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Abstract With the continued growth in software environ- 1 Introduction
ments on cloud application platforms, self-management at
the PaasS level has become a pressing concern, and the rdi-order to remain competitive in a rapidly changing mar-
time monitoring, analysis and detection of critical sitaas ~ Ket, itis essential that service providers monitor andeesp
are all fundamental requirements if we are to achieve auo their existing and potential customers’ needs. For com-
tonomic behaviour in complex PaaS environments. In thipanies operating traditional deployment models this means
paper we focus on cloud application platforms offeringithei continually developing new systems and retiring old solu-
customers a range of generic built-in re-usable servicgs. Btions in relatively short periods of time [28]. For cloud ser
identifying key characteristics of these complex dynamicvice providers, it means constantly monitoring the sewice
systems, we compare cloud application platforms to disteith that are available to customers, identifying bottlenecks a
sensor networks, and investigate the viability of exphgjti  breakdowns, checking for Service Level Agreement (SLA)
these similarities with a case study. We treat cloud data stofailures and mismatches, and providing seamless hand-over
age services as “virtual” sensors constantly emitting monfrom one service to another.
itoring data, such as numbers of connections and storage This is particularly important at the PaaS (Platform-as-
space availability, which are then analysed by the centra-Service) level, where a large number of generic services
component of a monitoring framework so as to detect an#hay be available, such afata storage, queue messaging,
react to SLA violations. We discuss the potential benefitssearching, E-mail and SMS, logging and caching, among
as well as some shortcomings, of adopting this approach. others! These can be re-used and integrated by users, gener-
ating complex interrelationships between services and use
applications. Consequently, if a service becomes unexpect
Keywords Cloud Application PlatformsService-Oriented edly inaccessible, the platform provider needs to rec@gnis
Computing- Autonomic Computing Monitoring - Sensor  this problem as quickly as possible, and to take steps to re-
Network- Sensor Web place the ‘broken’ application with an equivalent working
alternative. The definition of ‘equivalent’ in this contexil
depend, of course, on the SLAs associated with all users pre-
viously using the now-inaccessible service.

The research leading to these results has received fundimgthe Eu-
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eu/). ing as it does the idea that services should be used as basic
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cluding everything from the performance of simple calcula-tential to monitor cloud application platforms (deploygd a
tions to the execution of complicated business processes plications, platform components, third-party servicegise
widely distributed environments [28]. tered with the platform, etc.) and detect critical situatian

The emergence of SOC opened new business opporta-timely manner so as to provide a basis for run-time self-
nities for enterprises who migrated their IT systems fromadaptation [10f. We focus in this paper on the PaaS level,
traditional monolithic approaches towards highly modularalthough it should be noted that the techniques we propose
and re-usable service-based architectures, and allowed aould potentially be used, albeit with some modifications
ganisations to develop highly distributed software systemand various caveats, by SaaS (Software-as-a-Service) and
in a short period of time by dynamically assembling basidaaS (Infrastructure-as-a-Service) providers as well.
services supplied by multiple service providers and hosted -
on different hosting platforms [28]. To meet the demands of To demonstrate the viability of our approach, we present

these service providers, it has been predicted that th@Hesuthke relsti][ts ofa Sdmtﬁ" C.atse Stutdil.’ whw}ihtfo((j:u?es ton the Her-
ing “service cloud” will come to comprise a federation of OXu piatiorm and the interpretation ot 1ts data storage ser-

resources offered by multiple infrastructure providerk [8 vices as sensors. Our approach uses a self-adaptationframe

and cloud platforms will continue to play an increasinglywOrk _developed using "Semantic Sensor Web’ techniques,
. S in which we represent heterogeneous values collected from
important role in this context.

Today’s cloud application platforms (e.g., Google Ap- services (e.g., number of client connections and occupied

pEnginé, Windows Azuré and Herokd) already host nu- storage §pace) using RDF triples, and stream these data to an
. . . g autonomic manager — the central component of the network,

merous services, ranging from simple operations to com- ) N : :

. : ; . . responsible for situation assessment, problem diagnodis a

plicated business logic, and ready to be integrated into an

. . " adaptation planning. To avoid overloading the autonomic
ever-expanding range of service compositions. However, th . I
S ) . . . manager, the data pass through a pre-processing (filtering)
continuing paradigm shift towards cloud computing has in- o :
tage, so that only critical, adaptation-relevant values&

troduced a new and pressing challenge: the complexity cﬁ

: . , . owed through. The case study can be regarded as a partial
next-generation service-based cloud environments is soon

expected to outgrow our capacity to manage them in a marP_roof of concept. Nonetheless, while we identify several po

ual manner [6,10], and current cloud computing providerstentlal benefits associated with our approach — extensibili

do not offer user-customised management and monitorinanOI scalability, opportunities to re-use existing solusidhe

mechanisms as part of their infrastructure [28]. Since comgoncept of routing nodes, and platform-independence — po-

o . . tential shortcomings can also be identified. These include
plexity is known to be inversely related to software reliabi

ity [19,26], the challenge of service management and mont_)oth problems concerning our ability to instrument propri-

itoring is especially pressing in the case of hybrid cIoudsfetary services, and the extent to which this may entail an

where different parts of an application system are deploye'cﬁ] trusive approach to monitoring.

on private and public clouds, and multi-clouds, where an ap-  The rest of the paper is organised as follows. Section 2
plication system is distributed across several clouds et this dedicated to the foundations of self-management and au-
same time. In this context, maintaining the ever-expandingonomic computing in cloud computing, in particular at the
software environment of a cloud application platform is apaas level. It also explains the essential role of monigprin
major challenge. Platform providers must be enabled to exand analysis components in self-managing systems. Section
ercise control over all critical activities taking place e 3 further discusses monitoring in the context of cloud appli
platform, with the introduction of new services and applica cation platforms. Taking Heroku as an illustrative example
tions, and the modification of existing ones, to maintain theye analyse the challenges associated with management of
platform’s and deployed applications’ stability and perfo such complex systems and draw parallels between cloud ap-
mance [19]. plication platforms and sensor networks. In Section 4 we
Meeting these challenges involves the rapid and scalablgresent the Heroku-based case study by applying our ideas
processing of large quantities of real-time data, gendrateto data storage services. Section 5 summarises the poten-
by a widely distributed system of performance monitors. Intial benefits and shortcomings of our approach, and suggests

this paper we argue that these monitors can be regarded @ays in which it can be expanded to include the laaS and
forming asensor network, which in turn allows techniques Saas levels. Section 6 concludes the paper.

developed by the sensor web community to be used to sup-
port the development of self-management mechanisms for
cloud application platforms. Of particular benefit is the po

5 It should perhaps be noted that we are not attempting herente ¢
% http://appengine.google.com/ pete with existing approaches for run-time monitoring iaucls, but
3 nttp://www.windowsazure.com/ rather to offer complementary concepts, which can be rewbet de-
4 http://www.heroku.com/ veloping cloud monitoring mechanisms.
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2 Self-Management at the PaaS Level customers of the PaaS offerings, to implement self-adaptat
logic within specific applications.
With the continuing paradigm shift towards cloud comput- It is our belief that self-management at the Paas level is
ing, service-based cloud environments can be expected #mjually important, and development of self-adaptationtmec
become ever more complex, outgrowing our capacity to mamnisms at the this level is essential in order to preventctlou
age them in a responsive manual manner. Both academia aptatforms from dissolving into “tangled” and unreliable-en
industry have consequently been putting considerableteffovironments. Our research therefore targets the PaasS, amd mo
into finding potential solutions to this problem. These solu specifically the Application-Platform-as-a-Service (a8pn
tions, mainly based on the principles of Autonomic Com-level of cloud computing [20] — a cluster of cloud platforms,
puting [15], have as their focus the creation of self-adapti which extend the default functionality offered to customer
cloud systems which are capablessff-management — the  such as an operating system and execution environment, with
ability to manage themselves without human intervention. a selection of generic re-usable services and tools to cre-

To date, attempts to equip clouds with autonomic beate applications and have them deployed and executed in a
haviour have mainly focussed on the laaS (Infrastructurecloud environment.We adopt the viewpoint of a supplier
as-a-Service) level, whether by developing efficient mechoffering its customers a range of built-in or third-party-se
anisms for distributing the varying volumes and types ofvices (whose behaviour we cannot easily change), and ask
user requests across different computational instahead:( how best to monitor and manage their life-cycles.
balancing), or by reserving and releasing computational re-
sources o_n_demanelastluty) [3,23]. Both load balangln_g 2.1 Monitoring and Adaptation
and elasticity are now seen as essential characteristics of

cloud computing [22]. The growing importance of distributed systems, including
Building on techniques developed by the grid and HPCseryice-based applications and clouds, has also motivated
computing communities, these existing approaches usualipe scientific community to investigate the adaptabilitd an
rely on collecting such data as CPU load, memory Uti“3a3ustainability aspects of such systems. Early theoraticek,
tion and network bandwidth to execute adaptation actionsmspired by Paul Horn’s Autonomic Computing ‘manifesto’
Depending on adaptation policies, such actions target var15] and referring to the original ‘self-* characterissiof
ious goals (e.g., increasing application performance or reaytonomic systems, served as groundwork for a wide range
ducing cost and energy consumption) and typically includg prototypical implementations of self-managing mecha-
replication andresizing techniques [13]. The former refers nisms for various computer system structures, including se
to adding and removing computational instances to megfice-based applications and clouds [7]. Existing selfpada
ever-changing resource requirements, whereas in the lattgtion mechanisms typically implement control feedbackko
case resources are added or removed within a single compgych as MAPE-R [18] or CADAS8 [12], where the monitor-
tational instance. Load balancing techniques are ofted US§ng activity acts as a trigger for adaptation: whenever moni
in combination with replication to spread workload equably;qgred variables move beyond pre-specified bounds, this trig
across available instances. Existing laaS adaptatioticotu gers adaptation (for example, re-balancing of workloaals) i
can be further classified asactive or predictive — the for- g attempt to restore normality.
mer are commonly employed by many laasS cloud providers, |n a proad sense, then, monitoring may be defined as
while the latter use various heuristic analytical and maehi e process of collecting and reporting relevant infororati
learning techniques to predict workload and scale ressurcgypout the execution and evolution of a computer system, and
accordingly. For a survey of existing elasticity and loatl ba ¢5n pe performed by any mechanism capable of checking
ancing techniques, the interested reader is referred 10 [13 \yhether the currently observed situation meets expecgatio
Unfortunately, the development of self-management caf17].° These monitoring processes typically target the col-
pabilities at the Platform-as-a-Service (PaaS) leverikefss  |ection of data concerning a specific artefact, fimitored
developed. Even though various approaches have been dgmject [5]. In the context of cloud application platforms,
scribed as targeting the PaasS level, these typically do net; Throuahout this paner we use the terms cloud apoficatiat ol
act at the PaaS_—IeveI Qirectly, but r_ely on lower level, I'aasform (CAP%, cloud plra)tfgrm’, service-based cloud, serva'ngni cIoudp
related adaptation actions [13]. Neither researchersladr p platform, PaaS, aPaaS, etc. interchangeably to refer teate con-
form providers have offered solutions which would allow cept.
hosted applications to modify their internal structure/and ' MAPE-K: Monitor, Analyse, Plan, Execute, Knowledge.
behaviour at run-time by adapting to changing context (e.g. 2 CADA: Collect, Analyse, Detect, Act. .
by substituting one Web service for another). This task has__ V;/Ieséoﬁ]lflu'gghs'ifﬁ?:éﬁ;;;ﬁg:’?segggtn_';?;:gmﬁistzg am
instead been shifted to the Software-as-a-Service (Sa@S) | mining, and online or offline testing — the interested reasieeferred
— that is, it has been left to software developers, the target [17].
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the monitored subject can be a platform component, an ag

plication, a service composition, a single service, eted a

depending on the implementation of the monitoring mecha«f @, N4 \

nism, monitoring can be either intrusive or non-intrusie.

It is also important to consider who is responsible for driv-| " \\

ing the monitoring process: ipolling mode, the monitor Y~
is responsible for querying the subject at regular intexval . gl :
while in push mode the subject is responsible for notifying | ) N ‘

the monitor whenever a significant event occurs [5]. A

In our view, implementing self-management at the Paas; .@ L :
level requires a flexible combination of approaches. On the; " 9
one hand, we could make it a condition of deployment that h

applications must conform to a platform-specific API that @ ,,,,,,,

includes the provision of ‘hooks’ to which monitors could ,,
be attached, thereby facilitating an intrusive approaait. B - ,
since these hooks necessarily provide access to applicatic 5____?'_‘_’”‘1'“55“ application {8} Cloud service |

performa_lnce data_\, th!s COUI_d in turn be seen as mtroducmlgg 1 Cloud-based applications are coupled to the platform@ses,
a potential security risk; this may be unacceptable whergith multi-tenancy allowing the same services to be used bserthan
particularly sensitive applications are concerned, inclvhi one application. The resulting ‘tangled’ structure resit a highly

case a non-intrusive approach would be required. MoreovefomPplex maintenance problem.
a ‘broken’ application cannot be relied upon to act accord-

ing to its specification, and in particular, therefore, @inn sing just six services has already saved considerable finan
be relied upon to push a report to the monitor, signalingja| time and human resources expenditure.
its own failure. It is therefore essential that a PaaS-level gErom the platform provider’s point of view, however, of-
monitor polls applications at regular intervals to deteveni  fering this level of flexibility comes at a price. With addson
whether they are still active. On the other hand, the Socreplicated across multiple computational instances (figu
inspired ability to combine applications in novel and unex-1) and coupled to more than one million deployed appli-
pected ways makes it impossible to anticipate in advancgationsl?12 jt becomes a challenging task to monitor the
all of the situations of which the monitor needs to be mad&yecution of the resulting PaaS environment so as to detect
aware —in such circumstances, it is also important thaiapplajjures and suboptimal behaviours. Maintaining the whole
cations can push event data to the monitor, since the monitg&stem at an operational level — that is, satisfying SLAs be-
may not itself issue the required queries. tween the provider and its consumers — is an inherently dif-
ficult problem.

The autonomic management framework we have been

3 Monitoring Services as Sensors developing for service-based cloud environments [10] re-
lies on monitoring and detection of critical situations,i@rh

Let us consider a hypothetical scenario in which an onlinéhen trigger appropriate adaptations. In other words, e tr
store is deployed on Heroku. This application has severalloud application platforms as devices equipped veih
web dynos (computational instances for processing incom-Sors — whenever a significant condition is picked up by a
ing HTTP requests) and sevenabrker dynos (computa-  ‘sensor’, a corresponding action is invoked by the ‘device’
tional instances for performing tasks on the server side)Adopting this approach leads immediately to the idea that
which can be scaled up and down. In order to fully utilisecloud application platforms can be treated sassor net-
the advantages of the cloud platform, this e-store apjicat works. Until recently sensor networks could be regarded as
may employ various add-on services — data storage, authef¢latively scattered groups of sensor components, eaelibas
tication, e-payment, search, notification, message qoguei On its own proprietary standards and serving its own indi-
etc. As this example suggests, the flexibility arising fromvidual purposes. This situation changed in 2003 with the
the freedom to choose from a range of pre-existing servicd@unch of the Sensor Web Enablement (SWE) initiative by
is appealing from the software developer’s point of view —the Open Geospatial Consortitfi{OGC), whose members
are “specifying interoperability interfaces and metadata

10 Intrusive monitoring requires the monitored subject to ri-
mented with probes to facilitate inspection of its chardsties. As ™ http://gigaom.com/2012/05/04/
with code instrumentation, it is essential that this is darith care, ~ heroku-boss-1-5m-apps-many-not-in-ruby/
since the instrumentation can itself potentially affee sbject’s per- 2 http://www.crunchbase. com/company/heroku
formance, providing a flawed picture of its inherent capted. 13 http://www.opengeospatial.org/
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Fig. 2 The concept of the Sensor Web.

codings that enable real time integration of heterogeneous

sensor webs into the information infrastructutéThe Sen-

sor Web can be seen as a collection of protocols and APIs,
coupled to and providing access to an interconnected net-
work of Web-accessible sensor networks and historical data

repositories (Figure 2).

While sensor networks are more usually thought of as
computer accessible networks of distributed devices using_

sensors to monitor continually varying conditions at dife
ent locations [4] (Figure 3), there are clear similaritigthw

our own problem domain, which requires the monitoring of

multiple distributed information sources on a cloud applic

tion platform in order to support self-management. Looking
at cloud application platforms from an information manage-
ment point of view, the commonalities can be summarised

e . o. »
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Fig. 3 Schematic of a sensor network.

— Heterogeneity: just as networked sensors can be attached
to a wide range of different devices, so platform data can
originate from a wide range of distributed sources (appli-
cations, databases, user requests, services, etc.)nthis i
formation is inherently heterogeneous, both in terms of
data representation (different formats, encodings, etc.)
and in terms of semantics. For example, two completely
separate applications from different domains with dif-
ferent business logic may store logging data in XML. In
this case, the data is homogeneous in its format — and
potentially also in structure — but heterogeneous at the
semantic level.

Distribution: the information provided by both sensors
and platform monitors may come from various logically
and physically distributed sources. On the logical side,
platform data may originate from databases, file systems,
running applications, external Web services, and these
may be physically deployed on distinct virtual machines,
servers and even data centres.

as follows:

These similarities allow us to draw parallels between
cloud application platforms and problem domains for which

— Volume: as in sensor webs, the amount of raw data gen's_olutions proposed by the Sensor Web research community,
erated by deployed applications, components of the mapaseq on sensor techno.logy, have-already been shown to be
form, users, services, etc. is huge. Even if we neg|ecxf.\ffect|ve.The parallels give us confidence that we can e2-us

‘noise’ (information flows that are not relevant for mon-

the positive experience of the Sensor Web community in the

itoring in the given context) the amount of information context of dynamic monitoring and analysis of continuously

remaining is still considerable.

flowing streams of data within a cloud application platform.

— Dynamism: in both sensor webs and cloud application ) ) )
platforms, various information sources are constantlygen ' Summary, by extending the notion of sensors to in-
erating data (which is then processed, stored, delete§lude not just physical devices, but anything that calesiat
etc.) at an unpredictable rate. The various platform com@ estimates a data value — e.g., an application component,
ponents evolve, with new services being added and olg" SQL query, or a Web service —we can think of a particu-
ones removed, making the whole system even more d))ar service as a sensor and the whole platform as a network

namic.

14 http://www.opengeospatial .org/projects/groups/
sensorwebdwg

of such sensors. For example, we may be interested in mon-
itoring response times from a Web service which is part of a

more complex service composition. In this case, the service
is the monitored subject, response time is the monitored as-
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Fig. 4 Schematic of a “sensor-enabled” cloud application platfor

considerable number of these services are dedicated purely
to data storage, including traditional relational dataisgs.g.,
ClearDB MySQI!® and Heroku Postgré%, NoSQL data-
bases (e.g., MongoH® and Redis Cloutf), and caching
services (e.g., MemCachi€rand MemcachedClod8), among
others. Heroku’s pricing model assumes that cloud custsmer
when subscribing to a particular service, are free to choose
from a range of subscription plans. These plans determine
the resources and support the customer receives for a given
price, and essentially act as SLAs between the customer and
platform provider. Typically, subscription plans rangerr

very limited free accounts (for testing and trial purposes)
to full-blown enterprise accounts (priced at up to $6000 per
month). The two typical metrics determined in a subscrip-
tion plan for data storage services atgnber of simultane-

ous client connections andstorage capacity (defined either

in terms of MB or number of rows). Heroku itself constantly

) ) . _ monitors the resources used by its customers and compares
pect, and the software functionality measuring and sending;g against the associated quotas; however, it does riét not

these values is the sensor. There may be cases when a Mg application providers in any way when a critical thresh-
itored subject has more than one aspect to monitor — that i3y4 value is approaching, and this can result in a situation
a single Web service may be equipped with several senso{gere an application is unexpectedly restricted from con-
(though possibly implemented within a single piece of proyecting to a database (due to the connections limit) or in-

gramming code) measuring not only response time, but als%erting new values (due to the storage limit).
for example, availability, the number of incoming requests

orprice. storage services with sensing capabilities, so that aquic

Figure 4 illustrates the concept of a sensor-enabled clougijers can be notified in advance whenever a threshold
application platform. The monitored subjects — servicps, a is approaching and can take appropriate action — for exam-

plications, platform components-—are equped.Wlth se.nsorp|e, by disconnecting idle client connections or by upgrad-
— software components responsible for measuring some vqhg their subscription plan

uets B V\l/(hlch a_rel conntlactedf Into a nett)worr. Fc:(llo]\c/vmg §tensor To this end, we have implemented a self-adaptation frame-
network principles, vajues irom a sub-network of mont Oreq/vork to supportautonomicity of cloud application platfam

subjects may first 90 through a rouFing node — a softwarq_he framework is based on the MAPE-K reference model,
component responsible for transporting the values futther and follows our interpretation of cloud application platfes

a central component and/or initial processing and a99r€9%5 sensor networks. By annotating monitored values emit-

t|?n of .|tnc§)m|:1r? mfor:na}tlon. Depentdmg on t?e PUrposeSe g by the sensors (i.e. services) with semantic descniptio
0 mgnl oring .e centra .compone-n may per orm var|0us(RDF triples), we are able to represent raw data in a uniform
functions, ranging from simply storing monitored values toformat and facilitate semantic interoperability betweeth
sophisticated analysis of those values, diagnosing pmodle

i iate adaptati " th herogeneous data sources. This approach also enables us to
or even executing appropriate adaptation actions throug ply run-time querying (using a streaming query language)

feedback _mechamsr_n. For examplc_e, in [10] _the agtonom%nd formal reasoning to perform situation assessment; prob
manager 1s re_s_pons!ble for analysis of the incoming dat%m diagnosis and adaptation planning (these activities ar
detec_t|on of_cr|t|cal situations and execuﬂoq of _relewmj}t erformed by the ‘autonomic manager’). Due to limitations
aptation actions on the managed cloud application platforngf space we refer interested readers to [10] for implementa-
tion details.

Using our framework we manually annotated sensor data
(in this case, the current pool of client connections, aiid ut

Accordingly, our goal in this case study was to fit data

4 Proof of Concept

. . o .15
In this section we present the initial results of our experi- ;4

ments treatln.g a cloud application platform as a d|str|6utg 17 http: / /waw . mongohq . com/

network of virtual sensors. As a test bed for our experi- 18 yi¢png.//redisiabs. com/redis-cloud
ments we have chosen Heroku, which currently offers its19 nttps: //uwww.memcachier. com/
customers up to 150 generic re-usable add-on services. A° http://redislabs.com/memcached-cloud

https://www.cleardb. com/
https://www.heroku.com/postgres
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isation of storage space) with semantic descriptions d&finecomponent coupled with a Web service, which is responsi-
in an OWL ontology, and, using a publish-subscribe mechable for diagnostic hypotheses explaining exceptional occu
nism, streamed these values to the autonomic manager (thences from a local point of view. Then local hypotheses are
central component of the network) via a messaging queusent to a central (i.e., global) diagnoser, which is resjdas
Before the values were delivered to the autonomic manageior global reasoning about the whole composite service ap-
they first passed through one or more routing nodes whichlication. Accordingly, local diagnosers can be seen as sen
performed initial filtering and aggregation; by registerin sors, and the global diagnoser as a central component of a
standing queries against an RDF stream we selected ongensor network.
critical values (those violating the thresholds), whictreve A similar concept was introduced by Ameller et al. [1]
then passed on to the autonomic manager. Thus, our aps part of the SALMon project — a SOA system which uses
proach off-loads some of the computational workload, whicta monitoring technique to provide run-time Quality of Ser-
might otherwise become a bottleneck of the system. The awice information that is needed to detect and eventually cor
tonomic manager picks up the critical values and, by rearect SLA violations. Monitored SOA systems are equipped
soning over SWRL rules, determines the nature of the probwith measuring instruments (which are essentially sejsors
lem and suggests a possible adaptation strategy. In thés cashich are used to obtain basic metrics assocaited with the
study, we defined the critical thresholds as 90% of the overselected quality attributes. The metrics are then senteo th
all quotas, and restricted possible adaptation strategies Monitor, Analyser and Decision Maker (software compo-
(a) disconnection of idle client connections and (b) deeti nents associated with the given SOA system). In this sense,
older database values. In practice, of course, the posgible they play a role of routing nodes, as they only collect and
aptation strategies should be somewhat more sophisticatasalyse values from a particular SOA system. However, there
and intelligent. is no central component in the SALMon architecture, and
The results of the case study support the viability of outmanaged SOA systems are isolated from each other.
approach, albeit in a controlled environment, and suggest With regard to our own approach, the potential benefits
that further investigation is worthwhile — by treating Sees ~ and drawbacks of treating PaaS monitoring as a Web Sensor
as sensors and connecting them into a network, we were algpeoblem can be summarised as follows.
to monitor values coming from distributed sources and de-
tect critical condition violations at run-time in a timelyam-
ner. Re-using existing techniques from the Semantic Sensor

Web area allowed us to perform dynamic in-memory analy- . - - .
sis of monitored data, and create an extensible architctur Extensibility and Scalability. Existing sensor networks typi-

It should be noted that we relied here on the use of eX(_:ally comprise a vast number of sensing devices spread over

- : . . . a large area (e.g., traffic sensors distributed across a city
isting service metrics, which can be measured via standard, : .
ide road network) and have the capacity to be easily ex-

mechanisms and do not require the insertion of additiona]’ . . L
%ended (as modern cities continue to grow in size, more and

probes into applications’ source code. For example, Post- beina deploved t t thei iated
greSQL exposes its run-time usage statistics through the t ore Sensors are being deployed 1o support theirassociate
traffic surveillance needs). Once the sensors are connected

blepg-stat-activity, and Redis offers such information o th st work. th dvt ton th

through a standard APl commaridiF0. However, various 0 te.teXL:,.lng Re Wolr ' ety ar%Irea yh'ct) retpor on t;eequr-

other metrics would require a more intrusive approach, anff" sttuation. A simriar extensibie architeciure may be n
t;oduced to the domain of monitoring cloud platforms, and it

may require developers to instrument the source code (¥ o .
o . . . ollows that the monitoring architecture should suppodisu
platforms, user applications or services with sensing func

tionality. We discuss this, and other potential drawbaoks tad-lhoznet\c/jvquss, sot ﬂ;a.t \;vhen a n_ezv SETvIce 1S (geploged on
our approach, in Section 5.3. a cloud and integrated into an existing service-based envi-

ronment, it is ready to be monitored. The same applies to
the case when a service component is uninstalled — it should
5 Discussion be seamlessly disconnected from the monitoring network.

1 Potential Benefits

There are a number of taxonomies and classifications di€xisting solutions and best practices. Treating a cloud ap-
cussing existing approaches to the monitoring and adapplication platform as a sensor network allows us to re-use
ation of service-based enviroments (we refer the intetlesteexisting solutions, developed and validated by the Sensor
reader to [17]). We highlight here two approaches that mostVeb community, in the context of monitoring and analy-
closely relate to our own. sis of streaming heterogeneous sensor data. A particularly
Ardissono et al. [2] presented a framework for fault tol- promising direction to pursue is applying techniques from
erant Web service orchestration and introduced the idea dfie Semantic Sensor Web area — a combination of the Se-
local and global diagnosers. A local diagnoser is a softwarenantic Web and the Sensor Web — so as to enable situation
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awareness by providing enhanced meaning for sensor obsés; it is possible to monitor CPU/memory utilisation and-net
vations [27]. This can be done by adding semantic annotawvork bandwidth usage by equipping the underlying infras-
tions to existing standard Sensor Web languages (typjcallyructure with probes and gauges and connecting them into
by expressing sensor values in the form of RDF triples), thug sensor network. Similarly, embedding application-djxeci
providing more meaningful descriptions and enhanced acsensors at the software level can help perform monitoring in
cess to sensor data. Moreover, this extra layer helps tgérid terms of business goals.
“the gap between the primarily syntactic XML-based meta-  There are, however, certain caveats to bear in mind. At
data standards of the SWE and the RDF/OWL-based metaie lowest (l1aaS) level the set of monitoring metrics iseath
data standards of the Semantic Web” [27]. The advantage dimited, but quite defined and standardised — network band-
this approach is that semantically-enriched sensor dpa he width and latency, virtual machine CPU/memory utilisatipn
to homogenise various data representation formats egistiretc. [16]. Moving up the stack to the PaaS level, the set of
in the SWE and also facilitates more intelligent analysis ofpossible parameters to be monitored increases, but is still
observed sensor values by applying formal reasoning. Thigmited to what a given cloud platform offers to its cus-
research work presented in [10] describes our initial tssul tomers (for example, it may include OS-specific metrics like
applying techniques from the Semantic Sensor Web to createad/write frequencies, the number of running application
a self-adaptation framework for managing cloud appligatio thread counts, etc.), as well as metrics related to utitinat
platforms. The main advantage of the described frameworkf platform-level services (size of messaging queues,i.exec
is the support for run-time analysis of the heterogeneouton times of worker processes, availability of data sterag
monitored values by means of reasoning over ontologies argtc.). At the uppermost Saas level, the set of monitored met-
rules. rics expands still further and is almost unlimited, as iteev
_ . _ o all possible business-related parameters.
Routing nodes. When implementing a monitoring frame- | this context, it would be interesting to explore how
work for a cloud platform, intermediate routing or filtering e role of routing nodes may change across the three cloud
nodes may be of great use. Their responsibility is service models. At the 1aaS level, we anticipate partition-
(i) to transfer the monitored values to the central compoing into sub-networks to be based on the physical location
nent from a physical component (e.g., server, data cersf monitored elements — a routing node may connect, for
tre), virtual component (e.g., application container; vir example, computational instances hosted on a single physi-
tual machine), or logical component (e.g., applicationcal web server. At the platform level, partitioning may take
system, database) of the monitored platform; and place based on virtual distribution of sensors either looriz
(ii) to perform initial processing of the incoming values — tally (those collecting monitored values from multiple &pp
thatis, by filtering and aggregating monitored values itiscations belonging to a specific user) or vertically (monitor
possible to offload some of the computational tasks froning all instances of a specific service). At the SaasS level, we
the central monitoring component (which otherwise maywould expect it to be difficult to find common shared param-
become a bottleneck of the whole system), and make theters on which we can perform partitioning. Nevertheless,
whole framework more scalable. identifying logical clusters — that is, applications witims
ilar business logic — is still possible (for example, monito
Platform independence. Our framework can act as a high- ing various Twitter-connected applications and identiéyi

level conceptual model for creating monitoring frameworks trending hash tags can help perform crowd sentiment analy-
which is independent of the underlying technology and im-ijs [11]).

plementation. In other words, it does not constrain how com-
munications between sensors and the monitoring compo-
nents should be implemented — depending on a given cloug .
o . . . .3 Potential Drawbacks
application platform it may be performed via publish-sutize

messaging queues, a message broker, via the .SOAP prIQC_)rtabiIity. A major challenge posed by the ideas presented
tocol, etc. Our framework also does not constrain the un-

derlying platform and programming languages — Java Neg] this paper is that implementing a monitoring framework
o ased on this high-level abstraction is not straightfodwvar

Ruby, etc., are all equally acceptable. . : . e

It is not possible to provide truly general guidelines as to

how to implement the monitoring functionality, as imple-
5.2 Extending the approach to laaS and Saas levels mentation depends on the characteristics of the particular

cloud application platform (its architecture, supported-p
Throughoutthis paper we have specifically focused on mongramming languages and frameworks, etc.). For example,
itoring at the aPaasS level. However, it can be potentially exour own work in this direction (described in [10]) showed
tended and applied to the laaS and Saas levels as well. Thaearly that a monitoring framework, implemented in Java
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Spring and deployed on VMWare’s Cloud Fountfrywas  treat the whole multi-cloud system as a single sensor net-
portable to another cloud platform only with difficulty, due work and each of the participating clouds as sub-networks.
to its dependence on Cloud Foundry’s built-in message guetresummary, we believe the approach we have outlined to be
ing service RabbitM& as a means of transporting moni- promising, but further investigation is required.

tored values within the monitoring framework.
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