Skip to main content

Advertisement

Log in

A data parallel approach to modelling and simulation of large crowd

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

The modeling and simulation (M&S) of large crowd has become increasingly important in the domain of public security, such as facility planning, disaster response, and anti-terrorism operations. The behavior of a large crowd is highly complex, and the M&S of a large crowd at the individual level therefore demands the support of a scalable and efficient computing technology. In this study, a method was proposed to formulate crowd behavior with the cell automata and multi-agent models, which were successfully mapped onto the MapReduce programming model. A simulation framework was developed upon Hadoop to simulate large crowd scenarios over a cluster. The simulation process was then transformed to a series of parallel operations on data streams. The simulation studies on a large-scale evacuation scenario had indicated that the simulation framework ensured the simulation process’ logic correctness. Experimental results also showed that the Hadoop-based simulation framework could complete five times more tasks while consuming only 19 % CPU time in comparison with the conventional simulation technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shields, T.J., Boyce, K.E., McConnell, N.: The behaviour and evacuation experiences of WTC 9/11 evacuees with self-designated mobility impairments. Fire Saf. J. 44, 881–893 (2009)

    Article  Google Scholar 

  2. Johnson, P.F., Johnson, C.E., Sutherland, C.: Stay or go? Human behavior and decision making in bushfires and other emergencies. Fire Technol. 48, 137–153 (2012)

    Article  Google Scholar 

  3. Henein, C.M., White, T.: Macroscopic effects of microscopic forces between agents in crowd models. Phys. A 373, 694–712 (2007)

    Article  Google Scholar 

  4. Lee, D., Park, J.H., Kim, H.: A study on experiment of human behavior for evacuation simulation. Ocean Eng. 31, 931–941 (2004)

    Article  Google Scholar 

  5. Was, J., Kulakowski, K.: Agent-based approach in evacuation modeling. In: Agent and Multi-Agent Systems: Technologies and Application. Lecture Notes in Computer Science, vol. 6070, pp. 325–330. Springer-Verlag, Berlin (2010)

  6. Lin, Y.Q., Fedchenia, I., LaBarre, B., Tomastik, R.: Agent-based simulation of evacuation: an office building case study. Pedestr. Evac. Dyn. 2008, 347–357 (2008)

    Google Scholar 

  7. Zaharia, M.H., Leon, F., Pal, C., Pagu, G.: Agent-based simulation of crowd evacuation behavior. In: Proceedings of the 11th Wseas international conference on automatic control, modelling and simulation, pp. 529–533 (2009)

  8. Sharma, S., Singh, H., Prakash, A.: Multi-agent modeling and simulation of human behavior in aircraft evacuations. IEEE Trans. Aerosp. Electron. Syst. 44, 1477–1488 (2008)

    Article  Google Scholar 

  9. Zarboutis, N., Marmaras, N.: Design of formative evacuation plans using agent-based simulation. Saf. Sci. 45, 920–940 (2007)

    Article  Google Scholar 

  10. Mao, T., Jiang, H., Li, J., Zhang, Y., Xia, S., Wang, Z.: Parallelizing continuum crowds. In: Proceedings of the 17th ACM symposium on virtual reality software and technology (ACM VRST) 2010, pp. 231–234 (2010)

  11. Vigueras, G., Lozano, M., Perez, C., Orduna, J.M.: A scalable architecture for crowd simulation: implementing a parallel action server. In: International conference on parallel processing, pp. 430–437 (2008)

  12. Chen, D., Li, X., Bian, C., Zhang, X.: A grid infrastructure for hybrid simulations. Comput. Syst. Sci. Eng. 26, 197–206 (2011)

    Google Scholar 

  13. Chen, D., Wang, L., Wu, X., Chen, J., Khan, S.U., Kolodziej, J., Tian, M., Huang, F., Liu, W.: Hybrid modelling and simulation of huge crowd over a hierarchical Grid architecture. Future Gener. Comput. Syst. 29, 1309–1317 (2013)

    Article  Google Scholar 

  14. Chen, D., Wang, L., Zomaya, A., Dou, M., Chen, J., Deng, Z., Hariri, S.: Parallel simulation of complex evacuation scenarios with adaptive agent models. IEEE Trans. Parallel Distrib. Syst. 26(3), 847–857 (2015)

    Article  Google Scholar 

  15. Yilmaz, E., Isler, V., Cetin, Y.Y.: The virtual marathon: parallel computing supports crowd simulations. IEEE Comput. Graph. Appl. 29, 26–33 (2009)

    Article  Google Scholar 

  16. Chen, D., Li, X., Wang, Li, Khan, S.U., Wang, J., Zeng, K., Cai, C.: Fast and scalable multi-way analysis of neural data. IEEE Trans. Comput. 64(3), 707–719 (2015)

    Article  MathSciNet  Google Scholar 

  17. Chen, D., Li, D., Xiong, M.Z., Bao, H., Li, X.L.: GPGPU-aided ensemble empirical-mode decomposition for EEG analysis during anesthesia. IEEE Trans. Inf. Technol. Biomed. 14(6), 1417–1427 (2010)

    Article  Google Scholar 

  18. Chen, D., Wang, L.Z., Ouyang, G.X., Li, X.L.: Massively parallel neural signal processing on a many-core platform. Comput. Sci. Eng. 13(6), 42–51 (2011)

    Article  Google Scholar 

  19. Georgoudas, I.G., Kyriakos, P., Sirakoulis, G.C., Andreadis, I.T.: An FPGA implemented cellular automaton crowd evacuation model inspired by the electrostatic-induced potential fields. Microprocess. Microsyst. 34, 285–300 (2010)

    Article  Google Scholar 

  20. Wang, L., Chen, D., Yangyang, H., Ma, Y., Wang, J.: Towards enabling cyberinfrastructure as a service in clouds. Comput. Electr. Eng. 39(1), 3–14 (2013)

    Article  Google Scholar 

  21. Wang, L., Kunze, M., Tao, J., von Laszewski, G.: Towards building a cloud for scientific applications. Adv. Eng. Softw. 42(9), 714–722 (2011)

    Article  Google Scholar 

  22. Wang, L., von Laszewski, G., Younge, A., He, X., Kunze, M., Tao, J., Fu, C.: Cloud computing: a perspective study. New Gener. Comput. 28(2), 137–146 (2010)

    Article  MATH  Google Scholar 

  23. Guo, H., Wang, L., Chen, F., Liang, D.: Scientific big data and digital earth. Chin. Sci. Bull. 59(35), 5066–5073 (2014)

    Article  Google Scholar 

  24. Yang, H.C., Wang, Z.B., Peng, J.S.: Production simulation using a distributed node-aware system.In: IEEE international conference on industrial engineering and engineering management, pp. 2057–2061 (2010)

  25. Wang, L., Chen, D., Liu, W., Ma, Y., Yanhui, W., Deng, Z.: DDDAS-based parallel simulation of threat management for urban water distribution systems. Comput. Sci. Eng. 16(1), 8–17 (2014)

    Article  Google Scholar 

  26. Pratx, G., Xing, L.: Monte Carlo simulation of photon migration in a cloud computing environment with MapReduce. J. Biomed. Opt. 16, 125003–1250039 (2011)

    Article  Google Scholar 

  27. Gao, W., Kang, F., Zhong, L., Fu, Y.: Cloud simulation technology based on HLA evolved. J. Syst. Simul. 23, 1643–1647 (2011)

    Google Scholar 

  28. Kolodziej, J., González-Vélez, H., Wang, L.: Advances in data-intensive modelling and simulation. Future Gener. Comput. Syst. 37, 282–283 (2014)

    Article  Google Scholar 

  29. Niu, J., Bai, S., Khosravi, E., Park, S.: A Hadoop approach to advanced sampling algorithms in molecular dynamics simulation on cloud computing. In: IEEE international conference on bioinformatics and biomedicine, pp. 452–455 (2013)

  30. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Commun. ACM 51, 107–113 (2008)

    Article  Google Scholar 

  31. Wang, L., Tao, J., Ranjan, R., Marten, H., Streit, A., Chen, J., Chen, D.: G-Hadoop: MapReduce across distributed data centers for data-intensive computing. Future Gener. Comput. Syst. 29(3), 739–750 (2013)

    Article  Google Scholar 

  32. Zhao, J., Wang, L., Tao, J., Chen, J., Sun, W., Ranjan, R., Kolodziej, J., Streit, A., Georgakopoulos, D.: A security framework in G-Hadoop for big data computing across distributed cloud data centres. J. Comput. Syst. Sci. 80(5), 994–1007 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Dou, M., Chen, J., Chen, D., Chen, X., Deng, Z., Zhang, X., Xu, K., Wang, J.: Modeling and simulation for natural disaster contingency planning driven by high-resolution remote sensing images. Future Gener. Comput. Syst. 37, 367–377 (2014)

    Article  Google Scholar 

  34. Wolfram, S.: Theory and Applications of Cellular Automata. Advanced Series on Complex Systems. World Scientific Publication, Singapore (1986)

    MATH  Google Scholar 

  35. Wolfram, S.: Cellular Automata and Complexity: Collected Papers. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  36. Guo, R., Huang, H., Wong, S.C.: A potential field approach to the modeling of route choice in pedestrian evacuation. J. Stat. Mech. 2013, P02010 (2013)

    MathSciNet  Google Scholar 

Download references

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minggang Dou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, T., Dou, M. & Zhu, M. A data parallel approach to modelling and simulation of large crowd. Cluster Comput 18, 1307–1316 (2015). https://doi.org/10.1007/s10586-015-0451-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-015-0451-y

Keywords

Navigation