Skip to main content

Advertisement

Log in

Power consumption evaluation of all-optical data center networks

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Cloud computing and web emerging applications have created the need for more powerful data centers. These data centers need high bandwidth interconnects that can sustain the high interaction between the web-, application- and database-servers. Data center networks based on electronic packet switches will have to consume excessive power in order to satisfy the required communication bandwidth of future data centers. Optical interconnects have gained attention recently as a promising energy efficient solution offering high throughput, low latency and reduced energy consumption compared to current networks based on commodity switches. This paper presents a comparison on the power consumption of several optical interconnection schemes based on AWGRs, Wavelength Selective Switches (WSS) or Semiconductor Optical Amplifiers (SOAs). Based on a thorough analysis of each architecture, it is shown that optical interconnects can achieve at least an order of magnitude higher energy efficiency compared to current data center networks based on electrical packet based switches and they could contribute to greener IT network infrastructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. The impact of power and cooling on data center infrastructure. Market Analysis, IDC Inc. (2007)

  2. Report to congress on server and data center energy efficiency. U.S. Environmental Protection Agency, ENERGY STAR Program (2007)

  3. Wavelength selective switches for ROADM applications. Datasheet, Finisar Inc. (2008)

  4. Where does power go? GreenDataProject. Available online at: http://www.greendataproject.org (2008)

  5. Cisco 10GBASE SFP+ modules. Datasheet, Cisco Inc. (2010)

  6. Cisco Catalyst 2560 switch. Datasheet, Cisco Inc. (2010)

  7. Cisco Data Center Interconnect Design and Deployment Guide. Cisco Press, Indianapolis (2010)

  8. Cisco Nexus 5548P switch. Datasheet, Cisco Inc. (2010)

  9. Make IT green: cloud computing and its contribution to climate change. Greenpeace, March 2010 (2010)

  10. Samsung green DDR3. Datasheet, Samsung Inc. (2010)

  11. SOA-S-C-14-FCS 1.55 μm semiconductor optical amplifier. Datasheet, CIP Technologies Inc. (2010)

  12. The 50 G silicon photonics link. Intel Labs, White paper, Intel Inc. (2010)

  13. Tunable multiprotocol XFP optical transceiver—1550 nm, JXP series. Datasheet, JDSU Inc. (2010)

  14. Amamiya, Y., Kaeriyama, S., Noguchi, H., Yamazaki, Z., Yamase, T., Hosoya, K., Okamoto, M., Tomari, S., Yamaguchi, H., Shoda, H.: A 40 Gb/s multi-data-rate CMOS transceiver chipset with SFI-5 interface for optical transmission systems. In: IEEE International Solid-State Circuits Conference, pp. 358–359 (2009)

    Google Scholar 

  15. Barker, K.J., Benner, A.F., Hoare, R.R., Hoisie, A., Jones, A.K., Kerbyson, D.J., Li, D., Melhem, R.G., Rajamony, R., Schenfeld, E., Shao, S., Stunkel, C.B., Walker, P.: On the feasibility of optical circuit switching for high performance computing systems. In: Supercomputing Conference. doi:10.1145/1105760.1105781

  16. Benson, T., Akella, A., Maltz, D.A.: Network traffic characteristics of data centers in the wild. In: Proceedings of the 10th Annual Conference on Internet Measurement (IMC’10), pp. 267–280. ACM, New York (2010). http://doi.acm.org/10.1145/1879141.1879175

    Chapter  Google Scholar 

  17. Benson, T., Anand, A., Akella, A., Zhang, M.: Understanding data center traffic characteristics. In: Proceedings of the 1st ACM Workshop on Research on Enterprise Networking (WREN’09), pp. 65–72. ACM, New York (2009). http://doi.acm.org/10.1145/1592681.1592692

    Chapter  Google Scholar 

  18. Davis, A.: Photonics and future datacenter networks. In: HOT Chips, A Symposium on High Performance Chips, Stanford (2010)

    Google Scholar 

  19. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 51, 107–113 (2008)

    Article  Google Scholar 

  20. Eramo, V., Listanti, M.: Power consumption in bufferless optical packet switches in SOA technology. J. Opt. Commun. Netw. 1(3), B15–B29 (2009)

    Article  Google Scholar 

  21. Farrington, N., Porter, G., Radhakrishnan, S., Bazzaz, H.H., Subramanya, V., Fainman, Y., Papen, G., Vahdat, A.: Helios: a hybrid electrical/optical switch architecture for modular data centers. In: Proceedings of the ACM SIGCOMM 2010 Conference on SIGCOMM (SIGCOMM’10), pp. 339–350 (2010)

    Chapter  Google Scholar 

  22. Fujioka, N., Chu, T., Ishizaka, M.: Compact and low power consumption hybrid integrated wavelength tunable laser module using silicon waveguide resonators. J. Lightwave Technol. 28(21), 3115–3120 (2010)

    Google Scholar 

  23. Glick, M.: Optical interconnects in next generation data centers: an end to end view. In: Proceedings of the 2008 16th IEEE Symposium on High Performance Interconnects, pp. 178–181 (2008)

    Chapter  Google Scholar 

  24. Gripp, J., Simsarian, J.E., LeGrange, J.D., Bernasconi, P., Neilson, D.T.: Photonic terabit routers: the IRIS project. In: Optical Fiber Communication Conference (OThP3), Optical Society of America, Washington (2010)

    Google Scholar 

  25. Hemenway, R., Grzybowski, R., Minkenberg, C., Luijten, R.: Optical-packet-switched interconnect for supercomputer applications. J. Opt. Netw. 3(12), 900–913 (2004)

    Article  Google Scholar 

  26. Hida, Y., Hibino, Y., Kitoh, T., Inoue, Y., Itoh, M., Shibata, T., Sugita, A., Himeno, A.: 400-Channel 25-GHz spacing arrayed-waveguide grating covering a full range of C- and L-bands. In: Optical Fiber Communication Conference and Exhibit (2001)

    Google Scholar 

  27. Hlavacs, H., Da Costa, G., Pierson, J.M.: Energy consumption of residential and professional switches. In: Proceedings of the 2009 International Conference on Computational Science and Engineering (CSE’09), vol. 01, pp. 240–246 (2009)

    Chapter  Google Scholar 

  28. Hoelzle, U., Barroso, L.A.: The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines, 1st edn. Morgan and Claypool Publishers, San Mateo (2009)

    Google Scholar 

  29. Kachris, C., Tomkos, I.: A survey on optical interconnects for data centers. IEEE Commun. Surveys Tutorials 99, 1–16 (2011)

    Google Scholar 

  30. Kandula, S., Sengupta, S., Greenberg, A., Patel, P., Chaiken, R.: The nature of data center traffic: measurements & analysis. In: Proceedings of the 9th ACM SIGCOMM Conference on Internet Measurement Conference (IMC’09), pp. 202–208. ACM, New York (2009). http://doi.acm.org/10.1145/1644893.1644918

    Chapter  Google Scholar 

  31. Lam, C.F., Liu, H., Koley, B., Zhao, X., Kamalov, V., Gill, V.: Fiber optic communication technologies: what’s needed for datacenter network operations. IEEE Commun. Mag. 48, 32–39 (2010)

    Article  Google Scholar 

  32. Lee, D.: Scaling networks in large data centers (Invited talk). In: OFC/NFOEC (2011)

    Google Scholar 

  33. Luijten, R., Denzel, W.E., Grzybowski, R.R., Hemenway, R.: Optical interconnection networks: the OSMOSIS project. In: The 17th Annual Meeting of the IEEE Lasers and Electro-optics Society (2004)

    Google Scholar 

  34. Minkenberg, C.: The rise of the interconnects. In: HiPEAC Interconnects Cluster Meeting, Barcelona (2010). http://www.hipeac.net/Interconnects

    Google Scholar 

  35. Papadimitriou, G.I., Papazoglou, C., Pomportsis, A.S.: Optical switching: switch fabrics, techniques, and architectures. J. Lightwave Technol. 21(2), 384 (2003)

    Article  Google Scholar 

  36. Pina, J.F., da Silva, H.J.A., Monteiro, P.N., Wang, J., Freude, W., Leuthold, J.: Performance evaluation of wavelength conversion at 160 Gbit/s using XGM in quantum-dot semiconductor optical amplifiers in MZI configuration. In: Photonics in Switching (2007)

    Google Scholar 

  37. Proietti, R., Ye, X., Yin, Y., Potter, A., Yu, R., Kurumida, J., Akella, V., Yoo, S.J.B.: 40 Gb/s 8×8 low-latency optical switch for data centers (2011)

  38. Ramaswami, R., Sivarajan, K., Sasaki, G.: Optical Networks: A Practical Perspective, 3rd edn. Morgan Kaufmann, San Francisco (2009)

    Google Scholar 

  39. Scaramell, J.: Worldwide server power and cooling expense: 2006–2010 forecast. Market analysis, IDC Inc.

  40. Schulz, G.: The Green and Virtual Data Center, 1st edn. Auerbach Publications, Boston (2009)

    Book  Google Scholar 

  41. Shacham, A., Bergman, K.: An experimental validation of a wavelength-striped, packet switched, optical interconnection network. J. Lightwave Technol. 27(7), 841–850 (2009)

    Article  Google Scholar 

  42. Shen, G., Tucker, R.S.: Energy-Minimized design for IP over WDM networks. J. Opt. Commun. Netw. 1, 176–186 (2009)

    Article  Google Scholar 

  43. Simsarian, J., Larson, M., Garrett, H., Hu, H., Strand, T.: Less than 5-ns wavelength switching with an SG-DBR laser. IEEE Photonics Technol. Lett. 18, 565–567 (2006)

    Article  Google Scholar 

  44. Singla, A., Singh, A., Ramachandran, K., Xu, L., Zhang, Y.: Proteus: a topology malleable data center network. In: Proceedings of the Ninth ACM SIGCOMM Workshop on Hot Topics in Networks (Hotnets’10), pp. 8:1–8:6 (2010)

    Google Scholar 

  45. Singla, A., Singh, A., Ramachandran, K., Xu, L., Zhang, Y.: Feasibility study on topology malleable data center networks (DCN) using optical switching technologies. In: Proceedings of the Optical Fiber Communication Conference and Exposition (OFC) and the National Fiber Optic Engineers Conference (NFOEC) (2011)

    Google Scholar 

  46. Tucker, R.: Green optical communications. Part II. Energy limitations in networks. IEEE J. Sel. Top. Quantum Electron. 17(2), 261–274 (2011)

    Article  Google Scholar 

  47. Wang, G., Andersen, D.G., Kaminsky, M., Papagiannaki, K., Ng, T.E., Kozuch, M., Ryan, M.: c-Through: part-time optics in data centers. In: Proceedings of the ACM SIGCOMM 2010 Conference on SIGCOMM (SIGCOMM’10), pp. 327–338 (2010)

    Chapter  Google Scholar 

  48. Wang, H., Bergman, K.: A bidirectional 2×2 photonic network building-block for high-performance data centers. In: Optical Fiber Communication Conference. Optical Society of America, Washington (2011)

    Google Scholar 

  49. Xia, K., Kaob, Y.H., Yangb, M., Chao, H.J.: Petabit optical switch for data center networks. Technical report, Polytechnic Institute of New York University. Available at: http://eeweb.poly.edu/chao/publications/petasw.pdf (2010)

  50. Ye, T.T., Benini, L., Micheli, G.D.: Analysis of power consumption on switch fabrics in network routers. In: Proc. Design Automation Conference, pp. 524–529 (2002)

    Google Scholar 

  51. Ye, X., Yin, Y., Yoo, S.J.B., Mejia, P., Proietti, R., Akella, V.: DOS: a scalable optical switch for datacenters. In: Proceedings of the 6th ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS’10), pp. 24:1–24:12 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoforos Kachris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kachris, C., Tomkos, I. Power consumption evaluation of all-optical data center networks. Cluster Comput 16, 611–623 (2013). https://doi.org/10.1007/s10586-012-0227-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-012-0227-6

Keywords

Navigation