Skip to main content
Log in

DOA estimation of multiple sources in sparse space with an extended array technique

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

An algorithm to improve direction of arrival (DOA) estimation accuracy with an extended sensor array in the presence of multiple coherent signal sources is proposed. The algorithm uses virtual element theory to extend the sensor array, estimates virtual element information via linear prediction and expands the array aperture in practical sense; the sparsity of the target orientation in angle space is exploited to establish an over-complete dictionary and a reception model for the array signal in sparse space; the received array data is preprocessed using singular value decomposition (SVD) method and target DOA estimation is realized by calculating the best atoms. The algorithm improves DOA estimation accuracy by extended array and uses SVD to control computational complexity effectively, which ensures the accuracy and efficiency. Computer simulation shows that the proposed algorithm is able to accurately estimate the DOA for both single-target and closely spaced multi-target cases in low signal-to-noise ratio environments, and also has excellent DOA estimation performance in the presence of multiple coherent signal sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fuguang, L., Ming, D.: A novel algorithm for DOA estimation. In: Second International Symposium on Information Science and Engineering. Shanghai, pp. 488–492 (2009)

  2. Malioutov, D.M., Cetin, A.M., Willsky, S.: A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Trans. Signal Process. 53(8), 2022–3010 (2005)

    Article  MathSciNet  Google Scholar 

  3. Jun, B., Xiaohong, S., Haiyan, W. et al.: Improved Toeplitz algorithm to coherent sources DOA estimation. In: IEEE International Conference on Measuring Technology and Mechatronics Automation. Changsha, pp. 422–445 (2010)

  4. Malioutov, D., Cetin, M.: A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Trans. Signal Process. 53(8), 3010–3022 (2005)

    Article  MathSciNet  Google Scholar 

  5. Howells, P.: Intermediate frequency side-lobe canceller. U.S. Patent 3, 202, 990, 1965.8

  6. Applebaum, S.P.: Adaptive arrays. IEEE Trans. Antennad Propag. 24, 585–598 (1976)

    Article  Google Scholar 

  7. Widrow, B., Mantey, P.E., Griffiths, L.J., Goode, B.B.: Adaptive antenna systems. Proc. IEEE 55, 2143–2159 (1976)

    Article  Google Scholar 

  8. Capon, J.: High resolution frequency wave number spectrum analysis. Proc. IEEE 57, 1408–1418 (1969)

    Article  Google Scholar 

  9. Schmidt, R.O.: Multiple emitter location and signal parameter estimation. IEEE Trans. Antenna Propag. 34, 276–280 (1986)

    Article  Google Scholar 

  10. Roy, R., Paulraj, A., Kailath, T.: ESPRIT—a subspace rotation approach to estimation of parameter of cissoids in noise. IEEE Trans. ASSP 34, 1340–1342 (1986)

    Article  Google Scholar 

  11. Gabriel, W.F.: Adaptive arrays—an introduction. Proc. IEEE 64, 239–272 (1976)

    Article  Google Scholar 

  12. Compton, R.T.: An adaptive antenna in a spread communication system. Proc. IEEE 66, 289–298 (1978)

    Article  Google Scholar 

  13. Swales, S.C., Beach, M., Edwards, D., McGechan, J.P.: The performance enhancement of multi beam adaptive base-station antennas for cellular land mobile radio system. EEE Trans. Veh. Technol. 39, 56–67 (1990)

    Article  Google Scholar 

  14. Rao, B.D., Hari, K.V.S.: Performance analysis of Root-MUSIC. IEEE Trans. Acoust. Speech Signal Process. 37(12), 1939–1949 (1989)

    Article  Google Scholar 

  15. Clergeot, H., Tressens, S., Ouamri, A.: Performance of high resolution frequencies estimation methods compared to the Cramer-Rao bounds. IEEE Trans. Acoust. Speech Signal Process. 37(11), 1703–1720 (1989)

    Article  MATH  Google Scholar 

  16. Marcos, S., Marsal, A., Benidir, M.: The propagator method for source bearing estimation. Signal Process. 42(2), 121–138 (1995)

    Article  Google Scholar 

  17. Shan, T.J., Wax, M., Kailath, T.: On spatial smoothing for direction-of-arrival estimation of coherent signals. IEEE Trans. Acoust. Speech Signal Process. 33(4), 806–811 (1985)

    Article  Google Scholar 

  18. Pillai, S.U., Kwon, B.H.: Forward/Backward spatial smoothing techniques for coherent signal identification. IEEE Trans. Acoust. Speech Signal Process. 37(1), 8–15 (1989)

    Article  MATH  Google Scholar 

  19. Han, F.M., Zhang, X.D.: An ESPRIT-like algorithm for coherent DOA estimation. IEEE Antennas Wirel. Propag. Lett. 4, 443–446 (2005)

    Article  Google Scholar 

  20. Bohme, J.F.: Estimation of source parameter by maximum likelihood and nonlinear regression. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP ’84), Bochum, pp. 271–274 (1984)

  21. Bohme, J.F.: Estimation of spectral parameters of correlated signals in wavefields. Signal Process. 11(4), 329–337 (1986)

    Article  Google Scholar 

  22. Ruiz, P., Dorronsoro, B., Bouvry, P.: Finding scalable configurations for AEDB broadcasting protocol using multi-objective evolutionary algorithms. Clust. Comput. 16(3), 527–544 (2013)

    Article  Google Scholar 

  23. Viberg, M., Ottersten, B.: Sensor array processing based on subspace fitting. IEEE Trans. Signal Process. 39(5), 1110–1121 (1991)

    Article  MATH  Google Scholar 

  24. Viberg, M., Ottersten, B., Kailath, T.: Detection and estimation in sensor arrays using weighted subspace fitting. IEEE Trans. Signal Process. 39(11), 2436–2449 (1991)

    Article  Google Scholar 

  25. Ye, J., Xu, Z., Ding, Y.: Secure outsourcing of modular exponentiations in cloud and cluster computing. Clust. Comput. 19(2), 811–820 (2016)

    Article  Google Scholar 

  26. Xu, Z. et al. Crowdsourcing based description of urban emergency events using social media big data. IEEE Trans. Cloud Comput. doi:10.1109/TCC.2016.2517638

  27. Gorodnitsky, I., George, J., Rao, B.: Neuromagnetic source imaging with FOCUSS: a recursive weighted minimum norm algorithm. Electroencephalogr. Clin. Neurophysiol. 95(4), 231–251 (1995)

    Article  Google Scholar 

  28. Gorodnitsky, I., Rao, B.: Sparse signal reconstruction from limited data using FOCUSS: a reweighted minimum norm algorithm. IEEE Trans. Signal Process. 45(3), 600–616 (1997)

    Article  Google Scholar 

  29. Gorodnitsky, I., Rao, B., George, J.: Source localization in magnetoencephalography using an iterative weighted minimum norm algorith. In: The Twenty-Sixth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, GA, Oct. vol. 26–28, pp. 167–171 (1992)

  30. Cotter, S.F., Rao, B.D., Engan, K., Delgado, K.K.: Sparse solution to linear inverse problems with multiple measurement vectors. IEEE Trans. Signal Process. 53(7), 2477–2488 (2005)

    Article  MathSciNet  Google Scholar 

  31. Malioutov, D.M., Cetin, M., Willsky, A.S.: A sparse signal reconstruct on perspective for source localization with sensor arrays. IEEE Trans. Signal Process. 53(8), 3010–3022 (2005)

    Article  MathSciNet  Google Scholar 

  32. Kim, M.K., Jung, S.D.: Two-dimensional numerical tunnel model using a Winkler-based beam element and its application into tunnel monitoring systems. Clust. Comput. 18(2), 707–719 (2015)

    Article  Google Scholar 

  33. Toutouh, J., Nesmachnow, S., Alba, E.: Fast energy-aware OLSR routing in VANETs by means of a parallel evolutionary algorithm. Clust. Comput. 16(3), 435–450 (2013)

    Article  Google Scholar 

  34. Huang, C., Sun, D., Zhang, D., et al.: Optimizations for robust low side lobe beam forming of bistatic multiple-input multiple-output virtual array. Acta Phys. Sin. 18, 473–481 (2014)

    Google Scholar 

  35. Cai, T.T., Xu, G., Zhang, J.: On recovery of space signals via l1 minimization. IEEE Trans. Inf. Theory 55, 3388–3397 (2010)

    Article  MathSciNet  Google Scholar 

  36. Hyder, M.M., Mahata, K.: An improved smoothed approximation algorithm for sparse representation. IEEE Trans. Signal Process. 58(4), 2194–2205 (2010)

    Article  MathSciNet  Google Scholar 

  37. Bilik, I.: Spatial compressive sensing for direction of arrival estimation of multiple sources using dynamic sensor arrays. IEEE Trans. Aerosp. Electron. Syst. 47(3), 1754–1769 (2011)

    Article  MathSciNet  Google Scholar 

  38. Mohimani, G.H., Massoud Babaie-Zadeh, M., Hutten, C.: A fast approach for over-complete sparse decomposition based on smoothed l0 norm. IEEE Trans. Signal Process. 57(1), 289–301 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors thank Professor Lin Chunsheng for critical reviews. This work is partly supported by National Defense Pre-research Foundation under Grant No. 51401020503.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouwei Hu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, P., Yan, B. & Hu, S. DOA estimation of multiple sources in sparse space with an extended array technique. Cluster Comput 19, 1437–1447 (2016). https://doi.org/10.1007/s10586-016-0605-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-016-0605-6

Keywords

Navigation