

6 Conclusions

This paper presented the Circulate architecture for execut-
ing large-scale data-centric scientific workflows. Our ar-
chitecture maintains the robustness and simplicity of cen-
tralised orchestration, but facilitates choreography by allow-
ing services to exchange data directly with one another. Us-
ing Montage as a guide, a number of common workflow
patterns and input-output relationships were evaluated in a
Web services based framework. Although this paper dis-
cussed the Circulate architecture in a Web services context

234 Cluster Comput (2009) 12: 221–235

(WS-Circulate), it is a general architecture and can therefore
be implemented using different technologies and integrated
into existing systems. Furthermore the Circulate architec-
ture is non-invasive to the Web services themselves.

Unlike the standard orchestration model, proxies can ex-
change data flow messages directly with one another avoid-
ing the need to pass large quantities of intermediate data
through a centralised server. The results indicate that sub-
stantial reduction in communication overhead results in a
performance benefit of between 2.03 and 3.88 times. The
advantage of using the Circulate architecture increases if
isolated patterns are used in combination with another, the
end-to-end pattern demonstrates an 8 fold performance ben-
efit.

Future directions include evaluating the benefits of our
approach within other workflow frameworks and in other
network environments (e.g. wide-area, mobile) to assess the
impact in different contexts. The analysis of additional ap-
plications to identify and evaluate other end-to-end work-
flow patterns is also planned. Circulate opens up a rich set of
additional optimisations with respect to proxy deployment
which will be evaluated in future work.

Acknowledgements Professor Daniel Katz from Louisiana State
University provided detailed information about the structure and op-
eration of Montage that was central to this paper.

References

1. Abu-Ghazaleh, N., Lewis, M.J., Govindaraju, M.: Differential se-
rialization for optimized SOAP performance. In: Proceedings of
HPDC, June 2004

2. Apache Axis: http://ws.apache.org/axis (2008). Accessed 16 De-
cember 2008

3. Barker, A., van Hemert, J.: Scientific workflow: a survey and re-
search directions. In: Wyrzykowski, R., et al. (eds.) Seventh In-
ternational Conference on Parallel Processing and Applied Math-
ematics, Revised Selected Papers. LNCS, vol. 4967, pp. 746–753.
Springer, Berlin (2008)

4. Barros, A., Dumas, M., Oaks, P.: A critical overview of the
Web services choreography description language (WS-CDL). BP-
Trends Newsletter 3 (2005)

5. Binder, W., Constantinescu, I., Faltings, B.: Decentralized orches-
tration of composite Web services. In: Proceedings of the Interna-
tional Conference on Web Services, ICWS’06, pp. 869–876. IEEE
Comput. Soc., Los Alamitos (2006)

6. Chiu, K., Govindaraju, M., Bramley, R.: Investigating the limits of
SOAP performance for scientic computing. In: Proccesings of the
11th International Symposium on High Performance Distributing
Computing (HPDC), July 2002

7. Decker, G., Kopp, O., Leymann, F., Weske, M.: BPEL4Chor: ex-
tending BPEL for modeling choreographies. In: Proceedings of
the IEEE 2007 International Conference on Web Services (ICWS
2007), pp. 296–303 (2007)

8. Deelman, E., Singh, G., Su, M.-H., Blythe, J., Gil, A., Kesselman,
C., Mehta, G., Vahi, K., Berriman, G.B., Good, J., Laity, A., Ja-
cob, J.C., Katz, D.S.: Pegasus: a framework for mapping complex
scientific workflows onto distributed systems. Sci. Programm. J.
13(3), 219–237 (2005)

9. Devaram, K., Andresen, D.: Differential serialization for opti-
mized SOAP performance. In: Proceedings of PDCS, November
2003

10. Fredlund, L.: Implementing WS-CDL. In: Proceedings of the
Second Spanish Workshop on Web Technologies (JSWEB 2006)
(2006)

11. Grimshaw, A.S., Weissman, J.B., Strayer, W.T.: Portable run-time
support for dynamic object-oriented parallel processing. ACM
Trans. Comput. Syst. 14(2), 137–170 (1996)

12. Jacob, J.C., Katz, D.S., et. al.: The Montage architecture for grid-
enabled science processing of large, distributed datasets. In: Pro-
ceedings of the Earth Science Technology Conference, June 2004

13. Karasavvas, K., Antonioletti, M., Atkinson, M., Hong, N.C., Sug-
den, T., Hume, A., Jackson, M., Krause, A., Palansuriya, C.: In-
troduction to OGSA-DAI Services. LNCS, vol. 3458, pp. 1–12.
Springer, Berlin (2005)

14. Kavantzas, N., Burdett, D., Ritzinger, G., Lafon, Y.: Web services
choreography description language (WS-CDL) Version 1.0. W3C
Candidate Recommendation (2005)

15. Krishnan, S., Wagstrom, P., von Laszewski, G.: GSFL: a workflow
framework for grid services. Technical Report, Argonne National
Laboratory (2002)

16. Liu, D., Law, K.H., Wiederhold, G.: Analysis of integration mod-
els of service composition. In: Proceedings of Third International
Workshop on Software and Performance, pp. 158–165. ACM,
New York (2002)

17. Liu, D., Law, K.H., Wiederhold, G.: Data-flow distribution in FI-
CAS service composition infrastructure. In: Proceedings of the
15th International Conference on Parallel and Distributed Com-
puting Systems (2002)

18. Ludascher, B., et al.: Scientific workflow management and the Ke-
pler system. Concurr. Comput., Pract. Exper. 18(10), 1039–1065
(2005)

19. Martin, D., Wutke, D., Leymann, F.: A novel approach to decen-
tralized workflow enactment. In: EDOC ’08. 12th International
IEEE Conference on Enterprise Distributed Object Computing,
pp. 127–136 (2008)

20. Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Green-
wood, M., Carver, T., Glover, K., Pocock, M.R., Wipat, A., Li, P.:
Taverna: a tool for the composition and enactment of bioinformat-
ics workflows. Bioinformatics 20, 3045–3054 (2004)

21. Planet Lab: http://www.planet-lab.org (2008). Accessed 16 De-
cember 2008

22. Taylor, I., Shields, M., Wang, I., Philp, R.: Distributed P2P
computing within Triana: a galaxy visualization test case. In:
17th International Parallel and Distributed Processing Symposium
(IPDPS 2003), pp. 16–27. IEEE Comput. Soc., Los Alamitos
(2003)

23. The OASIS Committee: Web services business process execution
language (WS-BPEL) Version 2.0 (2007)

24. Wassermann, B., et al.: Sedna: A BPEL-based environment for
visual scientific workflow modelling. In: Workflows for eScience–
Scientific Workflows for Grids, December 2006

25. Zaha, J.M., Barros, A., Dumas, M., ter Hofstede, A.: Let’s dance: a
language for service behavior modelling. In: Meersman, R., Tari,
Z. (eds.) OTM Conferences (1). LNCS, vol. 4275, pp. 145–162.
Springer, Berlin (2006)

http://ws.apache.org/axis
http://www.planet-lab.org

Cluster Comput (2009) 12: 221–235 235

Adam Barker holds a Ph.D. in In-
formatics from the University of Ed-
inburgh, M.Sc. in Distributed Sys-
tems and B.Sc. in Software Engi-
neering from Newcastle University.
He is currently employed as a Re-
search Assistant at the Department
of Engineering Science, at the Uni-
versity of Oxford. Prior to join-
ing Oxford, Adam was employed
as at the National e-Science Cen-
tre (NeSC), in Edinburgh. Comple-
menting his academic experience,
Adam has completed internships at
Hewlett-Packard and BAe Systems.

Adam’s primary research interests concentrate on the effective engi-
neering of large-scale, distributed systems, operating in open, decen-
tralised and uncertain environments. His research agenda is pursued by
modelling, evaluating and building novel architectures and algorithms
based on sound foundations in systems research. For further informa-
tion and list of publications please refer to http:www.adambarker.org.

Jon B. Weissman is a leading re-
searcher in the area of Grid com-
puting. His involvement dates back
to the influential Legion project at
the University of Virginia during his
Ph.D. He is currently an Associate
Professor of Computer Science at
the University of Minnesota where
he leads the Distributed Comput-
ing Systems Group. His current re-
search interests are in Grid comput-
ing, distributed systems, high per-
formance computing, resource man-
agement, reliability, and e-Science
applications. He works primarily at

the boundary between applications and systems. He received his B.S.
degree from Carnegie-Mellon University in 1984, and his M.S. and
Ph.D. degrees from the University of Virginia in 1989 and 1995, re-
spectively, all in computer science. He is a senior member of the IEEE.
As well as being a Visitor at the Institute, Jon has been appointed an
Honorary Fellow of the College of Science and Engineering at the Uni-
versity of Edinburgh.

Jano I. van Hemert has a Ph.D.
in Mathematics and Physical Sci-
ences from the Leiden University
(2002), The Netherlands. He is a
Research Associate in the School
of Informatics of the University of
Edinburgh and a visiting researcher
at the Human Genetics Unit in Ed-
inburgh of the United Kingdom’s
Medical Research Council. He is re-
sponsible for leading the research
within the National e-Science Cen-
tre.
He has held research positions at the
Leiden University (NL), the Vienna

University of Technology (AUT) and the National Research Institute
for Mathematics and Computer Science (NL). In 2004, he was awarded
the talented young researcher fellowship by the Netherlands Organiza-
tion for Scientific Research. Many of his research projects have in-
cluded partners from industry.
His research output includes over fifty published papers and soft-
ware on optimisation, constraint satisfaction, evolutionary computa-
tion, data mining, scheduling, problem difficulty, dynamic routing,
adaptive methods, Grid computing, and e-Science applications.

	The Circulate architecture: avoiding workflow bottlenecks caused by centralised orchestration
	Abstract
	Introduction
	Scientific workflow patterns
	Hybrid workflow architecture
	Proxy implementation and API
	Example application: fan-in pattern

	Performance analysis
	Experiment description
	Analysis of the results
	End-to-end execution
	Break even point

	Related work
	Choreography languages
	Techniques in data flow optimisation
	Other relevant techniques

	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

