Skip to main content
Log in

Digital panning shot generator from photographs

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Panning in photography is known as the rotation of the camera horizontally. It refers to a technique whereby one follows a moving subject and takes a photo with a slow shutter speed. This creates a blurred background, while retaining sharpness in the subject. Panning shot is widely used in sports activities because it dramatically emphasizes the movement of the subject. However, it is not easy for amateur photographers to take plausible panning shots. This paper represents a digital algorithm to automatically generate panning shots using two photographs taken consecutively in time. The presented algorithm makes even novice photographers take professional panning shots very easily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. London, B., Upton, J., Kobre, K., Brill, B.: Photography, 8th edn. Prentice Hall, Upper Saddle River (2004)

    Google Scholar 

  2. Jeong, K.: Paradigm shift of camera: part I. Computational photography. J. Korea Comput. Graph. Soc. 15(4), 23–30 (2009)

    Article  Google Scholar 

  3. Raskar, R., Tumblin, J., Levoy, M., Nayer, S.: SIGGRAPH 2006 Course Notes on Computational Photography. SIGGRAPH (2006)

  4. Yuan, L., Sun, J., Quan, L., Shum, H.Y.: Image deblurring with blurred/noisy image pairs. ACM Trans. Graph. 26(3), 1–10 (2007)

    Article  MATH  Google Scholar 

  5. Eisemann, E., Durand, F.: Flash photography enhancement via intrinsic relighting. ACM Trans. Graph. 23(3), 673–678 (2004)

  6. Petschnigg, G., Szeliski, R., Agrawala, M., Cohen, M., Hoppe, H., Toyama, K.: Digital photography with flash and no-flash image pairs. ACM Trans. Graph. 23(3), 664–672 (2004)

    Article  Google Scholar 

  7. Raskar, R., Tan, K., Feris, R., Yu, J., Turk, M.: Non-photorealistic camera: depth edge detection and stylized rendering using multi-flash imaging. ACM Trans. Graph. 23(3), 679–688 (2004)

    Article  Google Scholar 

  8. Masselus, V., Peers, P., Dutré, P., Willems, Y.D.: Relighting with 4D incident light fields. ACM Trans. Graph. 22(3), 613–620 (2003)

  9. Matusik, W., Loper, M., Pfister, H.: Progressively-refined reflectance functions from natural illumination. In: Eurographics Symposium on Rendering, pp. 299–308 (2004)

  10. Sajadi, B., Majumder, A., Hiwada, K., Maki, A., Raskar, R.: Switchable primaries using shiftable layers of color filter arrays. ACM Trans. Graph. 30(4), 65 (2011)

    Article  Google Scholar 

  11. Bando, Y., Chen, B., Nishita, T.: Extracting depth and matte using a color-filtered aperture. ACM Trans. Graph. 27(5), 134:1–134:9 (2008)

    Article  Google Scholar 

  12. Cossairt, O., Zhou, C., Nayar, S.: Diffusion coded photography for extended depth of field. ACM Trans. Graph. 29(4), 31:1–31:10 (2010)

    Article  Google Scholar 

  13. Levin, A., Fergus, R., Durand, F., Freeman, B.: Image and depth from a conventional camera with a coded aperture. ACM Trans. Graph. 26(3), 70 (2007)

    Article  Google Scholar 

  14. Jeong, K., Kim, D., Park, S.-Y., Lee, S.: Digital shallow depth-of-field adapter for photographs. Vis. Comput. 24(4), 281–294 (2008)

    Article  Google Scholar 

  15. Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. ACM Trans. Graph. 27(3), 1–10 (2008)

    Article  Google Scholar 

  16. Fergus, R., Singh, B., Hertzmann, A., Roweis, S., Freeman, W.: Removing camera shake from a single image. ACM Trans. Graph. 24(3), 787–794 (2006)

    Article  Google Scholar 

  17. Cho, S., Matsushita, Y., Lee, S.: Removing non-uniform motion blur from images. In: IEEE International Conference on Computer Vision, pp. 1–8 (2007)

  18. Talvala, E., Adams, A., Horowitz, M., Levoy, M.: Veiling glare in high dynamic range imaging. ACM Trans. Graph. 26(3), 37:1–37:9 (2007)

    Article  Google Scholar 

  19. Debevec, P., Malik, J.: Recovering high dynamic range radiance maps from photographs. In: Proceedings of ACM SIGGRAPH, pp. 369–378 (1997)

  20. Shan, Q., Li, Z., Jia, J., Tang, C.: Fast image/video upsampling. ACM Trans. Graph. 27(5), 153:1–153:7 (2008)

    Article  Google Scholar 

  21. Sun, J., Xu, Z., Shum, H.: Image super-resolution using gradient profile prior. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)

  22. Freeman, G., Fattal, R.: Image and video upscaling from local self-examples. ACM Trans. Graph. 28(3), 1–10 (2010)

    Google Scholar 

  23. Kopf, J., Uyttendaele, M., Deussen, O., Cohen, M.: Capturing and viewing gigapixel images. ACM Trans. Graph. 26(3), 93 (2007)

    Article  Google Scholar 

  24. Kopf, J., Cohen, M., Lischinski, D., Uyttendaele, M.: Joint bilateral upsampling. ACM Trans. Graph. 26(3), 1–5 (2007)

    Article  Google Scholar 

  25. Wang, Y., Hsiao, J., Sorkine, O., Lee, T.: Scalable and coherent video resizing with per-frame optimization. ACM Trans. Graph. 30(3), 88 (2011)

    Google Scholar 

  26. Wang, Y., Lin, H., Sorkine, O., Lee, T.: Motion-based video retargeting with optimized crop-and-warp. ACM Trans. Graph. 29(3), 90 (2010)

    Google Scholar 

  27. Rubinsteing, M., Shamir, A., Avidan, S.: Improved seam carving for video retargeting. ACM Trans. Graph. 27(3), 16 (2008)

    Google Scholar 

  28. Zheng, Y., Kambhamettu, C., Yu, J., Bauer, T., Steiner, K.: FuzzyMatte: A computationally efficient scheme for interactive matting. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)

  29. Wang, J., Agrawala, M., Cohen, M.: Soft scissors: an interactive tool for realtime high quality matting. ACM Trans. Graph. 25(3), 9 (2008)

    Google Scholar 

  30. McGuire, M., Matusik, W., Pfister, H., Hughes, J., Durand, F.: Defocus video matting. ACM Trans. Graph. 24(3), 567–576 (2005)

    Article  Google Scholar 

  31. Gooch, A.A., Olsen, S.C., Tumblin, J., Gooch, B.: Color2Gray: salience-preserving color removal. ACM Trans. Graph. 24(3), 1–6 (2005)

    Article  Google Scholar 

  32. Kim, Y., Jang, C., Demouth, J., Lee, S.: Robust color-to-gray via nonlinear global mapping. ACM Trans. Graph. 28(5) (2009)

  33. Grundland, M., Dodgson, N.A.: Decolorize: fast, contrast enhancing, color to grayscale conversion. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Vol. 40, No.11, pp. 2891–2896 (2007)

  34. Smith, K., Landes, P., Thollot, J., Myszkowski, K.: Apparent greyscale: a simple and fast conversion to perceptually accurate images and video. Comput. Graph. Forum 27(2), 193–200 (2008)

    Article  Google Scholar 

  35. Bai, X., Sapiro, G.: A geodesic framework for fast interactive image and video segmentation and matting. Int. J. Comput. Vis. 82(2), 113–132 (2009)

    Article  Google Scholar 

  36. Protiere, A., Sapiro, G.: Interactive image segmentation via adaptive weighted distances. IEEE Trans. Image Process. 16, 1046–1057 (2007)

    Article  MathSciNet  Google Scholar 

  37. Wang, J., Cohen, M.F.: An iterative optimization approach for unified image segmentation and matting. Proc. IEEE ICCV 2005, 936–943 (2005)

    Google Scholar 

  38. Yatziv, L., Sapiro, G.: Fast image and video colorization using chrominance blending. IEEE Trans. Image Process. 15(5), 1120–1129 (2006)

    Article  Google Scholar 

  39. Beauchemin, S.S., Barron, J.L.: The computation of optical flow. ACM Comput. Surveys 27(3), 433–466 (1995)

    Article  Google Scholar 

  40. Weber, J., Malik, J.: Robust computation of optical-flow in a multiscale differential framework. Int. J. Comput. Vis. 14(1), 67–81 (1995)

    Article  Google Scholar 

  41. Haussecker, H., Fleet, D.J.: Estimating optical flow with physical models of brightness variation. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 661–673 (2001)

    Article  Google Scholar 

  42. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proceedings of Imaging Understanding Workshop, pp. 121–130 (1981)

  43. Banerjee, S., Evans, B.L.: Unsupervised automation of photographic composition rules in digital still cameras. In: Proceedings of SPIE Conference on Sensors, Color, Cameras, and Systems for Digital Photography VI, pp. 364–373 (2004)

  44. Banerjee, S., Evans, B.L.: Unsupervised merger detection and mitigation in still images using frequency and color content analysis. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Proceesing, pp. 549–552 (2004)

  45. Banerjee, S., Evans, B.L.: In-camera automation of photographic composition rules. IEEE Trans. Image Process. 16(7), 1807–1820 (2007)

    Article  MathSciNet  Google Scholar 

  46. Chen, L., Xie, X., Fan, X., Ma, W., Zhang, H., Zhou, H.: A visual attention model for adapting images on small displays. Multimed. Syst. 9(4), 353–364 (2003)

    Article  Google Scholar 

  47. Suh, B., Ling, H., Bederson, B.B., Jacobs, D.W.: Automatic thumbnail cropping and its effectiveness. CHI Lett. 5(2), 95–104 (2003)

    Google Scholar 

  48. Santella, A., Agrawala, M., DeCarlo, D., Salesin, D.H., Cohen, M.F.: Gaze-based interaction for semi-automatic photo cropping. ACM Hum. Factors Comput. Syst. 771–780 (2006)

  49. Tang, H., Joshi, N., Kapoor, A.: Learning a blind measure of perceptual image quality. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 305–312 (2011)

  50. Lee, Y.-H., Cho, H.-J., Lee, J.-H.: Image retrieval using multiple features on mobile platform. J. Digit. Converg. 12(2), 237–243 (2014)

    Article  Google Scholar 

  51. Lee, T.-H., Hwang, B.-H., Yun, J.-H., Choi, M.-R.: A road region extraction using OpenCV CUDA to advance the processing speed. J. Digit. Converg. 12(6), 231–236 (2014)

    Article  Google Scholar 

  52. Kang, S.-K., Lee, J.-H.: Real-time head tracking using adaptive boosting in surveillance. J. Digit. Converg. 11(2), 243–248 (2013)

    Google Scholar 

  53. Kang, S.-K., Choi, K.-H., Chung, K.-Y., Lee, J.-H.: Object detection and tracking using Bayesian classifier in surveillance. J. Digit. Converg. 10(6), 297–302 (2012)

    Google Scholar 

  54. Kim, S.-H., Jeong, Y.-S.: Mobile image sensors for object detection using color segmentation. Cluster Comput. 16(4), 757–763 (2013)

    Article  Google Scholar 

  55. Balafoutis, E., Panagakis, A., Laoutaris, N., Stavrakakis, I.: Study of the impact of replacement granularity and associated strategies on video caching. Cluster Comput. 8(1), 89–100 (2005)

    Article  Google Scholar 

  56. Zhang, S., McCullagh, P., Zhang, J., Yu, T.: A smartphone based real-time daily activity monitoring system. Cluster Comput. 17(3), 711–721 (2014)

    Article  Google Scholar 

  57. Park, R.C., Jung, H., Shin, D.-K., Kim, G.-J., Yoon, K.-H.: M2M-based smart health service for human UI/UX using motion recognition. Cluster Comput. (2014). doi:10.1007/s10586-014-0374-z

Download references

Acknowledgments

This research was supported by the Daegu University Research Grant, 2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Jin Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, K., Cho, H.J. Digital panning shot generator from photographs. Cluster Comput 18, 667–676 (2015). https://doi.org/10.1007/s10586-014-0411-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-014-0411-y

Keywords

Navigation