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Abstract Interest in image mosaicking has been spurred by a wide variety of
research and management needs. However, for large-scale applications, remote
sensing image mosaicking usually requires significant computational capabil-
ities. Several studies have attempted to apply parallel computing to improve
image mosaicking algorithms and to speed up the calculation process. The
state of art of this field has not yet been summarized, which is, however, es-
sential for a better understanding and for further research of image mosaicking
parallelism on a large scale. This paper provides a perspective on the current
state of image mosaicking parallelization for large scale application. We firstly
introduce the motivation of image mosaicking parallel for large scale appli-
cation, and analysis the difficulty and problem of parallel image mosaicking
at large scale such as scheduling with huge number of dependent tasks, pro-
gramming with multiple-step procedure, dealing with frequent I/O operation..
Then the we summarize the current state of parallel computing in image mo-
saicking for large scale applications with respect to problem decomposition
and parallel strategy, parallel architecture, task schedule strategy and imple-
mentation of image mosaicking parallelization. Finally, the key problems and
future potential research directions for image mosaics are addressed.
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1 Introduction

Image mosaicking is the process of combining multiple images with overlap-
ping regions into a single seamless composite image [1]. It is an essential task
in remote sensing and has been widely used in many fields since a single scene
usually cannot cover large spatial extents of interest. In recent years, with
our environment undergoing rapid changes, there has been a correspondingly
urgent demand for accurate large area information for environmental monitor-
ing, disaster assessment, biodiversity conservation, etc [2-5]. This has highly
promoted image mosaicking for large scale applications.

Interest in image mosaicking has been spurred by a wide variety of research
and management needs. Since the 1980s, organizations, such as the National
Oceanic and Atmospheric Administration (NOAA), the United States Geo-
logical Survey (USGS), and international programs such as the International
Geosphere Biosphere Programme (IGBP), and the Global Observation of For-
est Cover (GOFC), have started activities on large scale image mosaics [6-9].
For example, in 1985, a joint project between the NOAA, the USGS, and the
National Remote Sensing Centre (NRSC) of UK completed a NOAA-AVHRR
mosaic covering Antarctica [10-11]. The Global Rain Forest Mapping (GRFM),
an international endeavor led by the National Space Development Agency of
Japan (NASDA), aimed to produce semi-continental, 100m resolution, image
mosaic over the tropical belt on the Earth [12]. In addition, the need for real-
time information for environmental management is an essential motivation for
large-scale image mosaicking. In some circumstance such as large-scale flood
prediction and management, how to provide real time and accurate informa-
tion is urgently needed.

However, for large-scale applications, remote sensing image mosaicking usu-
ally requires significant computational capabilities. This is due to the fact that
for large scale applications, remote sensing image mosaicking is not only a
data-intensive task but also a computation-intensive task. The computation
problem of sequential image mosaicking for large scale application has merged
as the one of the urgent problem. Several studies have sated the huge compu-
tational requirements of large-scale image mosaics. Roseqvist et al [12] stated
that, in the GRFM project, the image mosaicking of Africa which involed 3600
senses of images required some 20 hours of computation time. Shusun et al
[13] find out that the correction of a 100-m SAR image took 30 minutes us-
ing a SPARC1k workstation at the ASF Interactive Image Analysis System
(IIAS) Laboratory. Such a processing speed is too slow to generate a mosaic
of the state of Alaska dealing with about 800 images. In this regard, the tra-
ditional sequential computation techniques can hardly meet the requirements
of large-scale image mosaicking applications. Therefore, it is essential to apply
the HPC techniques such as parallel computing to assist speed up computation
of image mosaicking.
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Table 1 Typical large-scale applications of image mosaicking

Product Geographic scale Dataset Resolution (m) Count of images Project

North America Regional TM and ETM 30 2100 LEDAPS
Alaska Regional ERS-1 SAR 100 800 -
Canada National AVHRR 1000 800 CCRS
China National Beijing-1 32 1000 -
China National CEBERS-2 19.5 1300 -
Antarctica Continental TM 30 1100 USGS
Equatorial Africa Continental JERS-1 SAR 100 3600 GRFM
South and Central America Continental JERS-1 SAR 100 5000 GRFM
South-East Asia and North Australia Continental JERS-1 SAR 100 4300 GRFM

To address the problems of huge computation demand with its complicated
algorithms and massive date amounts, High Performance Computing (HPC)
such as parallel computing has been considered to be an effective solution.
Several studies have attempted to apply parallel computing to improve image
mosaicking algorithms and to speed up the calculation process. Despite these
research, there still remain a number of challenges with respect to how to
handle huge number of images, how to implement the processing tasks with
complicate denpendency, how to conduct the parallel programming with easy
logic, and so on. To date, the state-of-art of this field has not yet been summa-
rized, which is, however, essential for a better understanding and for further
research of image mosaics on a large scale.

The purpose of this paper is to present the current sate of parallel com-
puting for large-scale remote sensing image mosaicking. We firstly present the
multiple-stage procedure of image mosaicking and then illustrate the motiva-
tion of image mosaicking for large scale application. Then the we summarize
the current state of parallel computing in image mosaicking for large scale ap-
plications. Finally, the key problems and future potential research directions
and visions for image mosaics are addressed.

2 Motivation of image mosaicking parallelism

Motivated by global change, organizations, such as NOAA and USGS, and
international programs such as IGBP and GOFC, have launched many activ-
ities with large scale image mosaicking. A growing number of projects and
studies are focusing on large scale image mosaics. The image mosaicking for
large scale in recent years are summarized in Table 1.

2.1 Regional scale applications

Regional image mosaics are increasingly being developed recently to meet na-
tional monitoring and reporting needs. Now that Landsat is available, it has
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been widely used to construct regional scale images [14-16]. Large volumes
of image mosaics were constructed using Landsat Data [17-19]. For example,
Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS), pro-
cessed over 2 100 TM and ETM+ acquisitions to provide wall-to-wall surface
reflectance coverage for North America for the 1990s and 2000s [19]. Recently,
SAR data have been widely used to generate medium-resolution radar mo-
saics. For example, Shusun [13] generated a terrain-corrected SAR mosaic of
Alaska using 800 ERS-1 SAR images from 1992 to 1993.

2.2 National scale applications

On national scale, merging images is keenly needed for national environmental
policy design. In United States, attentions have intensively been paid to the
national land cover image mosaicking using Landsat data [20-22]. In Canada, a
Canada-wide mosaic was conducted using using 800 NOAA/AVHRR daily mo-
saics [23]. They are the first composite AVHRR scenes acquired over Canada
on a given day. In China, attempts have been made to conduct national im-
ages based on satellite data, such as CBERS-1 (China-Brazil Earth Resources
Satellite) and Beijing-1 [24-25]. For example, Wang et al. [25] composited a
China-wide mosaic map based on a Beijing-1 small satellite, which is in current
operation, and which will be used in the many fields of national environment
conservation.

2.3 Continental or global scale applications

On Continental-scale, the Antarctic has been a hot spot for image mosaicking
applications, fueled by the desire to reveal its unknown features [26-27]. In
1985, a joint project of NOAA, USGS, and National Remote Sensing Centre
of UK (NRSC, UK) completed a mosaic covering Antarctica [10, 29]. A total
of 28 three-band AVHRR scenes were used in this project, and a provisional
mosaic image of Antarctica was produced with a resolution of 1 km and a
scale of 1: 5 000 000. In 1997, Radarsat-1 SAR data was used to create the
first high-resolution (25 m) radar image mosaic of the continent [30]. More
recently, Scambos et al. [31] presented digital image mosaics for the Antarctic
continent and its surrounding islands, assembled from 260 Moderate Reso-
lution Imaging Spectroradiometer (MODIS) images. Bindschadler et al. [32]
generated a Landsat mosaic of Antarctica from nearly 1100 Landsat ETM+
austral summer acquisitions, which provides the first true-color, high-spatial-
resolution images of the continent.

Despite Antarctic, image mosaics for other continents are also promoted
in recent years. In 2001, a cloud-free mosaic of Australian continent was as-
sembled using images from the Along Track Scanning Radiometer (ATSR-2)
onboard the European Remote Sensing satellite (ERS-2) with a spatial reso-
lution of 1 km [33]. The image is 5001 pixels 4001 pixels in size. The GRFM
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African mosaic was assembled at the JRC [34] in the framework of the JAXA
GRFM project. It covers the central part of the African continent. Since global
scale maps are important information sources for global change research, they
have received particular attention in recent years [12, 36-37]. For example, the
Global Land Survey project is now makingefforts to create a global-scale DEM
(GLSDEM) [38]. Once the problems of data acquisition and computational ef-
ficiency have been overcome, there will be an increasing number of global-scale
mosaickingimages developed for planetaryenvironmental change research.

The computation problem of sequential image mosaicking for large scale
application has merged as the one of the urgent problem. Several studies
have sated the huge computational requirements of large-scale image mosaics.
Shusun et al [13] find out that the correction of a 100-m SAR image took 30
minutes using a SPARC1k workstation at the ASF Interactive Image Analysis
System (IIAS) Laboratory. Such a processing speed is too slow to generate a
mosaic of the state of Alaska dealing with about 800 images. Roseqvist et al
[12] stated that, in the GRFM project, the image mosaicking of Africa which
involed 3600 senses of images required some 20 hours of computation time.
In this regard, the traditional sequential computation techniques can hardly
meet the requirements of large-scale image mosaicking applications. Therefore,
it is essential to apply the HPC techniques such as parallel computing to assist
speed up computation of image mosaicking.

3 Difficulty of image mosaicking parallelism for large scale
applications

3.1 Difficulty in dealing with huge number of dependent tasks

For large scale application, image mosaicking has to deal with extremely huge
number of images, especially on continental or global scale. With the resolu-
tion of the image increasing, the number of images to cover the whole area
increase dramatically. For example, the GRFM project conducted many im-
age mosaicking in Continental scale, such as north America, Africa. For the
case of Africa (excluding Madagascar which is treated separately), the image
mosaicking involves some 3600 scenes, resulting in a normal equation matrix
larger than 10 000 lines by 10 000 columns [12], which requires some 20 hours
of computation time. Several studies have sated the huge computational re-
quirements of large-scale image mosaics. Shusun et al [13] find out that the
correction of a 100-m SAR image took 30 minutes using a SPARC1k worksta-
tion at the ASF Interactive Image Analysis System (IIAS) Laboratory. Such a
processing speed is too slow to generate a mosaic of the state of Alaska dealing
with about 800 images. Roseqvist et al [12] stated that, in the GRFM project,
the image mosaicking of Africa which involed 3600 senses of images required
some 20 hours of computation time. Such large numbers of RS images make

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



6 Lajiao Chen et al.

1.pdf

Image 1 Image 2 Image 3 Image 4

Intermediate 

result

Intermediate 

result

Final result

Image 1 Image 2 Image 3 Image 4

Final result

Image 1 Image 2 Image 3 Image 4

Intermediate 

result

Intermediate 

result

Final result

(a) Algorithm with one image adding at one step (b) Algorithm with two images mosaicking at one step 

(c)  Algorithm with all images involved at one step 

Fig. 1 Image dependency of mosaicking with different algorithm

the traditional mosaic on basis of scene-by-scene no longer inapplicable on
parallel system due to the intolerable time consumption and inevitable poor
scalability with increasing processors.

Image mosaicking has to deal with georeferenced RS images that have over-
lapping regions. One image have to operated with the adjacent images with
respect to image registration, seamline detection, image blending. Fig.2 shows
the different image dependent relationship and processing execution order by
different mosaicking algorithm. For example, in Fig.1(a), Image 3 can be pro-
cessed only Image 1 and Image 2 have finished while Image 4 can only be
processed when Image 3 has been processed.

Such interdependency among huge number of RS images give rise to the
complexities of image mosaicking parallelism. Firstly, due to the adjacent re-
lationships among images and their determined processing order, the task
partition need be conducted recursively according to the intricate adjacent
relationships among images. As a result, the task partition becomes a prob-
lem of properly representing large scale mosaicking in the form of data-driven
task graph (DAG) which consists of a large collection of interdependent tasks.
Secondly, the interdependency among huge number of RS images give rise to
the complexities of image mosaicking parallelism. How to arrange such a huge
number of tasks into an efficient processing order so as to gain low completion
time becomes a challenge for image mosaicking parallelism.
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3.2 Difficulty in programming with multiple-step procedure

Image mosaicking is a complex multi-stage processing procedure, which mainly
consists of five computational processing performed in order (Fig.2): 1) Image
preprocessing: Image preprocessing commonly includes geometric rectification
and projection uniformity, assuring input images to a common spatial scale,
coordinate system, and projection. 2) Image registration: Registration is ap-
plied for automatic control point abstraction and geometric transformation
between a pair of images with overlapping region. 3)Image matching: Image
matching is applied to reduce the radiometric differences among images that
are shot at the same time with different equipment, or at a different time
with the same equipment. 4) Seam line detection and image blending: Seam
line detection together with blending is employed for eliminating the artificial
edges in the overlapping region introduced by the radiometric discontinuous
between images.

With the complex and intensive interaction among images, it seriously
increase the difficulty of parallel implementation. The tasks need to be exe-
cuted with an order constraint. In such circumstance, some certain tasks have
to wait for the up-stage tasks to be available. For example, the task of im-
age blending have to wait for the task of seam line detection to be finished.
This would subsequently lead to frequent and trivial process synchronization
and data communication. Thus, it gives rise to high complexity for parallel
programme based on traditional parallel computational mode such as open
multi-processing (OpenMP) or message-passing programming model (MPI).
The programming has to concern frequent and trivial communication among
processes which makes the program instable and low efficient. Therefore, fur-
ther studies should be undertaken to develop a parallel computing approach,
which can effectively organise huge amounts of images with easy logic control
and parallel programming.

3.3 Difficulty in dealing with frequent I/O operation

Image mosaicking for large scale area has to deal with frequent image loading
and exporting massive dataset, which will introduce intensive data I/O op-
erations and also undesirable I/O overhead. In this case, the data processing
has to wait a plenty of CPU cycles for data accessing which will introduce
intensive I/O operations and undesirable I/O overhead. The I/O operation
may be a considerable constrain of mosaicking parallelism as it is time con-
suming and may cause system collapse if it has not been properly operated.
Despite several studies have considered parallel I/O such as by using parallel
filesystem, most of the existing studies have not fully considered parallel I/O.
In the future work, more attention should be paid to the parallel I/O operation.
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Fig. 2 Multiple-stage procedure of image mosaicking

4 Existing research on parallelization of image mosaicking

Though great efforts have been paid to RS image parallel processing[39-42],
parallelization of image mosaicking is rarely pay attention to and only a hand-
ful of related research have attempted to apply parallel computing to speed
up the processing of image mosaicking [43-49].

4.1 Problem decomposition and parallel strategy

Problem decomposition is the base of image mosaicking parallelization. Data
decomposition and function decomposition are two general approaches to prob-
lem decomposition for the distribution of tasks between multiple processors.
Due to the fact that image mosaicking algorithm involves of huge volume
of images and each images have the same calculation procedure, the images
for mosaicking can be partitioned into pieces and distributed to a separate
processor. According to the independent relationship of images in mosaic pro-
cessing, the steps of mosaicking processing can summarized into two type: in-
dependent procedure such image preprocessing and neighbourhood-dependent
procedure such as image registration. For the independent processing, each
image are calculated independently without connection with each other, all of
these images can calculated simultaneously. For the neighbourhood-dependent
procedure, therefore, the images without overlap area can be calculated simul-
taneously. With the image dependent and procedure constrain, the difficult
of neighbourhood-dependent procedure parallelization is how to partition the
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Fig. 3 Data decomposition with tracing to original images

images into pieces with minimum interaction and load balancing.

4.1.1 Data decomposition ignoring image dependency

In this type, images are simply partitioned with given scope and the data
blocks are then distributed to different computation node for calculation. The
partition grain is usually coarse in size. Communication among the data block
is not fairly considered in this data partition scheme which will decrease par-
allel efficiency [43-46].

For example, An et al [43] proposed a data decomposition scheme which
partition the images according to the spatial scope final mosaicking image
Fig.3. This method firstly divides the final spatial scope of the mosaic into
grids with same size (red square in Fig. 3) and the original images involved in
each grid (black rectangles with serial number) are traced according to their
geographic coordinate. Those images related to one grid are treated as one
data block and each data block can be processed simultaneously. As shown in
Fig.3, Image (1), (2),(3), (4),(5) related to Grid (a) are treated as one data
chunk while Image (4), (5),(6), (7),(8),(9) related to Grid (b) are treated as
another data chunk. Due to the variation of overlapped area among the im-
ages, the grid with same size may involved with different amount of images.
Take Fig.3 for example, Grid (a) involves 5 images while Grid (b) involves
6 images. Therefore, to avoid load unbalance and reduce calculation waiting
time, a appreciated task schedule strategy is needed.

Hu et al [44] proposed a vertical partition strategy for parallel of a PCI
image fusion algorithm. In this approach, image are partitioned with a vertical
partition strategy, and each data block are in same size. The number of the
data block is determined by the number of computation notes so each compu-
tation node can handle with one data block. Though the images are partitioned
into same size of block, it still will cause load unbalance as the same-size data
blocks may demand different calculation time due to the different overlapping
areas. In addition, this partition will bring frequent communication among
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Fig. 4 Data decomposition with overlapped partition

data blocks leading to very complicated control logic, poor stability and ex-
tensibility of parallel computing.

4.1.2 Data decomposition considering image dependency

In this kind of data decomposition, images are firstly partition into same blocks
and in each block images are further partitioned into groups according to their
overlapping relationship. In such a way, tasks are partitioned into sub-image
scale which can highly promote the parallel. With respect to different image
mosaicking algorithm, different fine-grain data decomposition strategy are pro-
posed.

Wang et al. [48] proposed a fine-grain data decomposition scheme based
on the overlapped area of images (Fig.4). This strategy firstly partitions all
of image pair with overlapped area and each image pair without dependency
can be processed simultaneously. The overlapped area of every image-couple
are further subdivided into data blocks with same size, and each chunk is dis-
tributed into separate processor for calculation.

Ma et al [49] developed data partition scheme based on the top-down task
partition approach which recursively partitions the image mosaicking into in-
dependent tasks until the tasks can not be divided (Fig. 5). An adjacent table
is used to represent the adjacent relation among images. The overlapped re-
gion of each image pair is also subdivided into pieces for calculation similar
to the Wang et al’s method. Though this kind of partition can gain a fairly
fine parallel grain, it may introduce huge communication overhead among data
blocks. Therefore, it is a severe challenge to well organise and schedule these
tasks.
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Fig. 5 Data partition with top-down strategy

4.2 Architecture of image mosaicking parallelization

According to the characteristic of the data decomposition scheme, the archi-
tecture of image mosaicking parallelization varies. The following text introduce
the main architectures that are adopted.

4.2.1 Master-slave parallel structure

Nearly all of the existing studies use the master-slave parallel structure for
image mosaicking parallelization [42-49]. This is due to the fact that image
mosaicking is a multiple-stage process with some of the procedure are global
dependent which can not be processed parallelled. Therefore, a master node is
needed to gather intermediate results and proceed to sequential computation.
Fig. 6 illustrates the processing of image mosaicking with master-slave struc-
ture. A master node is responsible for data partition, data allocation, sequen-
tial procedures computation, etc, while the slave nodes follows a multi-stage
processing procedure which can be parallel computed. There is no communi-
cation and interaction among slave nodes.

4.2.2 Parallel I/O structure

Though I/O overhead is one of the big problem of parallel image mosaicking,
only a very limited studies have tried to solve the problem of intensive I/O
operations and undesirable I/O overhead. Wang et al [48] design the pipeline
among data reading, data processing, data-stage out. Three threads are re-
sponsible for the operation: I/O reading thread which is to get block area in
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Fig. 7 Processing of image mosaicking with master-slave structure

input image, the next block and then read the data in that block area, the
block processing thread which performs image mosaicking for current block,
I/O write thread which write the result data of previous block. Ma et al [49]
adopted a SAN storage system equipped with high performance parallel file
system Lustre to handle fast image data staging in and out among tasks. This
SAN storage is fully connected with all computation resource.
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4.3 Task schedule strategy of image mosaicking parallelization

With respect to the characteristic of task scheduling scheme, the existing par-
allelization image mosaicking can be summarized into three types: paralleliza-
tion with prescribed task distribution without scheduling, parallelization with
static task scheduling strategy, parallelization with dynamic task scheduling
strategy.

4.3.1 Parallelization with prescribed task distribution without scheduling

In this type, images are partitioned into blocks using coarse-grained data de-
composition with prescribed scope stated in 4.1.1. The number of the data
block are determined by the number of computation nodes [44][46-47]. For
example, in Hu et al.[44]’s work, images are partitioned with a vertical par-
tition strategy and each data blocks are distributed to computation node for
calculation. Despite of the simplicity of this kind of strategy, there are two fun-
damental defect of this strategy: firstly, the parallel efficiency is low because
the granularity of parallelization is coarse with only a few of data blocks; sec-
ondly, it is prone to load unbalance because the task distribution scheme is
static which does not consider the current condition of the computation nodes.
The tasks need to be divided up evenly distribute, because the speed of the
whole program depend on the time taken by the processor takes the longest
time.

4.3.2 Parallelization with static task scheduling

In this kind of strategy, each task is assigned a given (static) optimal prior-
ity for scheduling and allocated to processors considering the status of the
processor [48]. The optimal task scheduling scheme is calculated in advance
with the information of the structure of image mosaicking parallelization, the
execution times of individual task and the communication cost between tasks.
Such a scheduling scheme is applied for the entire scheduling process until the
last task has been executed. Task scheduling is usually be in charged by MPI
program instead of task schedular.

The key issue of this strategy is to how to present the priority of tasks so
as to gain a minimal execution time for the whole mosaicking. In the work of
Wang et al. [48], a minima1 spanning tree is designed to represent the prior-
ity of task list for scheduling. Such a tree is transformed from the map which
shows the relationship of all the images with the overlapped area as the weight
of the line (Fig.8). The tree gives an optimized image mosaicking sequence of
these overlapped images. The computation nodes are then divided into groups
according to the number of the branches in the tree. Each overlapped area
is allocated to one group of computing nodes which could share image over-
lapped image data. For each node, mosaicking is parallel executed. In spite of
the outstanding performance improvement, when applied to large scale with
large collections of scenes, the overlapped regions increase sharply which could
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Fig. 8 Minimal spanning tree (by Wang et al [64])

exceed thousands, even millions. To develop the minima1 spanning tree will
be impossible as the memory of the computer can not handle. Therefore, such
approach are only suitable for generating small regional mosaics, but not yet
specialized in large-scale mosaicking.

An et al [43] proposed a task scheduling strategy using a double-buffer
queue and a task selection strategy based on the complexity of task. In this
approach, as mentioned in 4.1.1, the final spatial scope of the mosaic is di-
vided into grids and the original RS images involved in each grid are treated
as one task. The priority of each task is determined by the complexity of the
task, which is defined as the pixel numbers of the images involved in this task.
The tasks with highest complexity has the highest priority for execution. A
greedy strategy is adopted to achieve the optimal task allocation order with
the objective of reducing communication overhead and task-waiting time of
computation nodes. The problem of this approach is the dependency among
tasks are not well present for scheduling, therefore, the frequent communica-
tion cost highly influence the parallel efficiency. As showed in the results of
the approach, with the increasing of the grid number, the computation time
also decreases firstly, and then increases which is due to the communication
cost. Therefore, if this approaches is applied for large scale mosaicking, the
grid number increased extremely, the communication cost will will introduce
huge communication overhead among tasks.

4.3.3 Parallelization with dynamic task scheduling

In dynamic scheduling, the task priority is dynamic according to current status
of unexecuted tasks and status of computation nodes[49] [50]. That is, when
one task has been executed, priority of the unexecuted tasks will be reassigned.
A task schedular is adopted in charge of dynamically construct task queues
and distributed the tasks to processors. The goal of dynamic scheduling is not
only the minimization of the completion time but also the minimization of the
scheduling overhead which constitutes a significant portion of the cost paid
for running the scheduler.

Ma et al [49] propose a task-tree based scheduling strategy with dynamic
DAG scheduling (Fig.9). The task dependency is presented by a task tree
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Fig. 9 The CPDS-SQ DAG dynamic scheduling solution developed by Ma et al [65]

with minimal height. A critical path based dynamical DAG scheduling solu-
tion named CPDS-SQ is provided to offer an optimized schedule with minimal
completion time. The scheduling starts with the entry nodes in the precedence-
constraint DAG, which is also the leaf nodes of task tree. All the entry nodes
are packaged into task packages by assigning the amount of computation re-
sources, specifying the input image data and processing arguments. These task
packages are then constructed as a list in descending order of priority and in-
sert into a ready queue. The task packages in the ready queue are submitted
to PBS a local resource managers of cluster system for concrete computation
resource accommodation and job execution. When a task package is finished,
then CPDS-SQ will move this task out from running queue and update the of
the corresponding nodes with the real runtime of the task. Then the priority of
the unscheduled nodes in DAG are recalculated and free the succeeding nodes
of this finished node. This strategy can allocate the tasks according to the
status of the computation nodes, which can highly reduce the probability of
load unbalance. However, when extend to large scale application, the numbers
of the images expands, how to construct the task tree with million of images
will be a problem.

4.4 Implementation of image mosaicking parallelization

To implement parallelization of image mosaicking, the parallel paradigms such
as MPI (Message Passing Interface), MPI + OpenMP hybrid parallel paradigm
are applied. In the following text, we will summarize the main parallel paradigms
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which have been applied to image mosaicking parallelization.

4.4.1 Image mosaicking parallelization implemented with MPI

MPI is the most widely used parallel paradigm for image mosaicking parallelization[50-
52]. MPI has the advantage of high parallel efficiency, open and inter-platform,
portable to multiprocessors, and so on. Merzky et al [51] and G.B. Berriman et
al [52] illustrated that, the Montage, an astronomical image mosaicking soft-
ware, using MPI versions of the computational intensive modules, has good
performance. MPI parallelization reduces the one processor time of 453 min-
utes down to 23.5 minutes on 64 processors, for a speedup of 19. A main
drawback of this kind of paradigm is that the frequency communication among
the nodes makes the programming extremely complicate. However, due to the
ordering constraint among tasks, if MPI is using for task scheduling, the pro-
gramming becomes even more complex and tend to crash with the images
increasing.

4.4.2 Image mosaicking implemented with MPI + OpenMP hybrid paradigm

A few studies has demonstrated using MPI + OpenMP hybrid paradigm to
implement image mosaicking parallelization. Rabenseifner et al [53] illustrated
that a hybrid MPI + OpenMP programming model can reduce communication
need, memory consumption and improve load balance. In the task-tree based
image mosaicking with dynamic DAG scheduling proposed by Ma et al [49],
MPI was used to implement individual mosaic task among multiple processors
while OpenMP was used to implement tasks among multiple multi-threading
in each computation node. Wang et al [48] comparatively experimented the
mosaicking algorithms with these three different parallel paradigms and all led
to noticeable performance improvement. This kind of approach can promote
the parallel efficiency as it take full advantage of multi-processors and multi-
threading. However, it also will encounter the problem of MPI if it was used
to schedule the ordering constraint of image mosaicking tasks.

4.4.3 Image mosaicking implemented with GPUs

In recent years, GPUs (Graphics Processing Units) with CUDA(Compute Uni-
fied Device Architecture) programming haveevolved into a highly parallel, mul-
tithreaded, many-core processors with tremendous computational speed and
very high memory bandwidth [55]. Several relevant studies have illustrated
GPU-based implementation of RS image processing[56], spatial data analysis
[57]. In the field of parallel image mosaicking, Camargo et al [58] presented
CUDA can significantly accelerated mosaicking for unmanned aircraft sys-
tem. Yong et al [59] developed a fast colour balance adjstment of IKONOS
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IMAGERY using CUDA. Results showed that, compared with conventional
methods, color balancing with CUDA was able to produce images of similar
quality in a much shorter time. However, for large scale image mosaicking ap-
plications, CUDA will counter problem in handling huge number of images
and the complicate control logical of dependent tasks.

5 Conclusion and future work

This paper provides a perspective on the current state of image mosaicking
parallelization for large scale application. We firstly introduce the motivation
of image mosaicking parallel for large scale application, and analysis the diffi-
culty and problem of parallel image mosaicking at large scale such as schedul-
ing with huge number of dependent tasks, programming with multiple-step
procedure, dealing with frequent I/O operation. Then the we summarize the
current state of parallel computing in image mosaicking for large scale appli-
cations with respect to problem decomposition and parallel strategy, parallel
architecture, task schedule strategy and implementation of image mosaicking
parallelization.

Parallelization of image mosaicking for large scale application to date is
still on its early stage, perspective for future work is stated as follow:

Firstly, a parallel image mosaicking program coded for a specific parallel
computing platform often has limited portability to other parallel computing
platforms due to not unified parallel programming or parallel hardware. How-
ever, the problem of the poor portability of parallel programs has yet been
considered in parallel image mosicking. In the field of raster-based geocompu-
tation, several efforts have been paid to overcome such poor portability. For
example, Qin et al [60] demonstrate a strategy which is illustrated through
the design and implementation of a set of PaRGO compatible with three pop-
ular types of parallel computing platforms. PaRGO encapsulates three types
of parallel programming details in a form that is transparent to users. In such
way, parallel raster-based geocomputation algorithms compatible with three
popular parallel computing platforms can be easily and quickly developed.
In the future work, such strategy from raster-based geocomputation could be
borrowed to promote the portability of parallel programs for parallel image
mosaicking

Secondly, data acquisition is one of the big problem for image mosaicking
for large scale applications. To address this problem, remote sensing images
from different sensors, different data center will be selected to cover the whole
area of interest. However the existing mosaic parallelization solutions seldom
consider parallel mosaicking with RS images from multiple source. Method-
ologies to produce image mosaic paralleled from multiple data center could be
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an important field to be explored in the future.

Secondly, the lack of realtime images on a regional or national scale has
often been cited as a current limitation [61]. However, the need for realtime
information is often difficult to satisfy, particularly on national scale or even
larger, which posed an awkward problem for large scale image mosaicking.
In future research, efforts need to pay to improve the mosaic parallelization
methodology concerning the capability of providing real time and accurate
information on a large scale.
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