Skip to main content
Log in

A knee-based multi-objective evolutionary algorithm: an extension to network system optimization design problem

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

High performance computing (HPC) research is confronted with multiple competing goals such as reducing makespan and reducing cost in clouds. These competing goals must be optimized simultaneously. Multi-objective optimization techniques to tackle such HPC problems have received significant research attention. Most multi-objective optimization approaches provide a large number of potential solutions. Choosing the best or most preferred solution becomes a problem. In some practical contexts, even if the decision maker does not have an explicit preference, there exist the regions of the solution space that can be viewed as implicitly preferred because of the way the problem has been formulated. Solutions located in these regions are called “knee solutions”. Evolutionary approaches have become popular and effective in solving complex and large problems that require HPC. The aim of this paper is to develop a knee-based multi-objective evolutionary algorithm (MOEA) which can prune the set of optimal solutions with a controllable parameter to focus on knee regions. The proposed approach uses a concept called extended dominance to guide the solution process towards knee regions. A user-supplied density controller parameter determines the number of preferred solutions retained. We verify our approach using two and three-objective knee-based test problems. The results show that our approach is competitive with other well-known knee-based MOEAs when evaluated by a convergence metric. We then apply the approach to a network optimization design problem in order to demonstrate how it can be useful in a practical context related to HPC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Branke, J., Deb, K., Dierolf, H., Osswald, M.: Finding knees in multiobjective optimization. In: Proceeding of 8\(^{\rm th}\) International Conference on Parallel Problem Solving from Nature (PPSN), pp. 722–731 (2004)

  2. Branke, J., Kauber, T., Schmech, H.: Guidance in evolutionary multi-objective optimization. J. Adv. Eng. Softw. 32(6), 499–507 (2001)

    Article  Google Scholar 

  3. Bechikh, S., Ben Said, S.L., Ghedira, K.: Searching for knee regions in multi-objective optimization using mobile reference points. In: Proceedings of the 25\(^{\rm th}\) ACM Symposium on Applied Computing, pp. 1118–1125 (2010)

  4. Bechikh, S., Said, L.B., Ghedira, K.: Searching for knee regions of the Pareto front using mobile reference points. Soft Comput. 15(9), 1807–1823 (2011)

    Article  Google Scholar 

  5. Carretero, J., Blas, J.G.: Introduction to cloud computing: platforms and solutions. Clust. Comput. 17(4), 1225–1229 (2014)

    Article  Google Scholar 

  6. Chern, M.S.: On the computational complexity of reliability redundancy allocation in a series system. Oper. Res. Lett. 11, 309–315 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Colledani, M., Bolognese, L., Ceglarek, D., Franchini, F., Marine, C., Mistry, A.: Multi-objective early-stage design of automotive hybrid assembly lines. CIRPe 28, 125–130 (2015)

    Article  Google Scholar 

  8. Das, I.: On characterizing the knee of the Pareto curve based on normal-boundary intersection. Struct. Optim. 18(2), 107–115 (1999)

    Article  Google Scholar 

  9. Deb, K., Gupta, S.: Understanding knee points in bicriteria problems and their implications as preferred solution principles. Eng. Optim. 43(11), 1175–1204 (2011)

    Article  MathSciNet  Google Scholar 

  10. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  11. Durillo, J.J., Nebro, A.J., Coello, C.A., Luna, F., Alba, E.: Multi-objective particle swarm optimizers : an empirical comparison. LNCS Comput. Sci. 5467, 495–509 (2009)

    MATH  Google Scholar 

  12. Fyffe, D.W., Hines, W.W., Lee, N.K.: System reliability allocation and a computational algorithm. IEEE Trans. Reliab. 17(2), 64–69 (1968)

    Article  Google Scholar 

  13. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  14. Huang, C.: A particle-based simplified swarm optimization algorithm for reliability redundancy allocation problems. Reliab. Eng. Syst. Saf. 142, 221–230 (2015)

    Article  Google Scholar 

  15. Kolodziej, J., Khan, S.U., Wang, L., Byrski, A., Allah, N.M., Madami, S.A.: Hierarchical genetic-based grid scheduling with energy optimization. Clust. Comput. 16, 591–609 (2013)

    Article  Google Scholar 

  16. Kulturel-Konak, S., Coit, D.W., Baheranwala, F.: Pruned Pareto-optimal sets for the system redundancy allocation problem based on multiple prioritized objectives. J. Heurist. 14(4), 335–357 (2008)

    Article  MATH  Google Scholar 

  17. Leesutthipornchai, P., Charnsripinyo, C., Wattanapongsakorn, N.: Soving multi-objective routing and wavelength assignment in WDM network using hybrid evolutionary computation approach. Comput. Commun. 33(18), 2246–2259 (2010)

    Article  Google Scholar 

  18. Liu, H.L., Gu, F., Zhang, Q.: Decomposition of a multiobjective optimization problem into number of simple multi-objectives subproblems. IEEE Trans. Evol. Comput. 18(3), 450–455 (2014)

    Article  Google Scholar 

  19. Nebro, A.J., Durillo, J.J., Luna, F., Dorronsoro, B., Alba, E.: MOCell: a cellular genetic algorithm for multiobjective optimization. J. Intell. Syst. 24(7), 726–746 (2009)

    Article  MATH  Google Scholar 

  20. Nebro, A.J., Luna, F., Alba, E., Dorronsoro, B., Durillo, J.J., Beham, A.: AbYSS: adapting scatter search to multiobjective optimization. IEEE Trans. Evol. Comput. 12(4), 439–457 (2008)

    Article  Google Scholar 

  21. Rachmawati, L., Srinivasan, D.: A multi-objective evolutionary algorithm with weighted sum niching for convergence on knee regions. In: Proceeding of the 8\(^{\rm th}\) Genetic and Evolutionary Computation Conference (GECCO’06), pp. 749–750 (2006)

  22. Rachmwati, L., Srinivasan, D.: Multiobjective evolutionary algorithm with controllable focus on the knees of the Pareto front. IEEE Trans. Evol. Comp. 13(4), 810–824 (2010)

    Article  Google Scholar 

  23. Ronco, C.C.D., Ponza, R., Benini, E.: Aerodynamic shape optimization of aircraft components using an advanced multi-objective evolutionary approach. Comput. Methods Appl. Mech. Eng. 285, 255–290 (2015)

    Article  MathSciNet  Google Scholar 

  24. Sindhya, K., Miettinen, K., Deb, K.: A hybrid framework for evolutionary multi-objective optimization. IEEE Trans. Evol. Comput. 17(4), 495–511 (2013)

    Article  MATH  Google Scholar 

  25. Sudeng, S., Wattanapongsakorn, N.: Finding robust Pareto-optimal solutions using geometric angle-based pruning algorithm. Intell. Syst. Sci. Inf. 542, 277–295 (2014)

    Article  Google Scholar 

  26. Sudeng, S., Wattanapongsakorn, N.: Post Pareto-optimal pruning algorithm for multiple objective optimization using specific extended angle dominance. J. Eng. Appl. Artif. Intell. 38, 221–236 (2015)

    Article  Google Scholar 

  27. Wang, L., Qu, H., Liu, S., Dun, C.: Modeling and optimization of the multiobjective stochastic joint replenishment and delivery problem under supply chain environment. Sci. World J. 91657, 1–11 (2013)

    Google Scholar 

  28. Wattanapongsakorn, N., Levitan, S.P.: Reliability optimization models for embedded systems with multiple applications. IEEE Trans. Reliab. 53(3), 406–416 (2004)

    Article  Google Scholar 

  29. Zhang, F., Cao, J., Li, K., Khan, S.U., Hwang, K.: Multi-objective scheduling of many tasks in cloud platforms. Future Gener. Comput. Syst. 37, 309–320 (2014)

    Article  Google Scholar 

  30. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  31. Zhang, Q., Liu, B., Wang, Z., Ma, B.: Estimation of distribution algorithm for the machine part cell formation. LCBS 5821, 82–91 (2009)

    Google Scholar 

  32. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm, pp. 1–21. Computer Engineering and Network Laboratory (TIK), Department of Electrical Engineering, Swiss Federal Institute of Technology (ETH), Zurich (2001)

    Google Scholar 

Download references

Acknowledgments

This work was supported by King Mongkut’s University of Technology Thonburi, the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naruemon Wattanapongsakorn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sudeng, S., Wattanapongsakorn, N. A knee-based multi-objective evolutionary algorithm: an extension to network system optimization design problem. Cluster Comput 19, 411–425 (2016). https://doi.org/10.1007/s10586-015-0492-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-015-0492-2

Keywords

Navigation