Skip to main content
Log in

A freight network planning model in oligopolistic shipping markets

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

The paper presents a multi-level hierarchical approach which models the oligopolistic behavior of carriers in maritime freight transportation networks. With the merger of the carriers’ industry and some dominant carriers in today’s shipping markets, carrier competition frequently exhibits an oligopolistic nature. This study considers the following three types of carriers; ocean carriers, land carriers, and port terminal operators. The oligopolistic ocean carriers, land carriers, and port terminal operators compete with each other in their pricing and routing decisions. The carriers determine service charges and delivery routes at different parts of the multi-modal freight network, creating hierarchical relationships. When using a game theoretic approach, ocean carriers become the leaders in an oligopoly shipping market. When dealing with individual carrier problems, the Nash equilibrium reveals the optimal decision where each carrier obtains the greatest profit. A three-level model is formulated to capture the interactions among different types of carriers. The validity and capability of the model gets demonstrated through an empirical example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Top 100 operated fleets. www.alphaliner.com. Assessed 25 June 2010

  2. Luberoff, D., Walder, J.: U.S. Ports and the fundings of intermodal facilities: an overview of key issues. Transp. Q. 54, 23–45 (2000)

    Google Scholar 

  3. Harker, P.T.: The state of the art in the predictive analysis of freight transport systems. Transp. Rev. 5, 143–164 (1985)

    Article  Google Scholar 

  4. Crainic, T.G.: Handbook of Transportation Science, 2nd edn. Kluwer Academic, Dordrecht (2002)

    Google Scholar 

  5. Valsaraj, V.: Stochastic and dynamic network design in freight transportation network. Thesis, The University of Texas at Austin (2008)

  6. Wang, Y.A.: Bi-level programming approach for the shipper-carrier network problem. Thesis, New Jersey Institute of Technology (2002)

  7. Zhang, T., Zhao, Q., Wu, W.: Bi-level Programming Model of Container Port Game in the Container Transport Supernetwork. Korean Society for Computational and Applied Mathematics, Seoul (2008)

    Google Scholar 

  8. Fang, S.C., Peterson, E.L.: Economic equilibria on networks. Mathematics Research Report 80-13, Department of Mathematics, University of Maryland, Baltimore (1980)

  9. Florian, M., Los, M.: A new look at static spatial freight equilibrium models. Reg. Sci. Urban Econ. 12, 579–597 (1982)

    Article  Google Scholar 

  10. Harker, P.T.: Prediction of intercity freight flows: theory and application of a generalized special price equilibrium model. PH.D. Thesis, University of Pennsylvania, Philadelphia (1983)

  11. Friesz, T.L., Tobin, R.L., Smith, T., Harker, P.T.: A nonlinear complementarity formulation and solution procedure for the general derived demand network equilibrium problem. J. Reg. Sci. 23, 337–359 (1983)

    Article  Google Scholar 

  12. Freisz, T.L., Hacker, P.T., Tobin, R.L.: Alternative algorithms for the general network spatial price equilibrium problem. J. Reg. Sci. 24, 475–507 (1984)

    Article  Google Scholar 

  13. Pang, J.S.: Solution of the general multicommodity spatial equilibrium problem by variational and complementarity method. J. Reg. Sci. 24, 403–414 (1984)

    Article  Google Scholar 

  14. Harker, P.T., Freisz, T.L.: Prediction of intercity freight flows: theory. Transp. Res. 20B, 139–153 (1986)

    Article  Google Scholar 

  15. Harker, P.T., Freisz, T.L.: Prediction of intercity freight flows: mathematical formulations. Transp. Res. 20B, 155–174 (1986)

    Article  Google Scholar 

  16. Harker, P.T., Freisz, T.L.: The use of equilibrium network models in logistics management: with application to the U.S. coal industry. Transp. Res., Part B, Methodol. 18, 457–470 (1986)

    Google Scholar 

  17. Dafermos, S., Narguney, A.: Oligopolistic and competitive behavior of spatially separated markets. Reg. Sci. Urban Econ. 17, 245–254 (1987)

    Article  Google Scholar 

  18. Harker, P.T.: Multiple equilibrium behaviors on network. Transp. Sci. 22, 39–46 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  19. Guelat, J., Florian, M., Crainic, B.C.: A multimode multiproduct network assignment model for strategic planning of freight flows. Transp. Sci. 24, 25–49 (1990)

    Article  MATH  Google Scholar 

  20. Miller, T.C., Tobin, R.L., Friesz, T.L.: Stackelberg games on a network with Cournot–Nash oligopolistic competitors. J. Reg. Sci. 31, 435–454 (1991)

    Article  Google Scholar 

  21. Hurley, W.J., Petersen, E.R.: Nonlinear tariffs and freight network equilibrium. Transp. Sci. 28, 236–245 (1994)

    Article  MATH  Google Scholar 

  22. Fernandez, J.E., De Cea, J., Soto, A.O.: A multi-modal supply-demand equilibrium model for predicting intercity freight flows. Transp. Res., Part B, Methodol. 37, 615–640 (2003)

    Article  Google Scholar 

  23. Agrawal, B.B., Ziliaskopoulos, A.: Shipper-carrier dynamic freight assignment model using a variational inequality approach. Transp. Res. Rec. 1966, 60–70 (2006)

    Article  Google Scholar 

  24. Cheng, T.C.E., Wu, Y.N.: A multiproduct, multicriterion supply demand network equilibrium. Oper. Res. 54, 544–554 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Yang, H., Zhang, X., Meng, Q.: Stackelberg games and multiple equilibrium behavior on networks. Transp. Res., Part B, Methodol. 41, 841–861 (2007)

    Article  Google Scholar 

  26. Xu, N., Holguin-Veras, J.A.: Dynamic model of integrated production-transportation operations. In: Transportation Research Board 2009 Annual Meeting (2009)

    Google Scholar 

  27. Xiao, F., Yang, H.: Three-player game-theoretic model over a freight transport network. Transp. Res., Part C, Emerg. Technol. 15, 209–217 (2007)

    Article  Google Scholar 

  28. Bureau of Transportation Statistics (BTS): World maritime container traffic 1995–2008 (2010)

  29. Kuroda, K., Takebayashi, M., Tsuji, T.: International container transport network analysis considering port-panamax class container ships. Transp. Econ. 13, 369–391 (2005)

    Article  Google Scholar 

  30. Zan, Y.: Analysis of container port policy by the reaction of an equilibrium shipping market. Marit. Policy Manag. 26, 367–381 (1999)

    Google Scholar 

  31. Min, H., Guo, Z.: Developing bi-level equilibrium models for the global container transportation network from the perspectives of multiple stakeholders. Int. J. Logist. Syst. Manag. 362379 (2010)

  32. Dimitriou, L., Stathopoulos, A.: An agent-based framework for designing competitive transportation systems. Int. J. Ind. Syst. Eng. 7, 90–109 (2011)

    Google Scholar 

  33. Lee, H.S., Boile, M., Theofanis, S.: Modeling carrier interactions in an international freight transport system. international journal of information systems and supply chain management (2013, in press)

  34. Mizutani, M., Tsuchiya, K., Takuma, F., Ohashi, F.: Estimation of the economic benefits of port development on international maritime market by partial equilibrium model and scge model. J. East. Asia Soc. Transp. Stud. 6, 892–906 (2005)

    Google Scholar 

  35. Weskamp, A.: Existence of spatial Cournot equilibrium. Reg. Sci. Urban Econ. 15, 219–227 (1985)

    Article  Google Scholar 

  36. Nagurney, A.: Network Economics: A Variational Inequality Approach. Kluwer Academic, Dordrecht (1999)

    Book  Google Scholar 

  37. Friesz, T.L., Kwon, C.H.: Strategit freight network planning models and dynamic oligopolistic urban freight networks. In: Handbook of Transport Modelling, pp. 611–631. Elsevier, Amsterdam (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang-Dae Lee.

Appendix

Appendix

Table 7 Parameters in the ocean carrier demand function
Table 8 Parameters in the transpiration cost function of ocean carrier o
Table 9 Parameters in the average port service cost function
Table 10 Parameters in the land carrier demand function
Table 11 Parameters in the transportation cost function of land carrier l

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, H., Boile, M., Theofanis, S. et al. A freight network planning model in oligopolistic shipping markets. Cluster Comput 17, 835–847 (2014). https://doi.org/10.1007/s10586-013-0314-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-013-0314-3

Keywords

Navigation