Skip to main content
Log in

A method of unsupervised machine learning based on self-organizing map for BCI

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Brain computer interface (BCI) is a technology that controls computers or machines using the thoughts or intentions of a person. EEG signal measured from the human scalp is reflected with thoughts and intentions of a person, and when using the signal processing technologies such as machine learning or pattern recognition, intentions of such users can be interpreted. This study has proposed an autonomous machine learning method applicable to BCI based on Kohonen’s self-organizing map which is one of the representative methods of unsupervised learning. To achieve this, learning area adjustment method and autonomous machine learning rules using interactive functions were proposed. Learning area adjustment and machine learning have used the side control effects according to the interactive functions based on Kohonen’s self-organizing map. After determining the winning neuron, the connection strength of neuron was adjusted according to the learning rules. As the learning area gradually decreased according to the increase in the number of learning, the flow towards the input of weighted value of output layer neuron was mitigated and an autonomous machine learning that can complete the learning as the network reaches the equilibrium state was proposed. This BCI technology that connects the brain and machines is predicted to be applicable to a variety of BCI applications in that unlike the existing manual mechanism, it is applied with person’s brainwaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Oh, S.Y., Chung, K.-Y.: Target speech feature extraction using non-parametric correlation coefficient. Clust. Comput. 17(3), 893–899 (2014)

    Article  Google Scholar 

  2. Gainmann, B., Allison, B., Pfurtscheller, G.: Brain-Computer Interface, Revolutionizing Human-Computer Interaction. Springer, Berlin Heidelberg (2010)

    Google Scholar 

  3. Nijholt, A., Tan, D.: Brain-computer interfacing for intelligent system. IEEE Intell. Syst. 23(3), 72–79 (2008)

    Article  Google Scholar 

  4. Sajda, P., Muller, K.-R., Shenoy, K.V.: Brain-computer interfaces. IEEE Signal Process. Mag. 25(1), 16–28 (2008)

    Article  Google Scholar 

  5. Lee, J.-W., An, K.-O., Seo, J.-W., Choi, H., Kim, J.-H., Lee, S.-J.: A survey on potential user’s needs and demands for brain machine interface (BMI) technology developments. J. Vocat. Rehabil. 24(3), 5–25 (2014)

    Google Scholar 

  6. Millan, J.D.R., et al.: Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges. Front Neurosci. 4, 161 (2010). doi:10.3389/fnins.00161

    Google Scholar 

  7. Vansteensel, M.J., Hermes, D., Aarnoutse, E.J., Bleichner, M.G., Schalk, G., van Rijen, P.C., Leijten, F.S.S., Ramsey, N.F.: Brain-computer interfacing based on cognitive control. Ann. Neurol. 67(6), 809–816 (2010)

    Google Scholar 

  8. Chen, D., Lu, D., Tian, M., He, S., Wang, S., Tian, J., Cai, C., Li, X.: Towards energy-efficient parallel analysis of neural signals. Clust. Comput. 16(1), 39–53 (2013)

    Article  Google Scholar 

  9. Park, R.C., Jung, H., Shin, D.-K., Kim, G.-J., Yoon, K.-H.: M2M-based smart health service for human UI/UX using motion recognition. Clust. Comput. 18(1), 221–232 (2015)

    Article  Google Scholar 

  10. Hariri, S., Khargharia, B., Chen, H., Yang, J., Zhang, Y., Parashar, M., Liu, H.: The autonomic computing paradigm. Clust. Comput. 9(1), 5–17 (2006)

    Article  Google Scholar 

  11. Kim, J.-K., Lee, J.-S., Park, D.-K., Lim, Y.-S., Lee, Y.-H., Jung, E.-Y.: Adaptive mining prediction model for content recommendation to coronary heart disease patients. Clust. Comput. 17(3), 881–891 (2014)

    Article  Google Scholar 

  12. Tamura, H., Kawano, S., Tanno, K.: Unsupervised learning method for a support vector machine and its application to surface electromyogram recognition. Artif. Life Robot. 14(3), 362–366 (2009)

    Article  Google Scholar 

  13. Sandhu, R., Sood, S.K.: Scheduling of big data applications on distributed cloud based on QoS parameters. Clust. Comput. 18(2), 817–828 (2015)

    Article  Google Scholar 

  14. Leeb, R., Keinrath, C., Friedman, D., et al.: Walking by thinking: the brainwaves are crucial, not the muscle. Presence 15(5), 500–514 (2006)

    Article  Google Scholar 

  15. Kim, S.-H., Chung, K.: Emergency situation monitoring service using context motion tracking of chronic disease patients. Clust. Comput. 18(2), 747–759 (2015)

    Article  Google Scholar 

  16. Kim, C.-M., Kang, G.-H., Kim, E.-S.: A study on the generation method of visual-auditory feedback for BCI rhythm game. J. Korea Game Soc. 13(6), 15–26 (2013)

    Article  Google Scholar 

  17. Bak, K.-J., Yi, S.-G., Jeong, S.-H.: A study on the brain wave characteristics of baduk expert by BCI (brain computer interface). J. Korea Acad. Ind. Coop. Soc. 9(3), 695–701 (2008)

    Google Scholar 

  18. Lee, S., Baik, Y., Nam, K., Ahn, J., Lee, Y., Oh, S., Kim, K.: Developing a cognitive evaluation method for serious game engineers. Clus. Comput. 17(3), 757–766 (2014)

    Article  Google Scholar 

  19. Jung, D.-Y.: Future of UI, brain computer interface (BCI). Samsung Econ. Res. Inst. 197, 1 (2013)

    Google Scholar 

  20. Sung, Y., Cho, K., Um, K.: A normalization method to utilize brain waves as brain computer interface game control. J. Korea Game Soc. 10(6), 115–124 (2010)

    Google Scholar 

  21. Tian, X.-W., Lim, J.S.: Learning distribution graphs using a neuro-fuzzy network for naive Bayesian classifier. J. Digit. Policy Manag. 11(11), 409–414 (2013)

    Google Scholar 

  22. Muhammad, G.: Automatic speech recognition using interlaced derivative pattern for cloud based healthcare system. Clus. Comput. 18(2), 795–802 (2015)

    Article  Google Scholar 

  23. Mansour, N., Chehab, M.I., Faour, A.: Filtering intrusion detection alarms. Clus. Comput. 13(1), 19–29 (2010)

    Article  Google Scholar 

  24. Šmuc, T., Gamberger, D., Krstačić, G.: Combining Unsupervised and Supervised Machine Learning in Analysis of the CHD Patient Database. Artificial intelligence in medicine lecture notes in computer science, vol. 2101, pp. 109–112. Springer, Tokyo (2001)

  25. Kohonen, T.: Self Organization and Associative Memory, 3rd edn. Springer, New York (1990)

    MATH  Google Scholar 

  26. Kohonen, T.: The self-organizing map. Proc. IEEE 78, 1464–1480 (1990)

    Article  Google Scholar 

  27. von der Malsburg, C.: Self-Organization of Orientation Sensitive Cells in the Striate Cortex, Neurocomputing, Foundations of Research. MIT Press, Cambridge (1988)

    Google Scholar 

  28. Gunduz, A., Brunner, P., Daitch, A., Leuthardt, E.C., Ritaccio, A.L., Pesaran, B., Schalk, G.: Decoding covert spatial attention using electrocorticographic (ECoG) signals in humans. NeuroImage 60(4), 2285–2293 (2012)

    Article  Google Scholar 

  29. Kim, D.-E., Lee, T.-J., Park, S.-M., Ko, K.-E., Sim, K.-B.: EEG analysis following change in hand grip force level for BCI based robot arm force control. J. Korean Inst. Intell. Syst. 23(2), 172–177 (2013)

    Article  Google Scholar 

  30. Anderson, N.R., Blakely, T., Schalk, G., Leuthardt, E.C., Moran, D.W.: Electrocorticographic (ECoG) correlates of human arm movements. Exp. Brain Res. 223(1), 1–10 (2012)

    Article  Google Scholar 

  31. An, M.-K., Choi, J.-Y., Lee, M.-J., Lee, J.G., Jun, S.-C.: A review of brain computer interface (BCI) games. J. Korea Inf. Sci. Soc. 31(7), 26–34 (2013)

    Google Scholar 

  32. Li, K., Wang, Y.: Distance estimation by mining characteristics in anisotropic sensor networks. Clus. Comput. 13(2), 167–180 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui-Jung Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, JS., Kim, GJ. A method of unsupervised machine learning based on self-organizing map for BCI. Cluster Comput 19, 979–985 (2016). https://doi.org/10.1007/s10586-016-0550-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-016-0550-4

Keywords

Navigation