Skip to main content
Log in

Safety verification of finite real-time nonlinear hybrid systems using enhanced group preserving scheme

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

In recent years, finite realtime nonlinear hybrid systems(FRNHS) have been widely used in the fields of biology, chemical control, embedded systems, etc. Its safety verification becomes more and more important. Compared with traditional hybrid systems, the safety verification of FRNHS is decidable, but the computational accuracy of its reach set demands higher. Group preserving scheme(GPS) achieves better accuracy and stabilization than traditional numerical algorithms due to its inherent properties in Minkowski space. This paper creatively applies GPS into the safety verification of FRNHS. Based on Euler method and GPS, we put forward the corresponding enhanced algorithms, which make the numerical computational accuracy higher. Through the experiment, the errors introduced by four various numerical computation methods are compared. The experimental results indicate that the proposed enhanced GPS in this paper has higher accuracy and can effectively make safety verification for FRNHS within the \(\epsilon \text {-}\)error approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abate, A., Katoen, J.P., Lygeros, J., Prandini, M.: Approximate model checking of stochastic hybrid systems. Eur. J. Control 16(6), 624–641 (2010). doi:10.3166/ejc.16.624-641

    Article  MathSciNet  MATH  Google Scholar 

  2. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.H.: Hybrid Automata: An Algorithmic Approach to the Specification and Verification of Hybrid Systems. Springer, New York (1993)

    Google Scholar 

  3. Alur, R., Henzinger, T.A., Ho, P.H.: Automatic symbolic verification of embedded systems. IEEE Trans. Softw. Eng. 22(3), 181–201 (1996). doi:10.1109/32.489079

    Article  Google Scholar 

  4. Alur, R., Dang, T., Ivančić, F.: Counterexample-guided predicate abstraction of hybrid systems. Theor. Comput. Sci. 354(2), 250–271 (2006). doi:10.1016/j.tcs.2005.11.026

    Article  MathSciNet  MATH  Google Scholar 

  5. Asarin, E., Bournez, O., Dang, T., Maler, O., Pnueli, A.: Effective synthesis of switching controllers for linear systems. Proc. IEEE 88(7), 1011–1025 (2000). doi:10.1109/5.871306

    Article  Google Scholar 

  6. Ascher, U.M., Petzold, L.R.: Computer Methods for Ordinary Differential Equations and Differential-algebraic Equations, vol. 61. SIAM, Philadelphia (1998)

    Book  MATH  Google Scholar 

  7. Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, vol. 14. SIAM, Philadelphia (1996)

    MATH  Google Scholar 

  8. Casagrande, A., Piazza, C., Policriti, A.: Discrete semantics for hybrid automata. Discret. Event Dynamic Syst.Theory Appl. 19(4), 471–493 (2009). doi:10.1007/s10626-009-0082-7

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, X., Ábrahm, E., Sankaranarayanan, S.: Flow*: An Analyzer for Non-linear Hybrid Systems. Computer Aided Verification. Computer Aided Verification, pp. 258–263. Springer, Berlin (2013)

  10. Chutinan, A.: Hybrid system verification using discrete model approximations. Ph.D. thesis, Carnegie Mellon University (1999)

  11. Clarke, E., Fehnker, A., Han, Z., Krogh, B., Stursberg, O., Theobald, M.: Verification of hybrid systems based on counterexample-guided abstraction refinement. In: Garavel, H., Hatcliff, J. (eds.) Tools and Algorithms for the Construction and Analysis of Systems, Proceedings, Tools and Algorithms for the Construction and Analysis of Systems, Proceedings, vol. 2619, pp. 192–207. Springer, Berlin (2003)

    Chapter  Google Scholar 

  12. Curcin, V., Ghanem, M.M., Guo, Y.: Analysing scientific workflows with computational tree logic. Cluster Comput. 12(4), 399–419 (2009). doi:10.1007/s10586-009-0099-6

    Article  Google Scholar 

  13. Davoren, J.M., Nerode, A.: Logics for hybrid systems. Proc. IEEE 88(7), 985–1010 (2000). doi:10.1109/5.871305

    Article  Google Scholar 

  14. Dreossi, T., Piazza, C.: Non standard hybrid automata semantics. Ph.D. thesis, University degli Studi di Udine (2012)

  15. Franzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of large non-linear arithmetic constraint systems with complex boolean structure. J. Satisf. Boolean Model. Comput. 1, 209–236 (2007)

    MATH  Google Scholar 

  16. Frehse, G.: Phaver: algorithmic verification of hybrid systems past hytech. In: Morari, M., Thiele, L. (eds.) Hybrid Systems: Computation and Control, vol. 3414, pp. 258–273. Springer, Berlin (2005)

    Chapter  Google Scholar 

  17. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R., Girard, A., Dang, T., Maler, O.: Spaceex: scalable verification of hybrid systems. In: Computer Aided Verification, pp. 379–395. Springer, Berlin (2011)

  18. Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari, M., Thiele, L. (eds.) Hybrid Systems: Computation and Control, vol. 3414, pp. 291–305. Springer, Berlin (2005)

    Chapter  Google Scholar 

  19. Gu, Z.: Solving real-time scheduling problems with model-checking. In: Yang, L.T., Zhou, X., Zhao, W., Wu, Z., Zhu, Y., Lin, M. (eds.) Embedded Software and Systems, Proceedings, vol. 3820, pp. 186–197. Springer, Berlin (2005)

    Chapter  Google Scholar 

  20. Han, K.H., Bae, W.S.: Proposing and verifying a security protocol for hash function-based iot communication system. Cluster Comput. 19(1), 497–504 (2016). doi:10.1007/s10586-015-0518-9

    Article  Google Scholar 

  21. Henzinger, T.A.: The theory of hybrid automata. In: Inan, M.K., Kurshan, R.P. (eds.) Verification of Digital and Hybrid System, vol. 170, pp. 265–292. Springer, Berlin (2000)

    Chapter  Google Scholar 

  22. Henzinger, T.A., Ho, P.H., Wong-Toi, H.: Algorithmic analysis of nonlinear hybrid systems. IEEE Trans. Autom. Control 43(4), 540–554 (1998). doi:10.1109/9.664156

    Article  MathSciNet  MATH  Google Scholar 

  23. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid automata? J. Comput. Syst. Sci. 57(1), 94–124 (1998). doi:10.1006/jcss.1998.1581

    Article  MathSciNet  MATH  Google Scholar 

  24. Hong, H.K., Liu, C.S.: Internal symmetry in bilinear elastoplasticity. Int. J. Non-Linear Mech. 34(2), 279–288 (1999). doi:10.1016/s0020-7462(98)00029-8

    Article  MathSciNet  MATH  Google Scholar 

  25. Hong, H.K., Liu, C.S.: Lorentz group on minkowski spacetime for construction of the two basic principles of plasticity. Int. J. Non-Linear Mech. 36(4), 679–686 (2001). doi:10.1016/s0020-7462(00)00033-0

    Article  MathSciNet  MATH  Google Scholar 

  26. Jian-Guang, L., Juan, T., Xiao-Lin, Q., Yong, F.: Modified group preserving methods and applications in chaotic systems. Acta Phys. Sin. 65(11), 19–27 (2016). doi:10.7498/aps.65.110501.11-1958/O4

    Google Scholar 

  27. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice-Hall, Upper Saddle River, NJ (2002)

    MATH  Google Scholar 

  28. Kurzhanskiy, A.A., Varaiya, P.: Ellipsoidal techniques for reachability analysis of discrete-time linear systems. IEEE Trans. Autom. Control 52(1), 26–38 (2007). doi:10.1109/tac.2006.887900

    Article  MathSciNet  Google Scholar 

  29. Le Guernic, C., Girard, A.: Reachability analysis of hybrid systems using support functions. In: Computer Aided Verification, pp. 540–554. Springer, Berlin (2009)

  30. Lerida, J.L., Agraz, A., Solsona, F., Angels Colomer, M.: Psyscal: a parallel tool for calibration of ecosystem models. Cluster Comput. 17(2), 271–279 (2014). doi:10.1007/s10586-013-0310-7

    Article  Google Scholar 

  31. Li, T., Tan, F., Wang, Q., Bu, L., Cao, J.N., Liu, X.: From offline toward real time: a hybrid systems model checking and cps codesign approach for medical device plug-and-play collaborations. IEEE Trans. Parallel Distrib. Syst. 25(3), 642–652 (2014). doi:10.1109/tpds.2013.50

    Article  Google Scholar 

  32. Liu, C.S.: Cone of non-linear dynamical system and group preserving schemes. Int. J. Non-Linear Mech. 36(7), 1047–1068 (2001). doi:10.1016/s0020-7462(00)00069-x

    Article  MathSciNet  MATH  Google Scholar 

  33. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reason. 41(2), 143–189 (2008). doi:10.1007/s10817-008-9103-8

    Article  MathSciNet  MATH  Google Scholar 

  34. Prajna, S., Jadbabaie, A., Pappas, G.J.: A framework for worst-case and stochastic safety verification using barrier certificates. IEEE Trans. Autom. Control 52(8), 1415–1428 (2007). doi:10.1109/tac.2007.902736

    Article  MathSciNet  Google Scholar 

  35. Sproston, J.: Decidable model checking of probabilistic hybrid automata. In: Joseph, M. (ed.) Formal Techniques in Real-Time and Fault-Tolerant Systems, Proceedings, vol. 1926, pp. 31–45. Springer, Berlin (2000)

    Chapter  Google Scholar 

  36. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis, vol. 12. Springer Science and Business Media (2013)

  37. Tonnelier, A., Meignen, S., Bosch, H., Demongeot, J.: Synchronization and desynchronization of neural oscillators. Neural Netw. 12(9), 1213–1228 (1999). doi:10.1016/s0893-6080(99)00068-4

    Article  Google Scholar 

  38. Zong, Z., Fares, R., Romoser, B., Wood, J.: Faststor: improving the performance of a large scale hybrid storage system via caching and prefetching. Cluster Comput. 17(2), 593–604 (2014). doi:10.1007/s10586-013-0304-5

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China under Grant Nos. 11371003 and 11461006, the Natural Science Foundation of Guangxi under Grant No. 2012GXNSFGA060003 and the Scientific Research Project No. 201012MS274 from Guangxi Education Department. The authors also want to thank the anonymous reviewers for their advice on improving this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinzhao Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Wu, J., Lu, J. et al. Safety verification of finite real-time nonlinear hybrid systems using enhanced group preserving scheme. Cluster Comput 19, 2189–2199 (2016). https://doi.org/10.1007/s10586-016-0652-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-016-0652-z

Keywords

Navigation