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ABSTRACT

Known challenges for petascale machines are that (1) the
costs of I/O for high performance applications can be sub-
stantial, especially for output tasks like checkpointing, and
(2) noise from I/O actions can inject undesirable delays into
the runtimes of such codes on individual compute nodes.
This paper introduces the flexible ‘DataStager’ framework
for data staging and alternative services within that jointly
address (1) and (2). Data staging services moving output
data from compute nodes to staging or I/O nodes prior to
storage are used to reduce 1/0 overheads on applications’ to-
tal processing times, and explicit management of data stag-
ing offers reduced perturbation when extracting output data
from a petascale machine’s compute partition. Experimen-
tal evaluations of DataStager on the Cray XT machine at
Oak Ridge National Laboratory establish both the necessity
of intelligent data staging and the high performance of our
approach, using the GTC fusion modeling code and bench-
marks running on 1000+ processors.
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1. INTRODUCTION

The increase in compute partition sizes on petascale ma-
chines (headed toward multi-petascale) accompanied by an
increased emphasis on 1/O performance is poised to drive
the adoption of application aware data services for high per-
formance computing. Such services can carry out actions
ranging from data capture and mark-up, to reorganization,
formatting[24] or compression [19], to filtering and/or pre-
processing in preparation for visualization [37] or analy-
sis[36, 1]. This paper describes data staging services that
provide scalable, low overhead, and asynchronous data ex-
traction for parallel applications running on petascale ma-
chines.

Data staging services use asynchronous methods for data
extraction from compute nodes. Therefore, instead of block-
ing and waiting for data output to complete, they allow
the application to overlap data extraction with its computa-
tional actions. As shown in Section 3 of this paper, this re-
sults in significantly reduced overhead for data output, even
when compared to minimal output methods like POSIX I/0.
As applications begin to utilize tens of thousands of process-
ing cores the cost of some operations increases to untenable
levels due to their lack of scalability. In particular, man-
agement of metadata consistency with large I/O can be a
performance bottleneck. By delegating to data staging ser-
vice some of the file semantics (such as a global shared file
creation and management), the compute application is not
unduly burdened by the synchronization requirements of a
normal filesystem operation. As a more complex example,
consider data reduction through volume averaging of a large
mesh during the output of data from a large simulation, such
as the particle-in-cell code GTC [29] which serves both as
a motivating application and a key evaluation target (see
Section 3).

Data staging services leverage the penetration of RDMA-
based network infrastructures such as Infiniband, iWarp,



Quadrics Elan, IBM BlueGene Interconnect, and Cray SeaStar

in modern supercomputing infrastructures. Specifically, these
provide a new opportunity for the creation of a staging ser-
vice that shifts the burden of synchronization, aggregation,
collective processing, and data validation to a subset of the
compute partition — the staging area. Data processing in
the staging area can then be used to provide input to a va-
riety of extensible service pipelines such as those needed for
formatted data storage on disk [24], for data movement to
secondary or even remote machines [19], or for data visual-
ization[37].

Meaningful actions on data in the staging area are made
possible by the fact that data staging services recognize and
make use of the structure of the data captured on compute
nodes. In our work, instead of serving as a simple byte
transfer layer from compute to disk storage, data staging
services use the FFS data format library to cast output into
a self-describing binary form suitable for efficient online ma-
nipulation. With such structure information, data staging
services can be customized for each type of data produced
by the petascale code (e.g., for particle vs. mesh data in
the GTC fusion modeling application). Customization is at-
tained through dynamic code generation for unmarshalling
and manipulating data, providing low overhead reflection
and inspection of data and providing a lightweight infras-
tructure for stream-based data processing. Using FF'S also
enables inline data extension, where the data is written to
disk with generated metadata attributes that allows for more
intelligent reading algorithms.

The specific set of data staging actions and behaviors de-
scribed and evaluated in this paper are those that pertain
to I/O performance and overheads. The DataStager infras-
tructure follows from a set of developments in server-side
1/0[15][32], and it enables the implementation of several of
the current dominant extraction patterns from those works.
In particular, this paper evaluates and contrasts state-aware
with concurrency constrained (i.e., constant slow draining)
approaches, as well as with more familiar blocking Posix
1/0. Total throughput, the degree of blocking in the appli-
cation and benchmark codes, and also application perturba-
tion are measured for all of the I/O configurations.

The contributions of this work are its demonstrations of
reduced overhead and increased I/O scalability attained from
two key innovations: (1) moving from methods for raw byte-
transfer to methods for moving data objects meaningful to
the application, coupled with (2) using alternative and ap-
plication phase aware methods for scheduling object move-
ments to attain desired performance properties, such as re-
duced perturbation on application performance. DataStager
differs, therefore, from other approaches that try to hide
raw data staging functionality below filesystem APIs [12]]23]
or at the level of the block I/O subsystem [3]. We justify
this new approach not only with improved performance and
reduced overheads, but also with increased extensibility in
terms of the ability to utilize the ever-increasing computa-
tional resources of petascale machines for assisting in the
output (processing) needs of high performance applications.

DataStager’s experimental evaluation uses both a syn-
thetic microbenchmark and a scientific application, the GTC
fusion modeling code running on the Oak Ridge National
Laboratory’s Cray XT Jaguar machine. The DataStager
framework is implemented upon Cray portals, which is the
native RDMA interface for the XT, and upon uverbs, the
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native RDMA for Infiniband. DataStager, therefore, oper-
ates on both Cray machines and on IB-based cluster engines.
This paper reports experimental runs on 1000+ processors
on the Cray XT to showcase the scalability and performance
expectations on this class of machine and to demonstrate the
need for the DataStager approach. In fact, performance re-
sults show that proper management of data extraction can
maintain I/O overhead at less than 4% even as we scale
the application to 2048 cores. For 1024 cores the overhead
can be maintain at almost 2%. This is a substantial im-
provement compared to synchronous I/O methods such as
POSIX and MPI-IO which show an overhead of more than
25% for 2048 cores and more than 10% for 1024 cores when
configured for identical output periodicity.

In the remainder of this paper, we discuss our goals for
the DataStaging service framework in Section 2 and details
on the design in Section 2.1. We discuss the implications
of an asynchronous data output service and describe in de-
tail some of the scheduling systems we have implemented in
Section 2.2. The experimental evaluation is described fur-
ther in Section 3 where we study the impact of the number
of staging nodes on the maximum achievable throughput
in Section 3.1 and the impact of multiple data extraction
strategies on GTC performance in Section 3.2. Finally we
conclude with a discussion of related work in this area and
a discussion on the direction of our future research.

2. DATA STAGING SERVICES

Asynchronous methods are known to help in addressing
the I/O needs of high performance applications. In [6], for
instance, the authors show that when asynchronous capa-
bilities are available, synchronous I/O can be outperformed
by up to a factor of 2. The studies performed in our pa-
per use a novel, high performance data transport layer de-
veloped by our group, termed DataStager. DataStager is
comprised of a library called DataTap and a parallel staging
service called DataStager. In order to support easy inclu-
sion of best practice, scalable I/O in high performance codes,
others within our research collaboration have implemented
the ADIOS I/0 portability layer [24], which supports both
blocking and asynchronous I/O modules. DataTap inter-
faces with the ADIOS API in order to keep application level
code changes to a minimum and to enable the user to deter-
mine the transport of choice at runtime.

One mechanism that has been used to manage asynchronous
communication is server-directed 1/0[27, 28]. This is par-
ticularly useful in high performance architectures where a
small partition of 1/0 nodes service a large number of com-
pute nodes. The disparity in the sizes of the partitions,
coupled with the bursty behavior of most scientific appli-
cation I/O [25] , can lead to resource exhaustion on the
I/O nodes. In server-directed I/O, the data transfers and
hence the resources, are controlled by the I/O nodes, al-
lowing smoother accesses. Such techniques have been used
for both large cluster filesystems [27] and for direct to disk
I/0 [22]. When asynchronous communication in an RDMA
environment is added, server control becomes doubly impor-
tant. Specifically, in addition to managing the resources, the
server control of the data transfer allows the application to
progress without actively pushing the data out. Instead, the
server pulls the data whenever sufficient resources are avail-
able. Under ideal conditions, the rate at which the server
pulls the data — the ingress throughput — is equal to the rate
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Figure 1: DataStager Architecture.

at which the server retires the data — the egress throughput.
The ability of the server to satisfy bursty ingress requests
will naturally be bound by the interconnect bandwidth be-
tween the I/O node and the compute partition.

We address the problems of scaling application I/O to
petascale and of the need for runtime understanding and
analysis of data with the following:

1. Minimal Runtime Impact. To ensure that asyn-
chronous I/0 has low runtime impact, the DataTap
client library copies data into a fixed and limited amount
of buffer space on compute nodes. Minimal bookkeep-
ing is performed to maintain information about buffer
status and availability.

2. Flexibility in I/O via binary data formats. DataTap
marks up its binary data using an efficient, self-describing

binary format, FFS [9, 18]. This makes it possible
for binary data to be inspected and modified in tran-

sit [35], and it enables the association of graph-structured

data processing overlays, termed I/OGraphs [1]. With
such overlays, I/O can be customized for a rich set of
backend uses, including online data visualization, data
storage, and transfer to remote sites, including with
standard methods like GridF'TP [10].

3. Compatibility with ADIOS. The ADIOS interface
is a platform-customizable mechanism for I/O in sci-
entific applications and provides a uniform 1/O inter-
face for application developers. The ADIOS library
provides methods for some of the most common in-
terfaces, which allows each run of the application to
be optimized for a specific hardware/software archi-
tecture [24]. DataTap has been interfaced to ADIOS,
thereby providing a novel transport supporting asyn-
chronous managed I/O and allowing the users of an
application to select the asynchronous method at run-
time.

The DataStager-DataTap system was initially developed
on the Cray XT class of machines using the Portals program-
ming interface [8, 7]. We have also implemented a version
using the Infiniband uverbs interface; performance evalua-
tion of the infiniband version is included in [1]. It is note-
worthy to mention that like all asynchronous 1/0 efforts, the
DataStager can only service applications that have sufficient
local memory space to buffer the output data.
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2.1 Design

DataStager has two different elements: the ‘DataTap’ client
library and the ‘DataStager’ processes. The DataTap client
library is co-located with the compute application. It pro-
vides the basic methods required for creating data objects
and transporting them, and it may be integrated into higher
level I/O interfaces such as the new ADIOS interface used
by an increasing number of HPC codes[24]. The DataStager
processes are additional compute nodes that provide the
data staging service to the application. The actual data
output to disk, data aggregation, etc. are performed by the
DataStagers. The combined libraries work as a request-read
service, allowing the DataStagers to control the scheduling
of actual data transfers.

Figure 1 describes the DataStager architecture. Upon ap-
plication request, the compute node marks up the data in
FFS format (see [17] for a detailed description of PBIO,
an earlier version of FFS) and issues a request for a data
transfer to the server. The server queues the request until
sufficient receive buffer space is available. The major costs
associated with setting up the transfer are those of allocat-
ing the data buffer and copying the data; they are small
enough to have little impact on overall application runtime.
When the server has sufficient buffer space, an RDMA read
request is issued to the client to read the remote data into
a local buffer. This data is queued in the DataStager for
processing or directly for output.

2.2 Managing data transfers

DataStager’s scheduling service, implements server directed
I/0. Use of server-side I/O allows us to explore novel meth-
ods of scheduling data transfers as part of the service. We
have designed four schedulers in order to evaluate their abil-
ity to enhance functionality, to provide improved perfor-
mance, and to reduce perturbation for the application.

1. a constant drain scheduler,

2. a state-aware congestion avoidance scheduler,

3. an attribute-aware in-order scheduler, and

4. a rate limiting scheduler.

DataStager uses resource aware schedulers to select re-
quests for the RDMA service. Selection of a request from
the transfer queue is based on the following:



Node(R) is the originating node for request R;
Size(R) is the size of the I/O request;
if Node(R) is waiting for completion then
| return TRUE;
else
toiart, tong are the start and end time for compute
phase n;
teurrent 1S the current time;
titer is the estimated width of a single iteration for
Node(R);
trequest 1s the time at which the request was issued;
At = tcurrent - trequest ;
Aiter = floor(tﬁ;) ;
foreach compute phase, i in Node(R) do

if teurrent 1S between témm AND tind then
| return TRUE;

end

end
return FALSE;
end

Algorithm 1: The Phase aware scheduler determines
whether the application is in the compute phase for the
DataStager to start the transfer

e Memory Check. A check is performed to determine
whether there is sufficient buffer space available to ser-
vice the request. This check ensures that the DataStager
does not issue unbuffered reads and suffer from re-
source exhaustion.

e Waiting Check. A node may issue an asynchronous
I/0 request and then block for completion after a pe-
riod of computation. If a node is currently blocked
waiting for a request to complete, the request should
be serviced as soon as possible to minimize the perfor-
mance penalty.

e Scheduler Check. A schedule request is made to the
scheduling module for each transfer request. The trans-
fer is only initiated if all the scheduler modules indi-
cate viability. This enables the DataStager to stack
schedulers in order to fulfill multiple resource alloca-
tion policies while also simplifying the development of
new schedulers.

Once all schedulers have agreed to issue a transfer re-
quest, it is serviced in two parts. First, an RDMA read
request is issued to the originating node. Due to the latency
of request completion and because available buffer space is
usually larger than a single request size, multiple requests
may be serviced simultaneously. This overlapping enables
DataStager to complete all requests faster. Once the RDMA
read is completed, an upcall is made to the staging handler.
The handler will then process the message according to the
configured policy — direct write to disk, network forward-
ing, further processing, and so on. The incoming data is
in FFS format allowing the use of FFS’s reflection interface
to query the data block and perform operations such as ag-
gregation and filtering in the data processing area without
making a copy. The data can also be published with the
EVPath [16] event transport for further processing as part
of an application specific I/O pipeline [35].
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2.2.1 Continuous Drain scheduler

The Continuous Drain (CD) scheduler is designed to pro-
vide maximal usage of the buffering available to the staging
area. As soon as buffer space is available, an RDMA read
call is issued. The throughput for this scheduler is limited
by the ingress and egress throughputs, the rate at which the
staging area processes data and the amount of buffer space
available in the DataStager. However, it also creates a large
impact on the performance of the application (and hence
also secondary effects on the ingress throughput). For large
cohort sizes (i.e., a large number of clients), the strategy of
draining the data as fast as possible can substantially per-
turb the time taken to complete intra-application communi-
cation, particularly large collective calls like MPI_ALLTOALL.
In fact, the resulting overhead has an impact on performance
that dwarfs the time spent waiting for synchronous data
transfers to complete!. Interestingly, despite that level of
perturbation, the CD scheduler can yield good performance
in cases where an application does not rely on collective
global communication or uses asynchronous MPI communi-
cation.

2.2.2 Phase-aware congestion avoidance scheduler

As stated earlier, the use of asynchronous methods for
data transfer can reduce or eliminate the blocking time expe-
rienced by HPC codes using synchronous methods for 1/0.
A resulting new problem is one of potential perturbation
in communication times experienced by tightly coupled and
finely tuned parallel application. This is because of the over-
lap of intra-application communication (e.g., MPI collec-
tives) with the background transfer of output data that uses
the same interconnect. Interestingly, this phenomenon is not
generally observed for smaller scale parallel codes (e.g., up
to a hundred nodes), but as the application scales to larger
machines such as the Cray XTs (i.e., to multiple hundreds
of nodes and above), it can significantly impact the perfor-
mance of intra-application communications and thus, of the
application itself.

The contention caused by multiple nodes using the in-
terconnect can significantly decrease communication perfor-
mance. Although the increase in perturbation is not surpris-
ing, as we scale to more than 512 nodes we observe that the
total perturbation cost is far greater than the that of simply
blocking for I/O. Moreover we find that the perturbation
caused by the background transfer of data is not limited to
the asynchronous DataTap-DataStager method. As can be
seen from Figure 5 the function smooth! has an overhead
with both POSIX and MPI-IO synchronous methods.

In order to prevent application perturbation, the phase-
aware scheduling mechanism attempts to predict when each
process is involved in either a local computation (compute
phase) or in an MPI communication (communicate phase).
Such phase information is provided to the DataStager through
a ‘performance buffer’ that is maintained for each node com-
municating with the DataStager (see Figure 1). On the
compute nodes, the DataTap library updates its local perfor-
mance statistics at the end of each iteration. If the client de-
tects a significant change (e.g. the current iteration run time
exceeds the previously reported one by more than 10%), the
client updates a remote performance buffer on the DataStager.

A key requirement for phase-aware scheduling is to accu-
rately estimate the duration of computational and/or com-
munication phases of parallel codes. Specifically, the sched-



uler must estimate when the application transitions to a
compute only state, where such a state is defined as an
application state with which is associated no more than
some small amount of communication (i.e., only isolated
send /receives). This is because simple point to point and
sub-communicator broadcast communications (or pure com-
putation) are not likely to be perturbed by asynchronous
1/0 as opposed to global MPI collective operations.

One way to estimate the duration of computational appli-
cation phases is to solicit input from developers, by asking
them to mark the portions of the application code that are
suitable vs. not suitable for background I/O. ADIOS pro-
vides a uniform API for these types of hints. For simplicity,
we currently use this approach, but this can be generalized
and automated using known methods for phase detection,
including the techniques reported in [14].

An application enters a compute state at time tstqr¢ and
computes for a time At, exiting the compute state at time
tend. In some scientific applications, the period At is regular,
i.e., once the application reaches steady state there is very
little variation in the time spent in each compute state. For
applications where the computational loop is irregular (e.g.,
optimization applications), a different mechanism needs to
be studied for implementing the predictor. For regular ap-
plications (such as our motivating application, GTC [29]),
a perfect phase-aware scheduler would always start a data
transfer after tsiqr+ and finish the data transfer before teng.
Given sufficient iterations between successive I/O calls, such
an ideal scheduler would induce no interconnect perturba-
tion and have a minimal performance impact.

In our current implementation, explicitly installed instru-
mentation is used to inform the I/O library each time the
application has entered a computation state, at time tstqrt,
and at time tenqg, the I/O library is informed that the ap-
plication has left the computation state. Because all of the
1/0 requests will not be serviced within a single application
iteration, the I/O library also tracks the time taken to com-
plete one application iteration (the main loop), titer. The
performance tuple for n compute phases in one application
iteration, {titer, [{tstart,tend}]|”"}, is lazily mirrored on the
DataStager, as described previously.

Experimental results attained with this scheduler and shown

in Section 3 show that the phase aware scheduler can reduce
the performance impact of background I/O from more than
10% with POSIX data output to about 2% even as the ap-
plication scales to more than 1024 nodes.

2.2.3 Attribute-aware in-order scheduler

One disadvantage of using a state-aware scheduler is the
burden placed on the data staging buffer space in order to
create an ordered stream of output data for those applica-
tions that require one. This can result in reduced perfor-
mance due to the additional time that data blocks are held
in buffer instead of being processed and transmitted (or writ-
ten to disk). One example of where such a problem arises is
writing a snapshot to a shared file. To complete the write
of block b;, we need to know the sizes of blocks b;|j < i.
Instead of letting the compute application synchronize itself
and exchange sizes, we propose that the data staging service
can more simply perform this operation with less overhead.

‘We address this problem with an attribute-aware in-order
scheduler. When a data block is processed for output, an
attribute is added to the block defining its order in the
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Figure 2: This benchmark compares the cumulative
and per DataStager throughput observed when run-
ning on 1024 nodes.

application-defined attribute space. When the DataStager
services its request it guarantees that request ¢ will not be
processed before request j if i > j. Thus, when a request is
processed, the DataStager already knows the sizes of all pre-
vious requests and can write a shared file without any addi-
tional synchronization. In the case of multiple DataStagers
addressing a group of requests, the sizes can be exchanged
within this small group of nodes, or multiple shared files can
be created and merged in an additional processing step.

2.2.4  Rate limiting scheduler

Phase aware scheduling provides solutions for applications
that follow regular predictable patterns for data output. Us-
ing these predictable patterns we can, with a degree of confi-
dence, avoid the resource usage conflict between DataStager
and intra-application communication. In the case of ap-
plications with irregular patterns, however, such as AMR
applications [33], the state-aware scheduler cannot predict
the phases of the application with any reasonable degree of
accuracy. In such cases, a different strategy must be em-
ployed.

A rate limiting strategy for extracting data from a large
cohort of application nodes can be considered if the peri-
odicity of data output is sufficiently large and if the data
is not required to be processed immediately. By managing
the number of concurrent requests made to the application
nodes, the DataStager can greatly reduce the impact of per-
turbation on intra-application communication. Limiting the
rate can have performance implications in terms of reduced
ingress throughput and slower time to completion for the
requests. This impact can be avoided by appropriately vary-
ing the level of concurrency to achieve a proper balance of
throughput and perturbation.

Consider an application that writes out data of size 200
GB every 5 minutes from 1024 cores. In order to reduce
perturbation and maintain a consistent drain rate from the
application, we need to manage the level of concurrency of
requests. As seen in Section 3.1 by varying the number of
staging nodes we can control the ingress throughput from the
application. Using 128 compute processes per DataStager
nodes, we see ingress throughput of approximately 8GB/s.
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Thus draining at the best possible speed we can complete the
data transfer in 25 seconds. However this may result in an
unacceptable level of perturbation on the source application.
By reducing the number of concurrent data transfer requests
being serviced to 1 per DataStager we would increase the
time to completely move the data from the compute nodes
to the DataStager, but we also could reduce the impact on
performance caused by background I/0.

One aspect of the rate limiting scheduler is the determi-
nation of an appropriate concurrency rate for each type of
data output by an application. Currently we do not modify
the rate autonomically but we are investigating policies that
will enable the DataStager to determine the optimal rate at
which data is extracted.

3. EVALUATION

We developed and evaluated the DataStager on National
Center for Computational Sciences (NCCS) Jaguar Cray XT
at ORNL. Currently each Jaguar node is a 2.1 GHz quad-
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core AMD Opteron processor and 8 GB of memory, con-
nected to the Cray SeaStar2 interconnect. The interconnec-
tion topology is a 3-D torus with each SeaStar2 link enabling
a maximum sustained throughput of 6.5GB/s. The compute
node operating system is Compute Node Linux (CNL), and
all applications were compiled with the pre-installed PGI
compilers. Cray uses the low level Portals API for network
programming and provides high level interfaces for MPI and
Shmem.

As mentioned before, we used the Gyrokinteic Turbulence
Code, GTC [29] as an experimental testbed for DataStager.
GTC is a particle-in-cell code for simulating fusion within
tokamaks, and it is able to scale to multiple thousands of
processors. In its default I/O pattern, the dominant I/O
cost is each processor’s output of the local particle array
into a file. Asynchronous I/O potentially reduces this cost
to just a local memory copy, thereby reducing the overhead
of I/O in the application. No effort was made to optimize the
location in the interconnect mesh of the compute processes
with regards to the DataStagers.



We also performed micro-benchmarks to evaluate the max-
imum throughput for data extraction. For all tests we used
the NCCS Jaguar platform with the number of client nodes
varying from 64 to 2048. The DataStager nodes used the
entire physical node - 4 cores and 8 GB of memory.

We evaluated 6 different data extraction scenarios.

e CD is the continuous drain method for data extrac-
tion.

e PA is the phase aware method to manage the timing
of data extraction.

e Con_X. is the rate limiting scheduler which limits the
number of outstanding concurrent requests to X. We
explored two values for X, 1 and 4.

e PA_Con_X. is a stacked combination of the rate lim-
iting scheduler and the phase aware scheduler. In this
scenario the number of concurrent requests are limited
to X and a new request is only issued if the applica-
tion is the compute phase. As above we explored two
values for X, 1 and 4.

For the remainder of this paper we use the above notation
to reference the data extraction strategies.

3.1 Ingress Throughput Evaluation

To measure the ingress throughput we use a parallel
test application writing out 128 MB per node per output.
Each client process issues an output request and waits for
completion immediately. The time taken to complete the
data transfer for all client processes is used as the measure
for maximum ingress throughput to the DataStagers. In
order to maximize the ingress throughput we only utilize
the continuous drain scheduler and retire the data buffers
from the DataStager staging area immediately.

As can be seen Figure 2 the ingress throughput increases
as we increase the number of staging nodes. For a single
staging node we see an ingress throughput of 1.2GB/s. As
we increase the number of staging nodes the available data
extraction throughput increases to more than 55GB/s for
128 DataStager nodes with 2048 client processes. Note that
the ingress throughput does not scale arbitrarily with ad-
dition of more DataStagers for a small compute partition
size. We believe that as the number of clients is increased
the overall efficiency of the DataStager’s ingress bandwidth
will also increase.

3.2 GTC benchmarks

We have extended I/O in the Gyrokinetic Turbulence Code
GTC [29] using the ADIOS application interface. The flex-
ibility of the ADIOS interface allows us to run experiments
using blocking binary I/O, DataTap with multiple schedul-
ing strategies, and even no I/O without modifying the ap-
plication binary. For all of the runs, the total configuration
size was adjusted so that the amount of data per compute
node was a consistent 6,471,800 ions/core. GTC is used for
evaluation due to the size of the data output as well as the
ability for the code to scale to more than 30,000 cores. We
have used a version of the GTC source tree with support
added for ADIOS as its I/O library. Using ADIOS has pro-
vided us with the opportunity to perform exact comparison
tests with the application by simply switching a parame-
ter in the config.xml file. To allow better understanding
of the performance of different scheduling parameters we
disabled all outputs from GTC except the particle output.
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Also to keep the comparison to multiple run sizes as close
as possible we used weak scaling (i.e., maintain a fixed per
process problem size) instead of strong scaling (i.e., main-
tain a fixed global problem size and only change the number
of processes) to maintain a consistent size for the output
data per core. Thus the total size of the problem increases
but the size per core remains constant. The data size from
each output is 188MB/core. The total data volume varies
with the number of parallel cores from 12 GB/output to 3.8
TB/output. The output had a periodicity of 10 iterations
(approx. 3 minutes wall clock time) and the application ran
for 100 iterations. In order to avoid the variations at startup
we only measure the time from the 20th iteration onwards.

3.2.1 Runtime impact from background staged 1/O

We compare the GTC run time for each of the different
data extraction methods described earlier. In order to get
an accurate understanding of the cost associated with I/O
we also evaluate the default POSIX data output (through
the POSIX transport method in ADIOS) as well as a no-op
transport method, NO-IO. When required we also use the
default implementation of the MPI-1O transport method as
a second example of synchronous I/0.

Consider Figure 3(a) shows how application run time is
impacted by different DataStaging schedulers. For a small
number of compute cores (e.g. 64) there is very little im-
pact on the overall performance from I/O. Con_1 is the only
strategy that shows appreciable overhead and even then it is
less than 5%. At 512 compute cores the different schedulers
start to differentiate. 512 is the minimum size at which we
see significant impact from perturbation. Below 512 com-
pute cores, the runtime difference between synchronous and
asynchronous I/O is minor. As we move to 512 and 1024
cores we see statistically significant differences in run times.
PA, PA_Con_1 and PA_Con_4 continue to show very little
overhead from I/O extraction. Con_1 and Con_4 perform at
the same level as synchronous output with POSIX. The low
impact of all asynchronous strategies is also evident with
2048 application cores. The performance impact of POSIX
increases to over 20%. Con_4 and PA_Con_4 maintain an ac-
ceptable level of performance impact even at this scale. The
same pattern is observed with 16 staging nodes, but the per-
formance impact of background I/O using continuous drain
increase greatly.

In Figure 4 we quantify the percentage cost of using the
DataStager for performing non-blocking I/O for 4 and 16
staging nodes. For a small number of client cores (64) the
synchronous POSIX method offers superior performance.
However as we scale and the total size of the data increases,
the time spent in synchronous I/O increases more than the
overhead of the DataStager method. The percent impact
of the POSIX method increases from less than 2% with 64
cores to 10% with 1024 cores, increasing to over 25% with
2048 cores. In contrast the impact of the DataStager de-
pends greatly on the type of scheduling mechanism used, as
well the number of staging nodes used stacking the rate lim-
iting scheduler with the Phase aware scheduler PA_Con_4
and PA_Con_1 provides the best performance as we scale
the number of compute cores. The number of staging nodes
also has an impact on the perturbation of the compute ap-
plication, with 4 staging nodes showing lower perturbation
in general than 16 staging nodes.
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Figure 6: The time taken to complete all pending
I/0 requests from all processors

3.2.2  Breakdown of impacted subroutines in GTC

To further our understanding of the performance charac-
teristics for the DataStager we analyzed the runtime for the
smooth subroutine in the GTC code path. For clarity we
are not displaying the impact on the rest of the subroutines.
Smooth immediately follows the data output and hence in
cases of improperly managed data transfers shows the great-
est level of perturbation. Consider Figure 5 which shows the
runtime for the smooth and restart function with 1024 cores
for all schedulers as well the synchronous methods. For both
POSIX and MPI-IO we see a large increase in the time for
restart, signifying the I/O blocking time. We also see a
significant increase in smooth due to the partial buffering of
output data by the Lustre client and subsequent background
evacuation of the buffer to OSTs. In contrast the DataStager
shows very low runtime overhead for the restart subroutine.
However the performance of smooth is negatively impacted
by non phase aware data extraction strategies. such as CD,
Con_1 and Con_4.

3.2.3  Time to complete data extraction to DataStager

One important factor to consider for asynchronous I/0 is
the total time taken to service all of the application’s I/O
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requests. This time determines how often an application
can issue an asynchronous I/O request without requiring
additional buffer space. We compared the completion time
for the I/O phase at 1024 application cores (total data size of
180 GB) and the results are shown in Figure 6. As CD tries
to extract the data as fast as possible it is not surprising that
the time taken by CD is the lowest for 4 staging nodes, and
next to lowest for 16 staging nodes. However both Con_1
and Con_4 also show very low completion time. This is
because by limiting the concurrency of the inflight requests
the ingress throughput for a single request is maximized.
The phase aware strategies show much higher completion
time with PA and PA_Con_1 performing almost the same.
This is because phase aware strategies can only initiate a
transfer during a small window in order to avoid interfering
with the application.

4. RELATED WORK

There has been significant prior research into studying
improvements to the I/O performance for scientific appli-
cations. Highly scalable file systems like PVFS [11, 23],
Lustre [12], and GPFS [31] are examples of efforts to im-
prove I/O performance for a wide range of applications. Al-
though file systems such as GPFS do offer asynchronous
primitives, there has been no effort to study and eliminate
interference of asynchronous I/O and intra-application com-
munications in these file systems. LWFS [27, 28] is a high
performance lightweight file system designed to eliminate
metadata bottlenecks from traditional cluster file systems.
The current implementation of LWFS is very close to that of
the DataStager, offering an asynchronous RPC and a server-
directed data transfer protocol. The scheduling mechanisms
described in this paper are orthogonal to the functionality
of LWFS and can be used in order to further improve appli-
cation performance.

Recently there has been an effort to consider data staging
in the compute partition in order to improve performance.
[26] is an effort to improve I/O performance by using the
additional nodes as a global cache. Since I/O delegates are
implemented as part of MPI-IO the advantage of this ap-
proach is generality. However the performance impact of
this approach is limited for large data outputs where the
1/0 delegates exhaust the available caching space.

PDIO [34] and DART [15] provide a bridge between the
compute partition and a WAN. Similar in design to our
data staging services, both platforms would potentially suf-
fer from similar problems with interference. The idea behind
managed data transfers in DataStager could be utilized by
both projects to reduce the impact of asynchronous I/O on
application performance. As part of our future work, we
are also addressing the connection to WANs through the
EVPath [16] messaging middleware.

Hot spot detection and avoidance in packet switched inter-
connects [21, 20] and in shared memory multiprocessors [13,
5] are related to our efforts to reduce interference with com-
munication in scientific application. Solutions to the prob-
lems in those domains are still significant on the highly scal-
able MPP hardware, we are targeting, where state-aware
scheduling provides a software-only solution to the problem
of contention.

In [6] the authors evaluate MPI non-blocking I/O per-
formance on several leading HEC platforms. They found
only two machines actually support non-blocking I/O and



benchmark results showed substantial benefit by overlapping
1/0 and computation. The characteristics of the benchmark
used, however, does not allow the authors to study the im-
pact of the overlap of I/O and computation for asynchronous
I/O. In our work we have discovered that the real perfor-
mance penalties for asynchronous I/O are from interference
with communication.

[30] studies the impact of different overlapping strategies
for MPI-1IO. The authors consider different strategies for the
overlap of I/O with computation and communication show-
ing the performance benefits of asynchronous I/O. However
the results are limited to a small number of processors and
as we show there is limited interference at these sizes. The
innovative benchmarking tool used can be an aid to our own
effort in developing better strategies for data extraction.

Overlapping I/O with application processing has been shown

to dramatically improve performance. SEMPLAR [2, 4],
built on the SDSC Storage Resource Broker, supports asyn-
chronous primitives allowing asynchronous remote 1/O in
the Grid environment. Because SEMPLAR uses a separate
thread to implement a push-based model, there is a smaller
likelihood of interference with application communication.
However, the authors observed a performance decrease in
some scenarios where resource contention penalized perfor-
mance. Due to their push based model, the solution involved
a reorganization of the application code to remove overlap
between I/O and MPI. The DataStager provides a server-
based mechanism for accomplishing the same task, while
keeping application modifications to a minimum.

S. CONCLUSION AND FUTURE WORK

Measurements conducted on large-scale machines and re-
ported in this paper demonstrate that asynchronous I/O can
offer high levels of performance to end user applications. At
the same time, an interesting issue with such I/O methods
is the need for careful and coordinated use of machine re-
sources, to avoid the contention issues commonly occurring
in high end machines. A specific issue addressed in this pa-
per is jitter induced in the parallel application’s execution by
overly aggressive data transfers performed for I/O purposes.
The state-aware approach to I/O scheduling developed and
evaluated in this paper constitutes one way to avoid such
jitter, substantially reducing or eliminating the unintended
performance impact of asynchronous I/O while at the same
time, offering significant improvements in I/O performance

We have not yet implemented the end-to-end notions of
I/O performance desired by more complex multi-scale or
multi-model HPC codes. A first step toward that goal is
the fact that we already support multiple types of I/O for
each single application, but we have not yet implemented
priorities for different I/O groups. Our current plans are
to add multiple priority levels so that high priority I/O can
complete faster than lower priority I/O, without any ad-
verse performance impact. Next, we will add application-
specific scheduling mechanisms to allow data to be streamed
from the DataStager to an I/OGraph in some specific order.
Our longer term goal is to provide a framework for realizing
domain-specific high performance I/O scheduling algorithms
and services that go beyond high performance output to pro-
viding end-to-end I/O services and guarantees for large-scale
applications.
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